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Abstract—The mitigation of intercarrier interference (ICI)
in closed-loop single-input–single-output (SISO) and multiple-
input–multiple-output (MIMO) orthogonal frequency-division
multiplexing (OFDM) is considered. The authors show that the
ICI coefficient matrix is approximately unitary and exploit this
property to design a nonlinear Tomlinson–Harashima precoder
for the reduction of ICI in closed-loop SISO OFDM and or-
thogonal space-time block-coded (OSTBC) MIMO OFDM. With
the proposed design, the transmitter does not need to know the
frequency offsets, and hence, their impact on the bit error rate
(BER) is significantly reduced. Moreover, for spatially correlated
MIMO channels, the precoder and OSTBC OFDM perform with
a negligible BER-performance loss.

Index Terms—Closed loop, frequency offset, multiple-input–
multiple-output (MIMO), orthogonal frequency-division multi-
plexing (OFDM), Tomlinson–Harashima (TH) precoder.

I. INTRODUCTION

CURRENT trends in the development of high-data-rate
wireless systems focus on the integration of orthogo-

nal frequency-division multiplexing (OFDM), multiple-input–
multiple-output (MIMO), and closed-loop techniques [1] and
[2]. When perfect channel state information (CSI) is avail-
able at the transmitter, closed-loop single-input–single-output
(SISO) and MIMO systems perform significantly better than
their open-loop counterparts and, hence, have been proposed
in the third generation 3G cellular standards, including wide-
band code-division multiple access (W-CDMA) and cdma2000
[3], [4]. In closed-loop systems, transmit precoding reacts to
channel conditions in order to improve the system capacity or
bit error rate (BER). For instance, closed-loop MIMO OFDM
allows transmit precoding on frequency-selective channels to
preprocess signals at the subcarrier level and facilitates the uti-
lization of capacity or performance gain. When free of channel
distortions, orthogonal OFDM subcarriers are fully separable
by a discrete Fourier transform (DFT) at the receiver. However,
a carrier frequency offset may exist because of mismatch of
oscillators and/or the Doppler shift caused by the relative
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motion between the transmitter and receiver or movement of
other objects around transceivers. Such frequency offsets distort
the orthogonality between subcarriers and result in intercarrier
interference (ICI) [5]. To the best of our knowledge, the issue
of how ICI impacts the performance of closed-loop OFDM
systems has not been studied yet.

The availability of CSI at the transmitter is a primary re-
quirement for closed-loop systems. Complete CSI in this case
includes both the frequency offsets and channel response. In
closed-loop MIMO OFDM, if complete CSI is available at the
transmitter, precoding can be designed to exploit the channel
conditions, avoid interference, and reduce the complexity at the
receiver. For instance, when the time-division duplex (TDD)
mode is used, the channel response can be estimated at the
transmitter by exploiting the approximate reciprocity between
the forward and reverse channels. Alternatively, the channel
response estimated at the receiver can be sent back to the
transmitter via a feedback link [6]. Nevertheless, all the distinct
frequency offsets among multiple antennas may not be readily
obtained at the transmit end. In a TDD system, the frequency
offsets may not be directly estimated at the transmitter. In
frequency-division duplex (FDD) systems, where the forward
and reverse links are not reciprocal, the feedback capacity is
usually limited. Imperfect channel and frequency-offset feed-
back, which causes residual ICI, increases the BER.

In this paper, we propose a nonlinear Tomlinson–Harashima
(TH) precoder for mitigating ICI in closed-loop SISO and
orthogonal space-time block-coded (OSTBC) OFDM systems
when only partial CSI (no knowledge of frequency offsets)
is available at the transmitter. TH precoding (THP) is a
transmitter-based preequalization technique, which was origi-
nally proposed for temporal equalization in conventional SISO
systems [7], [8], and has recently been extended to flat-fading
MIMO channels in [9]–[11] to combat the interlayer interfer-
ence. The TH precoder enables the receiver to reliably estimate
the data symbols without the noise enhancement typical of
the zero-forcing (ZF) precoder or minimum mean-square-error
(MMSE) linear precoder, and without the error propagation
typical of the decision feedback equalizer (DFE). We first show
that except for the most general case, where all the frequency
offsets are distinct, the ICI coefficient matrix is approximately
unitary. Consequently, the proposed transmit precoder does not
need to know the frequency offset. This avoids feedback in a
TDD system, where the estimation of frequency offsets may be
difficult at the transmitter. In FDD systems, this unitary prop-
erty leads to savings of feedback capacity since a MIMO system
may experience a set of distinct frequency offsets. Frequency-
offset mismatch due to imperfect feedback is also avoided.
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Fig. 1. Block diagram of a MIMO OFDM link.

