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Abstract—We develop blind data detectors for orthogonal
frequency-division multiplexing (OFDM) systems over doubly
selective channels by exploiting both frequency-domain and
time-domain correlations of the received signal. We thus derive
two blind data detectors: a time-domain data detector and a
frequency-domain data detector. We also contribute a reduced
complexity, suboptimal version of a time-domain data detector
that performs robustly when the normalized Doppler rate is less
than 3%. Our frequency-domain data detector and suboptimal
time-domain data detector both result in integer least-squares
(LS) problems. We propose the use of the V-BLAST detector
and the sphere decoder. The time-domain data detector is
not limited to the Doppler rates less than 3%, but cannot be
posed as an integer LS problem. Our solution is to develop an
iterative algorithm that starts from the suboptimal time-domain
data detector output. We also propose channel estimation and
prediction algorithms using a polynomial expansion model, and
these estimators work with data detectors (decision-directed
mode) to reduce the complexity. The estimators for the channel
statistics and the noise variance are derived using the likelihood
function for the data. Our blind data detectors are fairly robust
against the parameter mismatch.

Index Terms—Channel estimation, data detection, maximum
likelihood (ML), orthogonal frequency-division multiplexing
(OFDM).

1. INTRODUCTION

NCREASING demand for high data rate and high perfor-

mance has led to the development of fourth-generation (4G)
broadband wireless systems. A potential transmission technique
for 4G is orthogonal frequency-division multiplexing (OFDM).
Although for time-invariant channels OFDM equalization is
trivial with a one-tap equalizer, the OFDM performance is
highly sensitive to time variations of the channel and carrier
frequency offset, which destroy the subcarrier orthogonality
and cause inter-carrier interference, resulting in an error floor.
Frequency offset can be eliminated using either training-based
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or blind techniques! (see, e.g., [1] and references therein).
Nevertheless, the elimination of inter-carrier interference due
to time variations of the channel is essential for 4G applica-
tions. Conventional one-tap equalization without inter-carrier
interference compensation results in an error floor. The effects
of inter-carrier interference are analyzed in [2], where cen-
tral-limit arguments are used to model inter-carrier interference
as Gaussian and to quantify its impact on bit error rate (BER).
A bound on signal-to-interference-and-noise ratio (SINR) (due
to inter-carrier interference) is given in [3].

Several channel estimation algorithms have been proposed
for time-varying channels. When the OFDM symbol duration
is much smaller than the channel coherence time (i.e., rela-
tively mild Doppler), the channel is approximately constant over
an OFDM symbol and can be estimated by conventional tech-
niques (see [4] and [5] (and references therein). If the channel
varies linearly [6], it can be estimated by linear interpolation
between two channel estimates acquired by training symbols.
Such algorithms only compensate for the inter-carrier interfer-
ence when the rate of time variations of the channel is rela-
tively low. They cannot exploit the time diversity of a rapidly
time-varying channel [7]. In [8], a minimum mean-square error
(MMSE) channel estimator, and a successive interference can-
cellation detector with optimal ordering are proposed. Although
this receiver achieves the time diversity and performs better with
the increasing Doppler rate, it not only needs pilot symbols,
which consumes bandwidth, but also has high complexity. How-
ever, note that [8] also develops a reduced complexity low-rank
version. The motivation of this paper is therefore to derive blind
data detectors without direct channel estimation for frequency-
and time-selective (doubly selective) channels.

In this paper, we consider blind data detectors for OFDM
systems over doubly selective channels by exploiting both
frequency- and time-domain correlations of the received
signal. We thus derive two blind data detectors: time-domain
data detector and frequency-domain data detector. We also
contribute a reduced complexity, suboptimal version of the
time-domain data detector that performs robustly when the
normalized Doppler rate is less than 3%. Our frequency-domain
data detector and suboptimal time-domain data detector both
result in integer least-squares (LS) problems. Although they
can be optimally solved by brute-force exhaustive search, it
has exponential complexity in the number of subcarriers and
is hence computationally prohibitive. We thus use both the
Vertical Bell Labs Space-Time (V-BLAST) detector [9] and the
sphere decoder [10]-[12]. The time-domain data detector is not

THowever, to the best of our knowledge, previous blind techniques cannot be
applied to doubly selective channels.

0090-6778/$25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:08 from IEEE Xplore. Restrictions apply.


ctlabadmin
2007


CUI AND TELLAMBURA: BLIND RECEIVER DESIGN FOR OFDM SYSTEMS OVER DOUBLY SELECTIVE CHANNELS 907

limited to the Doppler rates less than 3%, but cannot be posed
as an integer LS problem. Our solution is to develop an iterative
algorithm that starts from the suboptimal time-domain data
detector output. We also propose channel estimation and pre-
diction algorithms using a polynomial expansion model [14],
which is a special case of the basis expansion model [15], and
these estimators work with data detectors (decision-directed
mode) to reduce the complexity. The estimators for the channel
statistics and the noise variance, which are needed by our blind
data detectors, are derived using the likelihood function for
the data. Our blind data detectors are fairly robust against the
residual mismatch of the proposed parameter estimators. The
time-domain data detector is able to exploit the inherent time
diversity of doubly selective channels.

