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Unitary Signal Constellations for Differential Space-Time Modulation
Mahdi Hajiaghayi and Chintha Tellambura, Senior Member, IEEE

Abstract— In this letter, we introduce two matrix-signal con-
stellations for differential unitary space time modulation. We
also derive an approximation of the upper bound on the symbol
error probability. The new constellations generalize several
previously reported constellations and yield better performance
when the number of transmitter antennas and the constellation
size increase.

Index Terms— Differential unitary space time codes, pairwise
error probability, diversity product, union bound.

I. INTRODUCTION

D IFFERENTIAL unitary space time modulation
(DUSTM) has been proposed for use with an unknown,

slow, flat multiple-input multiple output (MIMO) fading
channel [1], [2], [3]. The signal constellation consists of a set
of unitary matrices and the design objective is to maximize
the diversity product among all the members of the unitary
constellation. This design goal leads to the minimization of
the block error probability in the high signal-to-noise ratio
(SNR) region.

Based on maximizing the diversity product, several unitary
constellations have been proposed [3], [4], [5] (due to space
limitation, other references are omitted). The design in [3]
results in cyclic diagonal matrices with M parameters, where
M is the number of transmit antennas. The parameters are
numerically optimized to maximize the diversity product.
In [5], [4], the cyclic design is augmented with additional
multiplying matrices; the design of [4] is limited to three to six
transmit antennas. Instead of maximizing the diversity product,
Wang et al. [6] minimize the union bound on the block error
probability by taking into consideration the number of receive
and transmit antennas and the operating SNR.

In this letter, we give two new unitary signal constellations;
the first one is a simple generalization of [5] and the second
one is based on [7]. When M is even, the first is a special
case of the second. We also give an approximate union bound.

II. SYSTEM MODEL AND DUSTM

We consider a wireless system in a Rayleigh flat-fading
channel with M transmit and N receive antennas. The T ×N
complex received signal matrix Yτ is [6]

Yτ =
√

ρSτHτ + Wτ , τ = 0, 1, . . . (1)

where Sτ is the T ×M complex transmitted signal matrix at
time index τ , Hτ is the M ×N channel matrix, and Wτ is the
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T ×N additive noise matrix. The entries of both the channel
and noise matrices are independent identically distributed
complex Gaussian CN (0, 1) variables1. The transmitted signal
energy is normalized so that ρ is the average SNR per receiver
(i.e E[

∑M
i=1 |st,i|2] = 1 for any t).

Hereafter, we only consider square signal matrices (M =
T ). To transmit a data sequence of integers d1, d2, . . . with
dt ∈ {0, . . . , L − 1}, each dt is mapped to a distinct unitary
matrix signal Φdt

drawn from a unitary space-time matrix
constellation U , i.e. U = {Φ1,Φ2, . . . ,ΦL}. The data rate is
given by R = log2 L/M . In differential unitary space-time
modulation, the transmitted signal matrix is

Sτ =
{

Φdτ
Sτ−1, τ = 1, 2 . . .

IM , τ = 0.
(2)

Assuming that the channel remains constant for at least two
block intervals (i.e., Hτ = Hτ−1), it has been shown in [6]
that the pairwise error probability (PEP) is given by

Pll′ = Pr(Φl −→ Φl′) =
1
π

∫ π
2

0

M∏
i=1

(
1 +

γλi

4 sin2 θ

)−N

dθ

(3)
where γ = ρ2

1+2ρ and {λi} is the i-th eigenvalue of the matrix
∆ll′ = (Φl − Φl′)(Φl − Φl′)H .

From [3] and [8], in order to minimize the PEP at high SNR,
one can maximize the diversity product ζ, which is defined as

ζ(U) = min
0≤l≤l′≤L−1

ζll′ =
1
2

min
l �=l′

|det(Φl − Φl′)| 1
M . (4)

III. APPROXIMATE UNION BOUND

In [6], instead of the diversity product, the union bound on
the block error probability is the design objective. Thus we
derive an easy-to-compute approximation of the PEP for the
rapid evaluation of the union bound.

Substituting sin θ = t in (3) and using the Gaussian
quadrature rules [9], the pairwise error probability (3) may
be rewritten as

Pll′ =
1
2n

n∑
i=1

1
det[I + γ

4x2
i
∆ll′ ]N

+ Rn (5)

where xi = cos(2i − 1)π/2n and Rn is a remainder term.
Numerical experiments show that the choice of about 9 terms
(n = 9) is sufficient for the remainder term to be negligible.
Since the above PEP approximation is very accurate, we
combine it with the union bound on the overall block error

1In this letter we use the following notations:(·)H denotes conjugate
transpose. The trace, determinant and the Frobenius norm of matrix A are
trace(A), det(A) and ‖A‖2

F = tr(AAH). E[·] represents expectation
over the random variables within the bracket. A circularly complex Gaussian
variable with mean µ and variance σ2 is denoted by z ∼ CN (µ, σ2). Matrix
IM denotes the M × M identity matrix.
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probability. With equally-likely transmission of all the space-
time signals Φl, the union bound becomes

PUB =
1

18L

L−1∑
l=0

L−1∑
l �=l′

9∑
i=1

1
det[I + γ

4x2
i
∆ll′ ]N

. (6)

Unlike the diversity product which ignores the SNR, (6)
takes into account the operational SNR and number of receive
antennas as well. Thus minimizing the union bound (6) may
be a useful design objective.

