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Semiblind Channel Estimation and Data Detection
for OFDM Systems With Optimal Pilot Design
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Abstract—This paper considers semiblind channel estimation
and data detection for orthogonal frequency-division multiplexing
(OFDM) over frequency-selective fading channels. We show that
the samples of an OFDM symbol are jointly complex Gaussian
distributed, where the mean and covariance are determined by
the locations and values of fixed pilot symbols. We exploit this
distribution to derive a novel maximum-likelihood (ML) semiblind
gradient-descent channel estimator. By exploiting the channel
impulse response (CIR) statistics, we also derive a semiblind
data detector for both Rayleigh and Ricean fading channels.
Furthermore, we develop an enhanced data detector, which uses
the estimator error statistics to mitigate the effect of channel
estimation errors. Efficient implementation of both the semiblind
and the improved data detectors is provided via sphere decoding
and nulling-canceling detection. We also derive the Cramér-Rao
bound (CRB) and design optimal pilots by minimizing the CRB.
Our proposed channel estimator and data detector exhibit high
bandwidth efficiency (requiring only a few pilot symbols), achieve
the CRB, and also nearly reach the performance of an ideal
reference receiver.

Index Terms—Channel estimation, data detection, orthogonal
frequency-division multiplexing (OFDM).

I. INTRODUCTION

BOTH 4th generation (4G) and beyond 3rd generation
(B3G) cellular networks are characterized by the ability to

provide high data rates over wireless links. Multiple antennas
and orthogonal frequency-division multiplexing (OFDM) are
emerging as key technologies for 4G and B3G. It is increasingly
believed that OFDM results in an improved downlink perfor-
mance for 4G [1]. It has high spectral efficiency, robustness to
frequency selective fading, and permits one-tap equalization.
In practical OFDM systems, pilot-aided channel estimation is
widely used to facilitate coherent detection [2]–[4]. Since the
number of pilots must be greater than the number of channel
taps, the use of cyclic prefix (CP) and pilot symbols entails a
significant bandwidth loss, motivating blind methods.
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For example, in [5], blind channel estimators (BCEs) that
exploit the CP are developed. A subspace BCE using virtual
carriers is derived in [6]. Such blind estimators need averaging
over many OFDM symbols, and hence may be classified as
statistical. In mobile wireless environments, where the channel
impulse response (CIR) can vary rapidly, statistical techniques
may not be effective. On the other hand, deterministic blind
techniques eliminate averaging and instead optimize certain
metrics. Recently, we have developed several deterministic1

channel estimators and data detectors [7] and [8]. They require
minimizing complex, integer quadratic forms. In [7] and [8],
we provide an efficient solution of such problems by devel-
oping sphere decoding (SD) and vertical Bell Labs layered
space–time (V-BLAST)-based detectors. Recently, another
deterministic blind joint channel and data estimator has been
proposed in [9], which applies the branch-and-bound principle
to solve a nonlinear integer problem associated with finding the
least squares (LS) curve that fits a subchannel. However, the
resulting blind detector is not optimal and needs several OFDM
symbols.

In this paper, unlike [7]–[9], we focus on deterministic semi-
blind channel estimation and data detection. Conventional pilot-
aided channel estimation uses many pilot symbols, and even
some OFDM symbols may be reserved for all pilot symbols
only. Such designs satisfy the constraint that the number of pilot
symbols should exceed the number of channel taps. In contrast,
our proposed semiblind channel estimators and data detector
perform even when the number of available pilots is smaller
than the number of channel taps. In order to derive these esti-
mators, we first provide an extension of the conventional central
limit theorem (CLT) arguments as applied to the OFDM signal.
Namely, we show that the samples of an OFDM symbol have
a joint complex Gaussian distribution, whose mean and covari-
ance are determined by the locations and values of fixed pilot
symbols. We exploit this distribution to derive a novel max-
imum-likelihood (ML) semiblind gradient-descent channel es-
timator. This channel estimator uses both the pilot and the data
statistics, and turns out to be a generalization of the conven-
tional LS channel estimator. Just like the conventional LS es-
timators, our channel estimator admits the use of the gradient
descent algorithms. We next exploit the CIR statistics to de-
rive a semiblind data detector. This detector can further be en-
hanced by noting that for a given LS channel estimate, the true
CIR can be modeled as a complex Gaussian whose mean is
the LS channel estimate itself. Thus, averaging the likelihood