This paper is organized as follows. Section II reviews the
basic baseband OFDM system model and analyzes inter-carrier
interference. Section III derives the new blind data detectors.
Their efficient implementation using V-BLAST and the sphere
decoder is considered in Section IV. In Section V, we introduce
channel estimation and prediction algorithms using a polyno-
mial expansion model. Section VI discusses parameter estima-
tion and mismatch issues. Section VII presents simulation re-
sults, and Section VIII provides the conclusions.

Notation

Bold symbols denote matrices or vectors. The operators ®
and tr(-), ()T, (), and ()Jr denote the Kronecker product,
trace, transpose, conjugate transpose, and Moore-Penrose
pseudo-inverse, respectively. The set of K -dimensional vectors
is CX. An M-ary phase shift keying (MPSK) signal constella-
tion is given by Q = {e/?™*/M | = 0,1,..., M — 1}, and the
set of N-dimensional MPSK vectors is Q. A circularly com-
plex Gaussian variable with mean 1 and variance o2 is denoted
by z ~ CN(p,o?). The discrete Fourier transform (DFT)
matrix of size N x N is given by [F].; = 1/VNel /N
k,l €0,1,..., N — 1. The diagonal matrix formed by a vector
A is Ap. S(N, M)[x] is an N x M circulant matrix, whose
rows are composed of cyclically shifted versions of x.

II. SYSTEM MODEL AND INTERCARRIER
INTERFERENCE ANALYSIS

A. OFDM and Intercarrier Interference Analysis

Input symbols are chosen from a finite constellation Q and
modulated by inverse DFT (IDFT) on N subcarriers. The re-
sulting time-domain samples are

2

1 .
Tn=—— Y XpedCFn/N) =01, ,N=1 (1)

>~
Il

=0

where X € Q. In this paper, we only consider unitary (i.e.,
constant modulus) constellations, | X k|2 = 1. Howeyver, the re-
ceiver design in this paper may also be extended to nonunitary
constellations. Note that X, k = 0,1,..., N — 1, are typically
called the modulation or input symbols, and the term "OFDM
symbol” refers to the entire sequence x| sz_()l- The input symbol

duration is Ty and the OFDM symbol duration is T = NT.
These discrete-time samples are appropriately filtered before
transmission.

The guard interval includes a cyclic prefix of
{zn, 1,...,2n 1}, where N, is the number of sam-
ples in the guard interval (N, is assumed to be larger than
the delay spread of the channel). The composite response
which includes transmit/receive pulse shaping and the physical
channel response between the transmitter and receiver may be
modeled as [5]

L-1
h(t,T) = Z h(t,7)6(T — ) @)
1=0
where hy(t) ~ CN(0, E{h?}) and 7; is the delay of the /th
tap. Typically, it is assumed that 7; = [T, and this results in a
finite-impulse-response (FIR) filter with an effective length L.
The received signal after sampling can be represented as

L—-1
Yn = Z h(”? l)xnfl + wy,
=0
1 L-1 N-1
=—— hn,0))  XpedCmEO=U/N) Loy (3)
\/N =0 k=0

where h(n, () is the discrete-time baseband equivalent channel
model and w(t) is an additive white Gaussian noise (AWGN)
process with mean zero and variance 0,21. At the receiver, the
guard interval is removed and DFT demodulation is performed,
resulting is

[ N1 ‘
Vi=—= ) ype 7CT/N) = 01,2,... N —1.
N n=0
| NolLon
S h(n,1)e=7Cmkn/N) 4 vy,
\/N T;) =0 ( / ) *
=XiHi + ap + W, 4)

where H, = 1/N N 'SS2Un(n, 1)e 72 /N W, =
1/\/sz;01 wne I2TEIN Wy~ CN (1, 02), and

1 N-1 N-1/L-1
_ —72mml/N\ _j72nn(m—k)/N
W= Z XmZ(Zh(n,l)e J /)e] (m=k)/N,

m=0,m#k n=0 \1=0

The a’s in (4) represent intercarrier interference due to time
variations of the channel. If it is time-invariant, we find o, =
0, which means no intercarrier interference exists. In a time-
variant channel, a;, # 0 and the conventional one-tap equaliza-
tion results in

ap + Wy

X, = Xz
k kTt .

(&)
The data detector makes a hard decision on X k. Since, in high
SNR, the intercarrier interference power £ {|ay|?} is larger than
the noise power o2, an irreducible error floor will appear.

n
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Equation (4) can be expressed in a vector form as
Y =HX+W (6)

where Y = [YQ, e ,YN_l]T, X = [Xo, ey XN_l]T,
w = [WO*, ) WN*l]T’ and [H]k,m =
I/NZTJ:’Z—J( lL=_01 h(n, l)6—j27rml/N)ej27rn(m—k)/N_

The model (6) is similar to a multiple-input multiple-output
(MIMO) system. If the channel H is perfectly known at the
receiver, MMSE equalization [8] eliminates the error floor

due to one-tap equalization.