IV. DUSTM CONSTELLATION DESIGN

We next develop the two new signal constellations and prove
several properties of these.

Consider rotation matrix given by

RFM (kθ) =

⎛
⎜⎝

RF2(k1θ) . . . 0
...

. . .
0 . . . RF2(kM

2
θ)

⎞
⎟⎠

M×M

(7)

where

RF2(θ) =
(

cos θ sin θ
− sin θ cos θ

)

and k = {k1, k2, . . . , kM
2
} is a set of rotation factors. Our

proposed DUSTM constellation U = {Φl|l = 0, . . . , L − 1}
consists of the following unitary matrices:

Φl =

⎛
⎜⎝

ejθLµ1 . . . 0
...

. . .
...

0 . . . ejθLµM

⎞
⎟⎠

l

.[RFM (kθL)]l (8)

where l = 0, . . . , L−1 and θL = 2π
L . Clearly, this constellation

is characterized by 3
2M parameters. When all ki’s are the

same, our proposed constellation reduces to the constellation
in [5]. When all ki’s are set to zero, (8) reduces to the diagonal
cyclic constellation of [3]. Since our constellation has more
parameters, we would expect better performance than previous
designs; for example, it outperforms those in [5] and [3] in
terms of the maximum diversity product. In comparison to [4],
our constellation is simple and is available for any number of
transmit antennas M (not limited to M ≤ 6).

The design goal is to find the optimum set of parameters
µ = {µ1, · · · , µM} and k = {k1, · · · , kM/2} that yield
the largest diversity product (4) or the smallest union bound
(6) depending on the case. Since analytical determination of
the optimums appears intractable, we resort to exhaustive
computer search for optimum parameters. Thus, candidates
for the best set of µ and k are exhaustively generated and
examined for performance ( maximum ζ or minimum PUB)
and held if they yield better performance than previous best
candidate set.

Since the computational complexity grows exponentially
with the increase of M and L, it can be reduced by applying
the following theorems.

Theorem 4.1: For an even number of transmit antennas, the
diversity product between the l-th and l′-th unitary matrices
in (8) depends only on (l′ − l) mod L.

By substituting constellation (8) in formula (4), the diversity
product can be written as

ζll′ =
1
2
|det(Φl − Φl′)| 1

M

=
1
2

∏
i

|1 − (ej∆lΘLµi + ej∆lΘLµi+1) cos ki∆lΘL

+ ej∆lΘL(µi+µi+1)| 1
M

(9)

where 1 ≤ i ≤ M − 1, i is odd and ∆l = l′ − l. It is clear,
therefore, that ζll′ depends only on the difference between l
and l′. As a result, it is sufficient to consider ζ0l′ for l′ =
1, 2, · · · , L − 1 to find the diversity product for a particular
sets of parameter µ and k.

Theorem 4.2: Assume all the conditions of theorem 4.1, µ
and k should be in either of the below forms,

1) all µi’s are even numbers while all ki’s are odd numbers
2) all µi’s are odd integers number and all ki’s are even

integer numbers.
Proof: See [5]. The same argument is applied here just

by taking into account the different rotation angles instead of
one rotation angle.

Unitary signals in (8) are limited to an even number of
transmit antennas. We now give a more general constellation
based on [7] that can successfully handle both even and
odd number of transmit antennas and also includes (8) as a
special case (unfortunately, we cannot extend the above two
theorems to this case). This constellation has M phase angles
µ1, · · · , µM and M − 1 rotation angles k1, · · · , kM−1 and is
given by

Φl =

⎛
⎜⎝

ejθLµ1 . . . 0
...

. . .
...

0 . . . ejθLµM

⎞
⎟⎠

l

.[J1,2(k1θL)]l

.[J2,3(k2θL)]l · · · [JM−1,M (kM−1θL)]l

(10)

where

Ji,i+1(θ) =

⎛
⎜⎜⎜⎝

Ii−1 0 · · · 0
0 cos(θ) − sin(θ) 0
... sin(θ) cos(θ)

...
0 · · · 0 IM−i−1

⎞
⎟⎟⎟⎠ (11)

θL = 2π
L and l = 0, . . . , L−1. When all ki are set to zero, (10)

is exactly same as the diagonal cyclic constellation of [3] and
in case of even transmit antenna, if all k2j , j = 1, · · · , M−2

2 ,
are set zero, this is an extension of the constellation (8).