Consequently, our precoder significantly suppresses the BER
increase due to frequency offsets. Since practical MIMO
channels may experience spatially correlated fading, we study
how the proposed THP and an OSTBC MIMO OFDM system
perform over such channels; we find that the combined system
is robust against spatial correlation, and the BER increase is
negligible.

Previous work on ICI reduction has focused on open-loop
OFDM (the CSI is not available at the transmitter but only at
the receiver). For open-loop SISO OFDM, ICI can be reduced
using an optimum time-domain Nyquist windowing function,
selective mapping and partial transmit sequences, and MMSE
filtering employing finite power series expansion of the time-
varying frequency response [12]–[14]. Other methods include
a two-stage ICI-suppressing equalizer [15], which applies lin-
ear preprocessing at the transmitter and an iterative MMSE
estimator at the receiver, and self-cancellation schemes [16],
[17] involving mapping of each input symbol to a group of
subcarriers at a price of reducing the bandwidth efficiency.
For open-loop MIMO OFDM, a bank of time-domain ICI
cancellation filters has also been proposed to maximize the per-
symbol ratio of signal energy to ICI-plus-noise energy [18].

A. Organization of the Paper

This paper is organized as follows. In Section II, we describe
a MIMO OFDM system model in the presence of frequency
offsets. Section III discusses the ICI coefficient-matrix proper-
ties that are exploited to design a new nonlinear TH precoder
for both SISO and OSTBC OFDM. The effect of channel
mismatch on THP is also studied. A spatially correlated MIMO
channel model is introduced in Section IV. Simulation results
of SISO and MIMO OFDM are given in Section V. Section VI
concludes the paper.

B. Notation

The superscripts T, H, ∗, and † stand for transposition,
conjugate transposition, element-wise conjugate, and Moore–
Penrose pseudo inverse, respectively. Bold symbols denote
matrices or vectors. The symbol ⊗ represents the Kronecker
product, and δ(·) represents Kronecker delta. The expectation
operator is E.  =

√−1. The N ×N identity matrix is IN .

The M ×N all-zero matrix is 0M×N . The mth row and nth
column entry of A are denoted as A(m,n). The trace of
A is given as tr(A) =

∑
mA(m,m). The �(a) and 	(a)

indicate the real and imaginary part of a complex number a.
An M -ary quadrature amplitude modulation (QAM) square
signal constellation is defined as A = {aI + aQ|aI , aQ ∈
±1,±3, . . . ,±(

√
M − 1)}.

II. SYSTEM MODEL

This section will introduce the MIMO OFDM system model
in the presence of frequency offsets. This model can also be
simplified to SISO OFDM systems.

We consider an OFDM system with MT transmit antennas
andMR receive antennas (Fig. 1). Let Xu[n] denote anM -ary
QAM symbol on the nth subcarrier sent by the uth transmit
antenna. The length-N input data vector can then be written as
Xu = [Xu[0]Xu[1] · · ·Xu[N − 1]]T, where N is the number
of OFDM subcarriers. In MIMO OFDM transmission, each of
theMT time-domain transmitted vectors is generated by taking
an inverse DFT (IDFT) of an information vector:

xu = [xu(0)xu(1) · · ·xu(N − 1)]T = QXu (1)

where Q is the N ×N IDFT matrix with entries Q(m,n) =
(1/N) exp[(2π/N)mn]. A cyclic prefix, which is longer than
the expected maximum excess delay, is customarily inserted at
the beginning of each time-domain OFDM symbol to prevent
intersymbol interference.