B. Channel Correlations

A wide-sense stationary uncorrelated scattering (WSSUS)
channel (2) is characterized by its delay power spectrum and
scattering function. We assume that h(¢,7;) ( = 0,...,L — 1)
have the same normalized correlation function (scattering
function) r;(At). Hence

v (At) = E{h(t + At )b} (t7)} = oPr(A)  (7)

where 7.(At) is an even function (wide-sense stationary).
Therefore, the autocorrelation function of the channel is

E{h(t + At,7,)h(t,7,)} = 0121 re(AD)6(lh — 12).  (8)

Specifically, for Jakes’ model [13], :(At) = Jo(2w fpAt),
where Jy(-) denotes the zeroth-order Bessel function of the first
kind, and fp is the Doppler frequency. The normalized Doppler
frequency is fy = N fpTs and the frequency domain correla-
tion function is

L—-1
re(Af) =Y opem AT )
=0

Note that r¢(Af) depends on the power delay profile (PDP),
02,...,0%_,.
III. BLIND DATA DETECTORS

A. Time-Domain Detector

The time-domain data detector exploits the correlation of the
received time-domain signal (pre-DFT correlation). Given x,, or
X, the time-domain received signal vy, (3) is zero-mean com-
plex Gaussian. The correlation between y,,, and y,, in (3) is

L—1IL-1
E{ymy:z}: Z Z E{h(nhll)h*(nZ:lQ)}xnl—hx:LZ—lg
1, =01,=0
+ 026(ny — ny)
L—1
:rt[(nl—nQ)TS]Zolza:m,lx;rl—l—ogé(nl—nz)
1=0

(10)
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where the second equality comes from (8). Substituting (1) into
(10), we obtain

E{Yn,yn, }
_ e [(n1 — no)Ty]

=

X 012 E Xle;:2ej27Tk1(n1—l)/Ne—j27rk2(’n2—l)/N

N—-1N-1 L-1
X Z ZXlel’:2eJZ7rk1nl/Ne*JQ‘/rkznz/N20.1267]27r(k17k2)l/N

k1=0kz=0 1=0
+ 0'121(5(%1 — TLQ)
_ 1y [(ng —n2)Ty]
N
N—1N-1 ' ' b — k
k1=0ky=0 s

+ 028(ny — ny)

=7 [(n1 — o) T £ XpRyX P fa, + 006(n1 —n2) (1)
where Xp = diag{Xo, X1,...,Xn_1}, the frequency-do-
main correlation matrix [Ry];; = r[(i — 5)/(NTy)], for i =
0,1,...,N—1,7=0,1,..., N —1, and f; is the ith column of
the DFT matrix F. The third equality comes from (9). The auto-
correlation matrix of y = [y, ...,yn_1]7 can thus be written
as

R,, = FIR, ® (XpR;XE)F + 021y

=FHIN®Xp)(R:@R;)(Iy@XE)F4+02Ix  (12)

where [Ry]; ; = 7 [(¢ — j)Ts] is the time-domain correlation
matrix F = diag{fy,...,fx_1} is block diagonal, and ® de-
notes the Kronecker product with (AB) ® (CD) = (A ®
C)(B® D).
The probability density function (pdf) of y conditional on the
transmitted data X is therefore
p(yX) = (r" det(Ryy)) "  exp(—y R y).  (13)
Since all data vectors are equally likely, the maximum-likeli-
hood (ML) estimate of X is given by minimizing the cost metric
9(X) =y R,y + In[det(Ry,)] . (14)
Although this cost function is exact, the presence of the deter-
minant term is problematic. Fortunately, that the determinant
term can be ignored without a significant performance loss is
evidenced by the following reasons. Since det(R,, ) is the sum
of product of Xy, ..., Xn_1, itis independent of X when N is
large using the law of large numbers. This result is also verified
by simulation. Moreover, when the channel is time-invariant,
r¢(At) = 1. Therefore, R, reduces to

R,, = FEXpR;XHF + o21y. (15)
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det(R,,) can thus be expressed as

det(R,,) = det(Xp)det(Ry + 02Ix) det(XH)

= det(Ry + o21y). (16)

When X}, s belong to a unitary constellation, det(R.,, ) is inde-
pendent of Xp.

For all of these reasons and for reducing computational com-
plexity, we ignore the determinant term in (14) and obtain the
cost function

gr(X) =y"Ryy amn
where the subscript 7' denotes the time-domain data detector.
Unfortunately, it is impossible to move X p out of R;yl and
write g7 (X) as a quadratic form of X due to the existence of
R; or time selectivity. However, starting from the suboptimal
time-domain data detector in the following, we solve (17) by
using a greedy detector in the next section.

To derive the suboptimal time-domain data detector, we use
the Taylor-series expansion of 7, (At) = ro+71 At +ra(At)*+
-+ -. Since the time correlation function r;(At) is an even func-
tion (wide-sense stationary), the coefficients of the odd terms
are zero, or ro 1 = 0 for k = 0,1,.. .. Specifically, for Jakes’
model, the zeroth-order Bessel function of the first kind can be
expanded as Jo(27x) ~ 1 — (7z)?. Hence

7 [(n1 — n2)Ts] = Jo(27 fpTs(n1 — n2))
_ J() <27TfDNTg(’I”L1 — TLQ))

n 2 ny—n 4
72> . <%>
4
(18)

where 7y = (7f4)% and ry = (1/4)(wf4)*. When 7f; < 0.1
or fg < 0.03, r9 < 0.01, 74 < 0.0001 and all terms except
the first term can be neglected. Therefore, 74 [(n1 — n2)Ts] = 1
and R, is given in (15). The cost function for the suboptimal
time-domain data detector is given by

gs7(X) =y"R,)y = y"F'Xp(Ry + 021n) ' X[ Fy
(19)

where the subscript ST denotes the suboptimal time-domain
detector. Since Y = Fy, (19) can be further simplified as

9s7(X) =Y*Xp(Rys + o2Iy)'XEY
=XTYE (R + o21y) 'Y pX*

=XYYL (R} +02In)"'Y )X (20)

where the second equality comes from the commutative prop-

erty of the multiplication between a vector and a diagonal ma-
trix. The suboptimal time-domain detector output is given by

X = argminXHG1X 21)
XeQN
where G1 = Y}, (R} 4+ 02In) 'Y},
Remarks:

* Ignoring the second term in (18) results in an suboptimal
time-domain detector that is the same as a data detector for
time-invariant channels, suggesting that, when the normal-
ized Doppler rate is less than 3%, time selectivity is not se-
vere. Therefore, the suboptimal time-domain detector does
not need to know the Doppler rate exactly and can handle
any normalized Doppler rate up to 3%.