Theorem 4.3: For proposed unitary matrix Φl in (10), if
L is an even number, at least one parameter must be odd in
µ = {µ1, · · · , µM} and k = {k1, · · · , kM−1}.

Proof: Suppose that all parameters k and µ are even
integer numbers. Thus we observe that Φ0 and ΦL

2
are viewed

as the same at the receiver and consequently the receiver
cannot distinguished between Φ0 or ΦL

2
. Consequently, this

set of parameters does not result in the minimum upper bound
on PEP or maximum diversity product.

In order to further reduce the search space, the number of
independent parameters (10) can be decreased. Of course, the
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TABLE I

DIVERSITY PRODUCT OF THE OPTIMUM CODES WITH DIFFERENT

CONSTELLATION SCHEME M = 6, N = 1, L = 16, 32

M L ζ(proposed) ζ(in [5]) cyclic

16 0.5946 0.5946 0.5066

6 32 .5577 .5069 0.448

16 0.5946 0.5946 0.5623

10 32 .5655 .5137 0.5131

TABLE II

COMPARISON OF CONSTELLATION PARAMETERS AND UNION BOUND FOR

ROTATED AND DIAGONAL SIGNAL , M = 3, N = 2, L = 16

Scheme/criterion µ k PUB

Diag./ min PUB [1, 3, 7] [−,−] 5.746e−4

Rot./ max ζ [10, 10, 9] [3, 12] 2.310e−4

Rot./ min PUB [7, 7, 10] [12, 4] 1.799e−4

achievable diversity product may decrease as well. Following
by an idea from [5], if M is even

µ̃k =

{
µ1 + 2(k − 1) 1 ≤ k ≤ M

2 ,

µ2 + 2k − M − 2 M
2 < k ≤ M

(12)

and when M is odd

µ̃k =

⎧⎪⎨
⎪⎩

µ1 + 2(k − 1) 1 ≤ k ≤ M−1
2 ,

µ2 k = M+1
2

µ3 + 2k − M − 1 M+1
2 < k ≤ M.

(13)

The maximum diversity products of our proposed constella-
tion in (10), those in [5] and the diagonal constellation [3] are
presented in Table I for a system with 6 or 10 transmit anten-
nas. Due the space limitation, we do not give additional results,
but Table I is sufficient to draw the following conclusions. Our
constellation improves that of [3] and [5] when M ≥ 16 and
L ≥ 32. However, there is no improvement when the number
of transmit antennas and/or the constellation size are small.
This behavior is to be expected given that our constellation
incorporates more parameters than [3], [5].

Table II presents the optimum codes that we found from our
searches based on optimizing diversity product and minimiz-
ing upper bound for rotated signal scheme proposed in (8) and
diagonal scheme proposed in [3]. We assumed M = 3 transmit
antennas and N = 2 receive antennas and an operating SNR
of = 12 dB. Due to continuity, an optimum code in a particular
SNR is either optimum or near optimum code within a range
of SNR. We list the PUB of the all optimum codes and note
that PUB our proposed constellation is smaller than the others.

V. SIMULATION RESULTS AND DISCUSSION

We simulated codes in Table II and optimum obtained
codes for constellation size L = 8 and found that the
proposed constellation in (8) with different rotation angles
(2 rotation angles for M = 3) performs better than the
previously proposed constellations. We notice that by applying
new constellation and union-bound criteria we achieve coding
gain of about 1.5 dB over the code designed in [3] at the
SER 10−4. We have assumed a slow fading channel with

4 6 8 10 12 14

10−4

10−3

10−2

10−1

SNR[dB]

S
E

R

Diag UB code L=16
Rot Div −Prod code L=16
Rot UB code L =16
diag UB code L=8
Rot Div −Prod code L=8
Rot UB code L=8

Fig. 1. Symbol error rate of two different constellation with M = 3, N = 2
for differential receiver.

Jakes’ fading model in which normalized fading parameters
fdTs = 1.5 × 10−3, where fd is the Doppler frequency and
Ts is the sampling period. we observe that the union-bound
based design generally has better performance than the design
based on the diversity product in both constellations.

In this letter, we introduced two matrix-signal constellations
for differential unitary space time modulation. When the num-
ber of transmit antennas M is even, the first is a special case
of the second. Since they have 3M/2 and 2M −1 parameters,
respectively, the search complexity grows rapidly with M .
We also derived an approximation of the upper bound on the
symbol error probability. The new constellations generalize
several previously reported constellations and yield better
performance when the number of transmitter antennas and the
constellation size increase. Since unitary constellations (code
books) are required in other applications such as precoder
design and limited-feedback systems, the new constellations
may prove useful in those cases as well.
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