1Semiblind in [7] and [8] emphasizes that an algorithm uses both channel
statistics and noise variance. In this paper, semiblind means that an algorithm
uses one or more pilots.
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function over the prior distribution gives an enhanced detector
that mitigates the effect of channel estimation errors. Both our
data detectors result in discrete integer quadratic optimization
problems. They can be solved optimally by SD [10] and sub-
optimally by V-BLAST detection [11] (also known as nulling
and canceling), thereby avoiding computationally prohibitive
exhaustive search. We also derive the Cramér-Rao bound (CRB)
for semiblind channel estimation and design the optimal pilot
distribution. We find that the well-known equipower and equis-
pace conditions [12], [13] remain valid for minimizing the CRB.
As well, a stronger condition requires that not only the pilot
symbols are equipowered but also the data symbols. Our pro-
posed channel estimators work even when the number of pilot
symbols is smaller the number of channel taps, yielding higher
bandwidth efficiency than conventional channel estimators.

This paper is organized as follows. Section II reviews the
basic baseband OFDM system model. Section III introduces
the semiblind channel estimator. In Section IV, we derive the
semiblind data detector and the enhanced detector taking into
consideration the channel estimation error. Section V discusses
mismatch issues and optimal pilot design. Section VI discusses
simulation results and Section VII provides the conclusions.
Appendices A and B prove the joint Gaussian nature of the
time-domain samples of an OFDM symbol and the CRB for
semiblind channel estimation.

Notation

Bold symbols denote matrices or vectors. Operators ,
, , , , and denote real part, imaginary

part, conjugate, transpose, conjugate transpose, and trace,
respectively. The space of -dimensional complex vectors is

. A circularly complex Gaussian random variable (CGRV)
of mean and variance is denoted by .
More generally, if is a vector of CGRVs with
mean vector and covariance matrix , ,
then the probability density function (pdf) of is given by

The
discrete Fourier transform (DFT) matrix is given by

, , (where
). A diagonal matrix formed by vector is .

We consider the unitary -ary phase-shift keying (MPSK)
constellation only, al-
though some of our results can be extended approximately to
nonunitary constellations.

II. OFDM BASEBAND MODEL

In an OFDM system, the source data are grouped and/or
mapped into the symbols from a constellation , which are
modulated by inverse DFT (IDFT) on parallel subcarriers.
The resulting time domain samples are

(1)

where

(2)

where is the index set of data subcarriers with elements,
is the index set of subcarriers reserved for pilot symbols (pi-

lots for brevity) with elements, and . Note that
, are called OFDM input symbols. We

assume that all the ’s have the same power2

and all the . The IDFT output samples are ,
. The term “OFDM symbol” denotes the entire

IDFT output . The input symbol duration is
, and the OFDM symbol duration is . These samples are

appropriately pulse-shaped to construct the time-domain signal
for transmission. Typically, pilots , , known a

priori at the receiver, remain fixed from one OFDM symbol to
the next. In this pilot arrangement, . Alternatively, en-
tire OFDM symbols of pilots can be transmitted peri-
odically. This paper focuses on the former, as it is more common
in applications.

We assume that the composite CIR including transmit and re-
ceive pulse-shaping and the physical channel response between
the transmitter and receiver is denoted as . After sampling
and assuming no timing error, we can obtain where

, and . Typically, it is assumed that
is nonzero from to , and this results in a finite

impulse response filter with an effective length . The power
sum is typically normalized to unity.