* Both the time-domain data detector and the suboptimal
time-domain detector need the knowledge of the PDP and
the noise variance o2, which the receiver may not know
exactly. In Section VI, we investigate the resulting param-
eter mismatch problem and contribute new algorithms to
estimate these parameters.

B. Frequency-Domain Detector

In the frequency-domain data detector, we make use of the
correlation of the frequency-domain received signal Y} in (4).
Using the central limited theorem, the intercarrier interference
term «, can be modeled as a complex Gaussian variable. Its
mean can be computed as

1 N-1 N-1
E{ar} =5 S B{Xn} Y
m:Om;ﬁk n=0
L-1
’ (Z E{h(ml)}e”“’””N) i2mn(m )/
=0
=0 (22)

and the autocorrelation is given by (23), shown at the bottom
of the page, where the expectation is taken for both X2 and

2A rigorous derivation should take expectation only for 2(n,{). However,
this will make the detector complicated and difficult to solve. Therefore, the
frequency-domain detector derived in this way is only a suboptimal. This is the
reason for the error floor of the frequency-domain detector in Section VII.

| No1oN-d

Efa i} = 55 o> B{Xam, X,
m1=0 m2=0
ik, maghs

> ej?‘/rnl(ml—kl)/Ne—j27Tn2(m2—k2)/N

N—-1N-1

L—-1L-1

N—1 N-—1
} Z Z (Z Z E{h(nhh)h*(nz,lz)}e_ﬂﬂmlll/Nej?”mzlz/N>
n1=0n2=0 \I;=01>=0

B T S A ——|

n1=0n,=0

(23)
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h(n,l), and we have assumed that X,,,, m = 0,..., N — 1 are
iid. (E{X,, X}, } form; # my). Therefore, given Xy, Y} is
also complex Gaussian with mean

E{Yy} = Xo E{H} + E{ar} + E{W,} =0.  (24)

The correlation between Y}, and Y}, can thus be written as

E{YkIY]:Q} = E{Xlelelthl:g + XleklaZQ

+Ozk1H;2XZ2 + OzkIOé;:.z + WkIW,jz}. (25)

Substituting (4), (8), and (9) into (25), we can show

1 N—-1N-1
Bl ) == 0 (U ) Xl -
ny= 077,2 0
ky — ko
:afCIrf< NT, ) (26)
where ofc; = 1/N227]lvl;10 na= ort[("l_m)T] As-

suming that data symbols are statistically independent or
equivalently F{ Xy, Xi,} = 6(k1 — k2), we obtain

1 N-1

Efaw Hi, X5} =+ > B{XnX}}
m=0,m#k,

N—1 /L-1
X Z <Z E{h(n,l)H,’:Z}e_jZ”ml/N)
n=0 \1=0

ejQWn(m—kl)/N.

X 27)

Substituting Hy, into (27), we get (28), shown at the bottom of
the page.
Since the expectation E{ Xy, Hy, oy, } = E{ay, Hf X} }*

can be obtained similarly, we have

E{Xlek1(122 + ale;:gX;Ckz + akl al’:g}
L—1 N—-1 N—1
:6(k1—k2)(z af>{ e SN (g —ne T]}
n1_0 Nno= =0
0(k1 — k2) (Z Uz) ~ ofer) -
The autocorrelation matrix of Y can then be written as

L—1
Ry a%mxpafxg+<<z ) (1= %) + ) Iy,
=0

(29)
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The likelihood function of Y conditional on the transmitted data
X can be expressed as

p(Y|X) = (7V det(Ryy)) texp(-Y#R$3Y).  (31)

Since

L-1
det(Ryy) =det (O'IZCIRf—}— ((Z 0'l2>(1 — O'IQCI) —i—U?l) IN)
=0

is independent of X, maximizing the likelihood function (31) is
equivalent to minimizing

gr(X) =Y Ryy Y
— o ZXAYE (RY +02,In) T YHX  (32)
where
L—1
(£ o) (- o) + o2)
02 = M\I=0 . (33)

ofer
Compared with gs7(X) in (19), gr(X) replaces o2 with 02,
Hence, 02, can be considered as the equivalent noise variance,
which incorporates the effect of intercarrier interference. The
equivalent noise variance o2, is determined by the PDP and
the scattering functlon If the channel is time-invariant, o =

1 and 02, . Equation (32) reduces to (19). Ignoring the
constant o7y, the frequency-domain data detector is given by

_U

X = arg min X7 G, X
XeQnN

(34)

-1
where Gy = Y7, (Rf n agnIN) Y.

Remarks:

* Both the suboptimal time-domain detector and the fre-
quency-domain data detector result in a quadratic form in
X. Since all X}’s belong to a finite discrete constellation
9, both (21) and (34) form so-called integer LS problems.
An exhaustive search has the exponential complexity of
|Q|", making it infeasible for practical systems. The
next section gives two algorithms to efficiently solve (21)
and (34).

« If X is a solution of the time-domain data detector, we
find that Xed? (e?? € Q) is also feasible for the time-
domain data detector. Similar phase ambiguity exists for
the suboptimal time-domain detector and the frequency-
domain data detector as well. This can be resolved by a

(30) few pilots.
1 N-1 N—1 N—1L-1L- | |
E{akl HZ’_)X;:Q} - m Z E{XmX;:Q} Z Z Z Z {h 7117[1 ( l2)}eJ2ﬂ'(k2lz—mll)/NejQﬂ'nl(m_kl)/N
m=0,m##ky 11=013=01,=0 Iy =0

N—-1 N-1

1—-6(ki—k ' T

:# (Z ) Z Z r[(n1 — ng)T,)e~92mm(ki—k2)/N 08)

n1=0n>=0
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IV. EFFICIENT DETECTION ALGORITHMS

For the suboptimal time-domain detector and the frequency-
domain data detector, (21) and (34) can be expressed in the
common general form

X = arg min IS — BX]|?
XeQn

(35)

where B is the corresponding Cholesky decomposition matrix
of G; or Gg, and S = 0 for the suboptimal time-domain de-
tector and frequency-domain data detector. If the channel H is
perfectly known at the receiver, the ML detector can also be
written in (35), where S =Y and B = H are given in (6). The
well-known V-BLAST and sphere decoder algorithms can solve
(35) and achieve the time diversity. Here, we do not consider
the MMSE-BLAST detector developed in [8], since its com-
plexity is O(N'?), which is higher than those of V-BLAST and
the sphere decoder.

A. V-BLAST Detection

The V-BLAST detector [9] changes the order of symbol de-
tection so that the error probability is reduced. To do so, one
needs a permutation matrix II such that the QR decomposition
of B’ = BII = QR has the property that ming<;<n—1 7 is
maximized over all column permutations, where the r;;’s are the
diagonal terms of R. Fork = N — 1, N — 2,...,0, the algo-
rithm chooses (k) such that

(k) = 1(Gr)j1? (36)

arg min

F¢{m (1), w(k=1)}

where (Gy); is the jth row of G, Gy is the pseudo inverse
of By, and B, denotes the matrix obtained by zeroing columns
7(1),...,m(k — 1) of B. Equation (35) can be expressed as

Xp = argmin ||S’ — RX/||?
XeQN

(37)

where ' = Q7S and X’ = XII”. Since R is upper triangular,
the kth element of (37) is

2

X = (38)

arg min
X!, XN

N-1
S;C — <’I‘ka]l€* + Z T’lef*>

1

where the estimate is free of interference from subcarriers
0,1,...,k — 1. Thus, X, can be estimated by minimizing
(38). Proceeding with X/ _,,...,X( and assuming correct
previous decisions, the interference between subcarriers can be
cancelled successively.

B. Sphere Decoder

The sphere decoder [10] reduces decoding complexity by
taking advantage of the lattice structure of transmitted signals
to achieve ML performance with a moderate complexity. The
interested reader is referred to [10]-[12].

C. Greedy Iterative Algorithm

When the normalized Doppler exceeds 3%, the suboptimal
time-domain detector cost function (21) is no longer accurate.
Moreover, since the time-domain data detector cannot be written
in quadratic form in X, the V-BLAST detector and the sphere
decoder are not useful and hence we propose a greedy algorithm
for the time-domain data detector. Note that, from the simula-
tion results in Section VII., the solution quality of the subop-
timal time-domain detector is usually good though it has an error
floor in high SNR. We thus use the suboptimal time-domain de-
tector output as the initial estimate denoted by X(9), where the
superscript (V) denotes the ith iteration. Let the vector X be par-
titioned into several groups. Let the group size be denoted by S
and the number of groups is M, N = SM. In the ith iteration,
when the algorithm processes g, = {X(m—-1)s41:- -+, Xms}
all of the other M — 1 groups are fixed and g,,, is chosen as

gm:argminf(gm|gl7-~-7gm—1>gm+1;-~-;gM) (39)

gm€QS

where f(-) is the time-domain data detector cost function in
(17). It then proceeds to the m + 1th group and so on. The
same process continues until convergence, X (9 = X0+1) Tt is
evident that, when M = 1, this detector reduces to an exhaustive
search. If M = N, it becomes an iterative decision feedback
detector. Therefore, the group detector varies between ML and
decision feedback when S varies. Simulation results shown later
indicates that S = 1, 2, ensures good performance.

Instead of using (11), we use (10) to compute R,,. We first
take the IDFT of X and then substitute the time-domain signals
x into (10), which involves only L additions and multiplications,
compared with the NV x N matrix multiplication in (11). In the
greedy detector, IDFT is not necessary every time. When the
mth group is changed from g,,, to g,,, &, is updated to yield

mS
1 N
Fp = dpy + —— § (X — Xp)e?IN o (40)
N k=(m—1)S+1

This update has complexity O(N), which is less than the com-
plexity of IFFT O(N log N).

V. CHANNEL ESTIMATION AND DECISION
DIRECTED DETECTION

A channel estimation algorithm for doubly selective channels
has been given in [8]. However, its complexity is very high and
it needs several pilot symbols, which is bandwidth-inefficient.
Moreover, the time delay introduced by this algorithm may be
problematic for a practical system. To alleviate these drawbacks,
we propose channel estimation and prediction algorithms using
a polynomial expansion model (PEM) [14], which is a special
case of basis expansion model [15], and, more importantly, these
estimation algorithms can be used in conjunction with our data
detectors to reduce the overall computational complexity.