Assuming that the channel remains constant per OFDM
symbol but may vary between OFDM symbols, and that the CP
is sufficiently long , the post-DFT received samples
are given as

(3)

where is the complex channel frequency
response at subcarrier , is the Fourier transform of the
CIR, and , are independently and iden-
tically distributed (i.i.d.) CGRVs with zero mean and variance

. Assuming , we find , where
, is the

CIR, and is a submatrix of the DFT matrix . We
vectorize (3) as

(4)

or equivalently as

(5)

where and
are diagonal matrices,

, and .
The output signal-to-noise ratio (SNR) at the data subcarriers
can be obtained as

SNR (6)

2The equal-power assumption will be justified in Section V-B by minimizing
the CRB.
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III. SEMIBLIND CHANNEL ESTIMATION

The received symbol vector (5) is Gaussian with mean
and autocovariance matrix . The likelihood func-

tion conditional on the unknown parameters and is given
by

(7)

Given random data , each transmitted-signal
sample (1) can be modeled as a univariate complex
Gaussian via the CLT when is large [14]. Here, we make
a much stronger claim that all the samples are
jointly Gaussian. The presence of pilots (since their locations
and values are fixed—not random) determines the mean and
autocorrelation matrix of this process. Thus, we hypothesize
that , where the mean and the covariance
matrix are given by

(8)

where

(9)

That each sample is univariate complex Gaussian does not
necessarily imply that is multivariate complex Gaussian (for
a proof and evidence, see Appendix A).

Averaging over the pdf of gives the marginal
likelihood function

(10)

where is the pdf of . If the characteristic function (CF) of
the quadratic form is ,
then . The CF of a complex
quadratic of form , where , is known [15,
App. B]. Using [15, (B-3–20)], we can show that the marginal
likelihood function (10) is given by (11)

(11)

We note that
. Taking the logarithm of (11) and ignoring constant

terms, we can show that maximizing the log-likelihood function
is equivalent to minimizing

(12)

Consequently, we propose the new semiblind channel estimator
as

(13)

Before discussing the properties of the new estimator, we
briefly identify a generalization. If the channel remains constant
during OFDM symbols and the same pilots are available
in each symbol, a common situation in practice, the estimator
(13) can exploit all received samples over the periods, albeit
introducing an overall delay of symbols. So the choice
of would be constrained by the rate of the time variations
or Doppler spread of the channel, and the delay tolerance of the
OFDM system. Similar to (7)–(12), an th-order estimator can
be derived as

(14)

where denotes the th data symbol in the th OFDM
symbol.

Remarks:
1) It is instructive to consider the special cases of (12). If

no pilot exists, the second sum in (12) vanishes and we
get a blind estimator with both, say, and possible
solutions, where is an arbitrary phase shift. Thus one or
more pilots are indeed needed to solve the phase ambiguity.
When an OFDM symbol consists of pilots entirely, (12)
reduces to the conventional LS estimator [2]. Since the first
sum in (12) is additional information extracted from the
data subcarriers, our estimator (13) is a generalization of
the conventional LS estimator when .

2) The CIR can be estimated using (13) via the gradient
descent and related algorithms, i.e., conjugate gradient
and quasi-Newton methods [16]. The partial derivative of

with respect to is given by

(15)

where is the th row of matrix and
. However, gradient descent

needs an initial channel estimate. If sufficient pilots are
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available , the initial CIR can be obtained via
the well-known minimum mean-square error (MMSE)
estimator [2] as

(16)

when and are available, or the LS estimator as

(17)

where , ,
is the submatrix of corresponding to the

pilots, and is the covariance matrix of . If
, the CIR can be estimated using singular value de-

composition (SVD) and simultaneous diagonalization as in
[17]. A simpler alternative is to run the gradient descent al-
gorithm several times with random initial estimates, which
can be generated using . The estimate minimizing (12)
is chosen as the final estimate.
The gradient-based algorithms, although faster than alter-
natives such as simulated annealing [16], cannot guarantee
the global minimum. Despite this drawback, our approach
gains about 3–10 dB over conventional MMSE and LS
channel estimators (Section VI) even with the subop-
timal solution. Typically, a few iterations guarantee the
convergence.

3) The function (12) may have several local minima.
However, the channel is identifiable only when (12) has a
unique global minimum. Although we are unable to prove
that (12) has a unique global minimum, since our channel
estimator is derived in an ML sense, it is asymptotically
unbiased [18, Th. 7.3] if the regularity conditions of the ML
estimator (MLE) [18, Th. 7.3] are satisfied. It can be readily
verified that our MLE satisfies the regularity conditions.
However, when , it can be verified that the Fisher
information matrix (FIM) of our MLE
is singular and not invertible. Therefore, from [18, Th. 7.3],
it does not have asymptotically unbiasness. In fact, in this
case, our MLE has ambiguity. When , the FIM is
invertible. From [18, Th. 7.3], we conclude that a global
minimum of (12) is asymptotically unbiased regardless of
the number of global minima, and all the global minima
asymptotically converge to the true solution.