A. Polynomial Expansion Channel Model and Time Diversity
Analysis

In [14], the doubly selective channel is modeled as a poly-
nomial in time. For our OFDM problem, we assume that the
PEM coefficients are constant within each OFDM symbol. We
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denote the channel in the kth OFDM symbol as h(*) (¢, 7). Using
Taylor’s theorem, we expand h(¥)(t,7) in ¢ at NT, as

L-1 Q
<£> §(r—m) (4l

SHWIL
=0 ¢=0

where @ is the order of the polynomial. We expand the function

at NT; because we will use the same coefficients to predict the

channel in the k£ + 1th symbol. The equivalent discrete channel

model can then be written as

-3

forn=0,2,...,N—-1,1=0,1,...,
be further written into matrix form as

h(k) (t,7)

A8 (n, 1) N)? (42)

L — 1. Equation (42) can

h®)(1) = ®h{M (1) (43)
where h® (1) = [®(0,1),..., RN — 1,7, h{ (1) =
(), ..., hS (D] and ®(n,:) = [1,..., (n — N)?]. Here,

we use the Matlab notation and subscript p denotes PEM. If
N > Q + 1, ® is invertible, and we can obtain

B0} = B{@'h® (1)} =0 (44)
and the autocorrelation matrix of h,(ok)(l ) is
Ry (1) = E{h® (1) (b® (1))} = 520 R, (@T)H (45)

Note that, after using PEM, 1(*)(n, 1) becomes a nonstationary
process.

Note that the PEM immediately reveals how time diversity
occurs. We ignore the superscript (k) for simplicity. Substituting
(42) into (3), we have

L-1 Q
Yn = Z Z he(D)(n — N)zp_ + wy,
1=0 ¢=0
1 &2 L-1 N—1
=— Z(n — N)? Z hq(1) Z Xpe2mkm=0/N Ly
VN q=0 1=0 k=0
(46)
The vector form of (46) is
Q
y = QSN Nhlx +w @7)
q=0
where Q, = diag{(—-N)%,...,19} and h, =
hq(0),....he(L — 1)]7. After performing FFT on
q p g
both sides of (47), we obtain
Q
Y= ¥HX+W (48)
q=0
where ¥, = FQ,F” and H, = diag{H,(0),..., H,(N-1)},

Hy(k) = 12 hy(l)e=327*/N Clearly, the received vector
Y in (48) has @ + 1 replicas of X, resulting in time diversity.
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B. Channel Estimation and Prediction

Using the PEM, (47) can be rewritten as

Q
y= ZQqS(N’L)[X]hq +w=Th,+w
q=0

(49)

where h, = hi,....h]" and T =
QoSN Dx], ..., QQS<N Dix]]. If data are de-
tected using the detectors in Section III, the PEM coefficients
can be estimated using the MMSE estimator as

h, = (2R, '+ THT) " Ty (50)
where R, = E{h,hf'} is the autocorrelation matrix of h,,. It
can be computed from (45). The polynomial order determines
the performance of the channel estimator and ) depends on
the normalized Doppler f;. We note an overestimate of ) also
reduces the accuracy of PEM due to numerical instability. For
normalized Doppler values as large as 10%, we find QQ = 2 is
enough to achieve good performance.

Assuming that the PEM coefficients hy, are constant in two
symbols, h,, estimated in the kth symbol can be used to predict
the channel in the k + 1th symbol as

F(k+1) 7y — &Rk
h*+0 (1) = ®h{F (1) (51)
where ®(n,:) = [1,...,(n + N,)?].

To improve the performance in the £+ 1th symbol, a decision-
directed technique can be applied. In the £+ 1th symbol, the data
symbols X *+1) is first detected using

X (k+1) = (52)

arg min

Hy<k+1> _ ﬂ(k+1)X(k+1)H2
X(k+1) QN

where H*+1) is computed from h(**1(]) as (50). The detec-
tion algorithms in Section IV can be used to solve (52). After
obtaining X(k+1), it is substituted back into (50) to estimate
ﬁz(,kﬂ). While iterations can continue until convergence, we
find just one iteration guarantees good performance. The same
process can be applied to k+2-th symbol using flék"_l) and so on
until there appears significant error propagation caused by the
decision-directed operation. Our data detectors are then used to
truncate the error propagation.

Fig. 1 shows the mean-square error (MSE) of the proposed
MMSE channel estimator with different polynomial order () in
a channel with the PDP given in Section VII and a 10% normal-
ized Doppler, where the MSE is defined as

M L-1

MSE = +— ZZHh’f

k=1 1=0

)17 (53)

and M is the total number of Monte Carlo simulations. We as-
sume perfect data in the kth symbol. The model with @ = 0
exhibits an error floor in high SNR. For the kth symbol, the
models with Q = 1 and (Q = 2 almost achieve the same perfor-
mance, although ) = 2 performs slightly better than () = 1 in
high SNR. If h,(ok) is used to predict the channel in the k£ 4 1th
symbol, ) = 2 performs much better than () = 1, but both
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Fig. 1. MSE of channel estimator and prediction versus SNR using

PEM with different polynomial order () in a BPSK-OFDM system with
N = 32 subcarriers and a normalized Doppler rate of 10% (f, = 0.1).

of them have large performance loss compared with the per-
fect data case. However, if the decision-directed technique is
used, both Q = 1 and Q = 2 improve much; for instance, at
MSE = 3 x 1072, the performance loss is less than 1 dB.

VI. PARAMETERS ESTIMATION AND MISMATCH ANALYSIS

Our detectors need to know the PDP, scattering function 7(-),
and the noise variance o2 . These quantities remain constant over
long periods and need not be estimated every OFDM symbol.
The block diagram of the full receiver structure incorporating
the time-domain data detector and the parameter estimators is
given in Fig. 2.

A. Channel Covariance Matrix Estimation

After flp is estimated using (50), the channel in the
kth OFDM symbol and the nth time slot h(kN + n) =
[h(kN 4 n,0),...,h(kN + n,L — 1)]7 can be obtained via
(43). The channel autocorrelation matrix can thus be estimated

as
K N-1

H
R, = KNI;T;hkN+n)h (kN +n)

where K is the number of OFDM symbols used and Ry, =
diag{og,...,0% _,}. Extensive simulation results indicate that
the MSE of this estimate is almost independent of the SNR and
the normalized MSE is about 1%, which may be due to the use
of the PEM. The normalized MSE is defined as

(54)

[u

I .
Z Z R (1,1) = o7
NMSE = k=1 1=0

(55)

where [ is the total number of Monte Carlo runs. In the simula-
tion, we set fy7 = 0.1 and K = 300.

B. Noise Variance Estimation

Most of the noise variance estimation algorithms [16], [17]
are valid only for flat and slow fading channels. To the best
of our knowledge, no noise variance estimation algorithm has
ever been proposed for OFDM systems over doubly selective
channels. We note that if the data symbols are known, the pdf
of y (13) becomes conditional on o2 as

p(ylo) = (77 det(Ry,)) ™" exp(—

To proceed, we first apply SVD decomposition to the matrix
FHER, @ (XpR;XE)F = UAU#, where U is a unitary ma-
trix and A = diag{)\o,..., Ax_1}. Ignoring irrelevant terms,
the log-likelihood function of (56) can be simplified as

yiR,ly).  (56)

— 2 |yi]?
- Z: log(A\i + 07;) — Nt o2 (357
where y' = UFy. The variance estimator is therefore
N-1 2
2 |yz|
o5 =ar mln log(Ai +0,) + —— 58
81 z; BN+ o)+ 5 (58)

Let 2 (k) be the estimate of o2 in the kth OFDM symbol. The
final variance estimate is

| =
M) =
2,

(59
k=1

where K is the number of OFDM symbols used.

Fig. 3 shows the normalized MSE (NMSE) E{[(62 —
a2)/02]?} of the proposed estimator with perfect data and
Doppler frequency. The estimator performance is fairly insen-
sitive to the operating SNR and gets better with the number of
OFDM symbols.

C. Doppler Frequency Estimation

In [18], a Doppler frequency estimation algorithm is pro-
posed, but it needs noise variance. We instead propose a new
Doppler frequency estimator. Like the noise variance estimator,
(13) can be written as the conditional pdf on f; assuming per-
fect data and noise variance. However p(y|f4) depends on fg
in a more complicated way than (58) on o2. We use Brent’s
method [19] to solve the unconstrained optimization problem
in fy. The initial point is set to the value in the last estimation.
Finally f; is estimated as

O TS
f{i = ?Zfd(k)

k=1

(60)

where f4(k) is Doppler estimate in the kth symbol and K is the
number of OFDM symbols.

The NMSE of f4 (E{[(f4 — fa)/fa?}) with different K is
given in Fig. 4. We assume perfect data and noise variance. The
estimator performance increases with the SNR for 8 dB, after
which it remains more or less flat. As expected, the performance
also increases with the number of OFDM symbols. We note that
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Fig. 2. Blind receiver structure for OFDM systems.
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Fig.3. NMSE of noise variance estimator with different number of symbols K
in a BPSK-OFDM system with 32 subcarriers and a normalized Doppler of 3%.
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Fig. 4. NMSE of Doppler frequency estimator with different number of sym-
bols K in a BPSK-OFDM system with 32 subcarriers and a 3% normalized
Doppler.
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Fig. 5. BER of the mismatched blind data detectors for a BPSK-OFDM system
with N = 32 and a 3% normalized Doppler. The data detectors are designed
for an actual SNR of 25 dB, 1.5% normalized Doppler and a uniform PDP.

the noise variance and Doppler frequency estimators can work
iteratively until convergence.

D. Mismatch Effects

We now investigate the performance loss when there is a
mismatch between the true statistical values and the predeter-
mined values. To do that, we use an idea shown in [4], [8], [20]
that an estimator designed for the uniform power delay profile
(UPDP)—the worst case—is robust to the channel statistics mis-
match. Thus, we design our data detectors for the UPDP, an SNR
of 25 dB and a Doppler rate of 1.5%, but the actual channel
parameters are given at the beginning of Section VII. Fig. 5
presents the effect of parameter mismatch on our data detec-
tors. The performance degradation at low SNR is negligible. At
high SNR, the performance difference is within 0.5 dB. When
the data detectors are designed for a Doppler rate less than the
actual one, they achieve smaller time diversity than the detec-
tors designed for the actual Doppler rate.
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Fig. 6. BER performance versus SNR for a BPSK-OFDM system with 32 sub-
carriers and a normalized Doppler of 0.75%.