4) To further improve the channel estimate and mitigate the
effect of local minima, the decision-direct (DD) technique
[19] can be used with (13) as follows. We first use a solution
of (13) to detect data symbols via one-tap equalization as

(18)

where the division in (18) denotes component-wise divi-
sion of two vectors. Assuming is correct, we use the
MMSE approach to get the DD channel estimate as

(19)

Since the quality of (13) is high in the high-SNR regime,
is almost error-free in high SNR. The DD channel es-

timator then achieves the CRB at high SNR given in Ap-
pendix C, but it performs worse than the initial semiblind
channel estimate in low SNR due to incorrect feedback.
DD also introduces an extra detection delay.

IV. SEMIBLIND DATA DETECTION

A. Semiblind Data Detector for Rayleigh and Ricean Channels

If we use (4) instead of (5), the received symbol vector is
also Gaussian but with mean and covariance matrix

. The likelihood function for the unknown CIR and
is given by

(20)

We assume here that is a complex Gaussian vector with zero
mean and covariance matrix . The average of
over the distribution of gives the marginal likelihood function

, which again relates to the CF of the quadratic form
. Similar to the derivation of (11), we

find that

(21)

If ’s belong to a unitary constellation, e.g., -PSK, then
, where is a diagonal matrix with

(22)

Hence,
is independent of . Maximizing (21) is equivalent to
minimizing

(23)

where and .
The third equality comes from the commutativity of the multi-
plication of a vector and a diagonal matrix. The semiblind data
detector is thus given by

(24)

where denotes a finite constellation.
Once the data symbols are estimated using (24), the CIR

can be estimated via an MMSE estimator as

(25)

When the channel remains constant within several OFDM
symbols, a common occurrence in practice, the channel esti-
mate (25) can be used to detect the data in subsequent symbols
without repeatedly performing channel estimation. DD tech-
niques can also be used to track channel variations [4].
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When the channel is Ricean, and
. Similar to the development (29)–(31), we obtain

the semiblind detector for Ricean fading channels as

(26)

Remarks:
1) Equation (24) is different from (13) in that the search space

is continuous space in (13) while it is discrete space
in (24). Since is discrete, (24) is a discrete LS problem.
It cannot be solved by the gradient descent algorithms used
for (13). The detection algorithms for (24) will be given in
Section IV-C.

2) Semiblind data detection (24) also incurs phase ambiguity,
as both and satisfy (24) if belongs to the

-PSK constellation. Pilot symbols are thus needed, and
the search space hence reduces from to .

3) It is important to realize that semiblind data detection (24)
need not be performed every symbol. For example, if the
channel remains constant for symbols, the channel esti-
mate obtained in the first symbol using (25) can be used
to detect the data symbols in the remaining symbols.
As before, DD techniques can also be applied to track the
time-variation of the channel.

4) The semiblind data detector needs the knowledge of
and , which may not be known exactly. The resulting
mismatch problem is studied in Section V.

5) Note that the semiblind data detector in [7], [8] has the
same form as (24) but is restricted to Rayleigh fading chan-
nels. Another point is that we can extend (24) to nonunitary
constellations. The readers can refer to [7], [8] for further
details.

6) The solution to (26) is unique and no phase ambiguity ex-
ists. This may thus also be used as a totally blind estimator.

B. Enhanced Data Detector With Channel Estimation Error

When the LS channel estimator (17) is used with only a few
pilots, the estimated CIR becomes

(27)

where and

(28)
where is the power of pilot symbols and we assume that all
the pilots have the same energy. If is used to detect the data
in the consecutive OFDM symbols with one-tap equalization,
performance loss can be high. This motivates enhanced data de-
tection given channel estimation errors.

Given the channel estimate , the true CIR has an a poste-
rior Gaussian distribution

(29)

We now average the in (20) with respect to
in (29) resulting in the marginal likelihood function ,
which again involves the CF of the quadratic form

. Again, following the derivation of (11), we obtain

(30)

If ’s are unitary, then is given in (22). Hence,
is independent of .