VII. SIMULATION RESULTS

We next give computer simulation results for the following
system specifications.

* Both data and pilot symbols are chosen from binary phase-

shift keying (BPSK).

* A 32-subcarrier OFDM system with the data rate 3 Mb/s
is considered and N, = 8.

e A six-ray channel with the PDP [0.189, 0.379, 0.239,
0.095, 0.061, 0.037] taken from COST 207 TU model [21]
is considered. Each path is a complex Gaussian random
process, independently generated with the classical Jakes’
spectrum and the IDFT method [22]. The channel statistics
and noise variance are known at the receiver.

e The number of subcarriers is thirty two (N = 32). Just one
pilot is used, i.e., Xy_1 is known/fixed a priori so that
V-BLAST and sphere decoder return a unique solution.

We set S = 1,2 for the time-domain data detector iterative
detector and compare our data detectors with ideal LS, matched
filter (MF) [8, Eq. (17)], and V-BLAST detectors, which are
assumed to know the channel perfectly.

Fig. 6 compares the BER performance of different detectors
for a 0.75% normalized Doppler. The time-domain data detector
is detected using the greedy algorithm with the group size being
one (S = 1) (the same performance observed for S = 2). The
time-domain data detector, suboptimal time-domain detector,
and frequency-domain data detector with sphere decoder per-
form almost the same and are 1 dB worse than the two reference
detectors. Increasing SNR, V-BLAST performs close to sphere
decoder. The performance gap is 2 dB at a BER of 2 x 1073,
The suboptimal time-domain detector performs robustly when
the normalized Doppler is less than 3%. Fig. 7 shows the MSE
of channel estimation with perfect data and detected data using
proposed detectors with the sphere decoder. A first-order PEM
(Q = 1) is used.

Fig. 8 shows the BER of different detectors for a 3% nor-
malized Doppler rate. The suboptimal time-domain detector
and frequency-domain data detector with both V-BLAST and

10 T T

“o~ Detected Data |
— Perfect Data

MSE of h

!
5 10 15 20 25
SNR (dB)

Fig. 7. MSE of channel estimation with perfect data and estimated data sym-
bols for a BPSK-OFDM system with 32 subcarriers and a normalized Doppler
of 0.75%.
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5 10 15 20 25
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i

Fig. 8. BER performance versus SNR for a BPSK-OFDM system with 32 sub-
carriers and a normalized Doppler of 3%.

sphere decoder have error floors at high SNR since the former
detector is derived for normalized Doppler rates below 3% and
the latter detector is derived suboptimally. The time-domain
data detectors with group sizes 1 and 2 perform identically and
approach the LS reference detector. The decision-directed tech-
nique reduces the error floor of both suboptimal time-domain
detector and frequency-domain data detector. V-BLAST with
perfect CSI performs better than the LS detector, which shows
that V-BLAST exploits the time diversity. A second-order PEM
(Q = 2) is used for channel estimation. All the data detectors
have roughly the same MSE. In Fig. 9, detected data channel
estimate has a 3.8-dB loss over its reference counterpart at an
MSE of 1072,

When the normalized Doppler frequency increases to 6%,
suboptimal time-domain detector and frequency-domain data
detector with both V-BLAST and sphere decoder have large
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Fig. 9. MSE of channel estimation with perfect data and estimated data sym-
bols for a BPSK-OFDM system with 32 subcarriers and a normalized Doppler
of 3%.
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Fig. 10. BER performance versus SNR for a BPSK-OFDM system with 32
subcarriers and a normalized Doppler of 6%.

error floors at high SNR (Fig. 10). The error floor of V-BLAST
is larger than that of sphere decoder. However, the time-domain
data detector performs better than the LS reference detector and
the performance loss is 2 dB over the V-BLAST reference de-
tector, which shows that the time-domain data detector exploits
the time-diversity induced by fast fading [8]. The decision-di-
rected technique improves the performance of all the detec-
tors and greatly reduces the error floors. Note however that
all the benchmark detectors (LS, MF, and V-BLAST) know
the channel matrix H [see (6)] completely (i.e., N2 channel
coefficients). Despite their total channel knowledge, some of
the benchmark detectors perform worse than our proposed de-
tectors in high SNR. Fig. 11 compares the MSE of channel
estimation of different data detectors. The polynomial order is
set to Q = 2.
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¢ 8- STDD
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Fig. 11. MSE of channel estimation with detected data symbols from different
blind data detectors for a BPSK-OFDM system with 32 subcarriers and a nor-
malized Doppler of 6%.

VIII. CONCLUSION

We derived time-domain and frequency-domain data detec-
tors for OFDM systems in doubly selective channels, which ex-
ploit the correlation among time-domain and frequency-domain
received signal samples. Our detectors avoid channel estima-
tion, which is a difficult task in fast fading channels, and use
the low-complexity V-BLAST detector and the near-optimum
sphere decoder. The polynomial expansion model has been de-
rived to estimate and predict the doubly selective channel. A
decision-direct technique has been proposed to reduce the data
detector complexity. Our data detectors are only used to stop the
decision-directed error propagation. We also derived parameter
estimators and analyzed the effect of residual mismatch. The
suboptimal time-domain detector and frequency-domain data
detector perform robustly for normalized Doppler rates up to 3%
and the time-domain data detector can exploit the time diversity.
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