Ignoring the terms independent of , maximizing (30) is
equivalent to minimizing (31)

(31)

where is defined in (22). Substituting (28) into (31), we have

(32)

Since the scalar does not affect the minimum of (32), the
enhanced data detector is now given by

(33)

Remarks:
1) Unlike (24), a remarkable advantage of the enhanced de-

tector (33) is that it requires neither nor . The only
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Fig. 1. BER of the mismatched semiblind data detector for a BPSK-OFDM
system with N = 32 and N = 2. The channel has an exponential PDP. The
correlation matrix for use with the semiblind data detector is computed assuming
a uniform PDP.

required parameter is the pilot energy , known at the re-
ceiver. Therefore, no parameter mismatch problem exists
in (33).

2) The performance gain of (33) is obtained by exploiting
the statistics of the channel estimation error and by sac-
rificing the simplicity of one-tap equalization. When more
computational power is available, the use of (33) saves the
bandwidth and power since the number of pilots is not
increased.

C. Detection Algorithms

Straightforwardly, (24), (33) and (26) can be solved by ex-
haustively searching all feasible candidates , which
becomes impractical as becomes large. Note that the cost
functions (24), (26), and (33) can be reformulated as integer
quadratic forms. We can solve such quadratics using SD [10]
and V-BLAST [11], and this approach allows for substantial
computational saving over exhaustive search. For brevity, we
omit further details and refer the reader to [7] and [8].

V. MISMATCH ANALYSIS AND OPTIMAL PILOT DESIGN

A. Mismatch

The semiblind channel estimator (13) needs the knowledge of
, while blind data detector (BDD) (24) needs both and ,

which may not be known perfectly in practice. However, can
be estimated using , and can be ob-
tained by , where and
are the estimated CIR and data symbols in the th symbol, re-
spectively. If there still remains a residual mismatch, we have in-
troduced the following robust design criteria [8]: if is chosen
according to a uniform power delay profile (UPDP) and is
chosen for a high SNR, then (24) is robust against the mismatch.
Fig. 1 shows how (24) performs against mismatch. The BDD

Fig. 2. MSE of the mismatched semiblind channel estimator for a BPSK-
OFDM system withN = 32,N = 2. The estimator is designed for a SNR of
15 dB, but functions at other SNRs. Mismatch (dB) is the difference between
the actual SNR and the designed SNR.

(24) is designed for a UPDP and an SNR of 20 dB and eval-
uated for an exponentially decaying power-delay profile. The
BER of the robust design is compared with the BER when per-
fect knowledge of and is available. The BERs of the two
detectors are almost the same, which confirms the robust design
criteria. In Fig. 2, we investigate the mismatch for the BCE (13)
designed for an SNR of 15 dB. This estimator (13) too is robust
against small SNR mismatch (less than 5 dB).

B. Pilot Design

Optimal pilots design has been given by maximizing the ca-
pacity [12] and minimizing the mean-square error (MSE) of
channel estimate [13]. But both these results are based on spe-
cific channel estimation algorithms. Instead, we next optimize
pilots by minimizing the CRB on the MSE of semiblind channel
estimators.

The CRB, a lower bound on the variance of any unbiased
estimator, has been widely used to optimize the pilots in com-
munications systems [20], [21]. Since our channel estimator is
derived in an ML sense, it is asymptotically unbiased [18, Th.
7.3]. The CRB for the MSE of semiblind channel estimation is
derived in (48). The optimal pilots are designed by minimizing
the CRB with respect to the placement and power constraint of
the pilots and data symbols. We assume the power constraint

and , where and are the
total power on pilots and data symbols respectively. The power
allocation problem is beyond the scope of this paper. Using (48),
the problem of CRB minimization becomes

(34)
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Using [12, p. 2144, Lemma 1], the MSE of CIR is lower
bounded by

(35)

where the equality is attained if and only if
is diagonal. The ( )th entry of

can be written as shown in (36) at the bottom of the page.
Therefore, we require

(37)

Equation (37) is satisfied if the following conditions are
satisfied:

C1) and .
C2) and

, .
C1) means that both the pilots and the data symbols must

be equipowered. C2) means that the pilots must be equispaced.
They also agree with the two conditions in [13] by minimizing
the MSE of the LS channel estimation, but C1) differs from
those in [13] in that the equipower is also required on data sym-
bols. If C1) and C2) are satisfied, we find the MSE of CIR only
depends on but not on and separately. This indicates
that the power allocation between and does not affect the
CRB. However, the CRB is only asymptotically achievable in
high SNR. Therefore, the power allocation affects the required
SNR to achieve the CRB as shown in Figs. 3 and 5.

VI. SIMULATION RESULTS

We consider a frequency-selective Rayleigh fading channel,
and the zero-mean Gaussian complex coefficients are gen-
erated independently with the mean power

for , where is the average power of the
first path. The channel varies from each OFDM symbol to an-
other. An OFDM system with subcarriers is simulated,
where the carrier frequency is 5 GHz. Pilot and data symbols
have the same energy (C1). The BDD (24), which does not use
DD, when used with V-BLAST is denoted by BDD-VBLAST,
and when used with SD is denoted by BDD-SD. The BCE with
DD (DD) is denoted by BCE-DD. The LS with DD is also pro-
vided for comparative purposes and is denoted by LS-DD. The
DD in all the estimators use LS channel estimator.

Fig. 3. Comparison of the MSE of the channel estimators for a BPSK-OFDM
system with N = 32.

Fig. 4. Comparison of the BER of the data detectors for a BPSK-OFDM system
with N = 32.

Figs. 3 and 4 show the MSE of channel estimation and BER
of a binary phase-shift keying (BPSK) system. A 6-ary channel

is simulated. The data rate is 500 kb/s. Both the BDD
(24) and the BCE (13) uses only two uniformly distributed pi-
lots as per C2). Their performance is compared with those of
the MMSE (16) and LS (17) channel estimators using six pi-
lots. We also compare with the expectation-maximization (EM)
data detector in [22] and denote it as EM. In Fig. 3, for MSE

, both BDD-VB and BDD-SD perform identically. They
perform 3.5 dB better than the BCE and 8.5 dB better than both

(36)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:08 from IEEE Xplore.  Restrictions apply. 



1060 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 5, MAY 2007

Fig. 5. Comparison of the MSE of the channel estimators for an OFDM system
with 8-PSK and N = 32.

Fig. 6. Comparison of the SER of the data detectors for an OFDM system with
8-PSK and N = 32.

the MMSE and LS. The BCE-DD performs even better than
the BDD. However, in high SNR (SNR 15 dB), the BDD,
LS-DD, EM, and BCE-DD all achieve the CRB (48). The BCE
performs 4 dB better than MMSE in high SNR. In Fig. 4, the per-
formance of the EM, BCE and BDD reaches that of the bench-
mark with perfectly known CIR and one-tap equalization. At
BER , the BDD-SD gains 0.1 dB over BDD-VB and
BCE gains 3.5 dB over MMSE and LS. It performs only 0.8 dB
worse than the benchmark. The BCE-DD gains 0.8 dB over the
LS-DD. Both BDD and BCE with just two pilots perform close
to the benchmark, yet they have higher bandwidth efficiency and
better performance than the LS detector.

Figs. 5 and 6 show the MSE of channel estimation and
symbol-error rate (SER) of an 8-PSK system for a 3-ary
channel. The data rate is 1500 kb/s. Four pilots are used for
both BDD and BCE. At MSE , the MSE of BDD-
VBLAST is also almost the same as that of BDD-SD. They

Fig. 7. Performance of the enhanced data detector as a function of the number
of pilots for a BPSK-OFDM system with N = 32.

perform 7 dB better than both MMSE and LS. The BDD-SD
gains about 0.9 dB over the BCE. Unlike BPSK systems,
the BCE-DD performs worse than the original BCE because
of decision-feedback errors. However, in high SNR (SNR
25 dB), both the BDD and the BCE also achieve the CRB
(48). LS-DD needs high SNR to achieve the CRB. In Fig. 6,
at SER , the BDD-SD, BDD-VB, and BCE-DD
perform nearly identically. They gain 1.5 dB over MMSE and
LS and gain 0.5 dB over BCE and perform 0.5 dB within the
benchmark with perfectly known CIR and one-tap equalization
in high SNR. Figs. 3 and 5 show that LS-DD can also achieve
the CRB at high SNR with low complexity if the pilots and
data satisfy C1) and C2). However, for large constellations,
LS-DD requires higher SNR to achieve the CRB, and also
when the number of pilots is less than the length of channel
or , LS-DD fails to work, which means our BCE and
BDD have higher bandwidth efficiency than LS-DD. When

, LS-DD has less complexity than both BCE and BDD.
Fig. 7 compares the performance of the enhanced data

detector (33) and the one-tap equalization using pilot-aided
channel estimates with estimation errors. A 3-ary channel is
simulated. We simulate BPSK-OFDM at a data rate of 500 kb/s
with different number of pilots. The pilots are uniformly dis-
tributed (C2). At low SNR, the enhanced detector performance
varies slightly as the number of pilots increases from 4 to 16. At
high SNR, the enhanced detector performance is unchanged as
the number of pilots increases, and it gains 1.6, 0.75, and 0.2 dB
over one-tap equalization with 4, 8, and 16 pilots, respectively.

VII. CONCLUSION

We have developed a novel semiblind channel estimator
and semiblind data detectors for OFDM with high bandwidth
efficiency. As an aside, we have shown that the samples of an
OFDM symbol have a joint complex Gaussian distribution,
whose mean and covariance are determined by the locations and
values of fixed pilot symbols. This result is a generalization of
the conventional CLT reasoning that shows that each individual
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OFDM signal sample is univariate complex Gaussian. The
semiblind channel estimator is obtained by averaging the like-
lihood function over the Gaussian transmitted-signal statistics,
while the semiblind data detector is obtained by averaging the
likelihood function over the CIR. We also derive an enhanced
data detector to mitigate the effect of channel estimation error.
The data detectors are efficiently implemented by V-BLAST
and SD. The semiblind channel estimator achieves the CRB.
Moreover, we show that equispaced and equipowered pilot
symbols are optimal for minimizing the CRB. Our results may
also be extended to multiple-antenna OFDM systems.

APPENDIX A

In this Appendix, we give a simple proof that the time-do-
main OFDM symbols are jointly complex Gaussian. Let

and , where is a finite set with
and . We want to show that as

goes to infinity, the vector distributes as multivariate
complex Gaussian, where . Using the CLT, we find
that the th element of converges to be complex Gaussian
with , where is the th row of . We
define another vector and .
We can show that the vector is multivariate complex
Gaussian, and . Since the pdf of
converges to the pdf of as , the joint pdf of also
converges to that of if is finite. Therefore, as ,

, which is a stronger result than the CLT.
In addition to the above proof, we have also conducted multi-

variate normality testing to verify that is multivariate complex
Gaussian with the mean and covariance (8). Many approaches to
testing multivariate normality have been proposed in the litera-
ture. Mardia [23] provides two tests based on multivariate gener-
alization of kurtosis and skewness. To test if a set of -variate ob-
servations are multivariate normal with mean
and the covariance matrix , the two test statistics are computed

(38)

To apply these to our problem, we express the hypothesized
complex -variate Gaussian distribution of as a -variate
real Gaussian distribution [24]. We generate assuming data
symbols , , to be complex Gaussian, (the
hypothesis is true under this assumption), and use Monte Carlo
simulation to find the distributions of and . We next gen-
erate for , , and if the resulting and
are outside the distributional values we reject the hypothesis.
Despite extensive trials, the rejection rate is less than 1%; the
evidence of non-normality is quite weak.

APPENDIX B

In this appendix, we derive the CRB for semiblind channel
estimation. Define

otherwise otherwise
(39)

and , . Substituting them
into (4) and (5), we have

(40)

(41)

Let . Under regularity conditions, the FIM as-
sociated with a complex stochastic parameter vector is defined
as [20]

(42)

where is the joint distribution of and . The first term
of (42) can be obtained as

(43)

where

(44)

and

(45)

The second equality comes from , and
. Note

we do not assume here that all the signal powers are the same.
Since , the second term in (42) becomes
(46), shown at the top of the next page. Therefore, the complex
FIM is shown in (47) at the top of the next page. The CRB for
the MSE of semiblind channel estimation is then given by

CRB (48)
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