Considering a wideband frequency-selective fading channel
with L resolvable paths between the uth transmit antenna and
vth receive antenna, the discrete-time-domain received signal
can be represented as

yu,v(k) = e
2π
N εu,vk

L−1∑
l=0

hu,v(l)xu(k − l) + wu,v(k) (2)

where εu,v = ∆fu,vTs is the normalized frequency offset
between the uth (u = 1, . . . ,MT ) transmit and vth (v =
1, . . . ,MR) receive antenna; the ∆fu,v is the frequency offset,
and Ts is the OFDM symbol period. The wu,v(k) is an additive
white Gaussian noise (AWGN) sample. The complex channel
gain hu,v(l), l = 0, 1, . . . , L− 1 refers to the lth path between
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the uth transmit and vth receive antenna. Each path gain is
a zero-mean complex Gaussian random variable (Rayleigh
fading) with variance σ2

l (see Section V for details). We assume
that the channel gains remain constant over several OFDM
symbol intervals.

Discarding the cyclic prefix and performing DFT on the
received samples, the signal received at the vth receive antenna
for the kth subcarrier is given by

Yv[k] =
MT∑
u=1

Su,v[0]Hu,v[k]Xu[k]

︸ ︷︷ ︸
desired signal

+
MT∑
u=1

N−1∑
n=0,n �=k

Su,v[n− k]Hu,v[n]Xu[n]

︸ ︷︷ ︸
ICI component

+
MT∑
u=1

Wu,v[k] (3)

for k = 0, 1, . . . , N − 1, where Wu,v[k] is an AWGN sam-
ple with zero mean and variance σ2

W , and Wu,v[k], ∀ k
are assumed independent and identically distributed (i.i.d);
Hu,v[k] =

∑N−1
l=0 hu,v(l)e−(2π/N)lk, and Su,v[n− k] is an

ICI coefficient given by

Su,v[m] =
sinπ(εu,v +m)
N sin π

N (εu,v +m)
eπ(1− 1

N )(εu,v+m) (4)

for m = 1 −N, . . . , 0, . . . , N − 1, u = 1, . . . ,MT , and v =
1, . . . ,MR. All received signals can therefore be represented
in matrix form as

Y = SHX + W = GX + W (5)

where the NMR-dimensional vector Y = [Y1[0] · · ·Y1[N −
1] · · ·YMR

[N − 1]]T; the NMT × 1 transmitted vector X =
[XT

1 · · ·XT
MT

]T; the noise vector W with the {(v − 1)N +
k}th entryWv[k] =

∑MT

u=1Wu,v[k], ∀ k, v. The NMR × NMT

overall channel matrix is G = SH, where S is an NMR ×
NMRMT ICI matrix

S = diag[S1 · · ·SMR
] (6)

with Sv = [S1,v · · ·SMT ,v]; the {u, v}th element is the ICI
coefficient matrix between the uth transmit and vth receive
antenna

Su,v =




Su,v[0] Su,v[1] · · · Su,v[N − 1]
Su,v[−1] Su,v[0] · · · Su,v[N − 2]

...
. . .

...
Su,v[1 −N ] Su,v[2 −N ] · · · Su,v[0]


 (7)

and H is an NMRMT × NMT channel-gain matrix, which is
given by

H=[H1 · · ·HMR
]T

=


H1,1 · · · 0 · · · H1,MR

· · · 0
...

. . .
...

...
. . .

...
0 · · · HMT ,1 · · · 0 · · · HMT ,MR




T

(8)

where Hv = diag[H1,v · · ·HMT ,v] and where the elements are
the {u, v}th channel-gain matrix Hu,v at the N orthogonal
subcarriers

Hu,v = diag [Hu,v[0] Hu,v[1] · · · Hu,v[N − 1]] . (9)

When MT = 1 and MR = 1, (5) reverts to the system model
for SISO OFDM systems.

III. PRECODING FOR ICI REDUCTION

Let us consider precoding for OFDM ICI reduction. For
completeness, we briefly discuss linear precoding, which needs
the complete CSI (including frequency-offset information) at
the transmitter. As discussed in the Introduction, the provision
of frequency-offset estimates at the transmit end is difficult.
A nonlinear TH precoder to suppress ICI for both SISO and
MIMO OFDM with only partial CSI at the transmitter is
therefore proposed, where partial refers to the fact that the
transmitter does not need to know the frequency offsets. We
also analyze how channel mismatch impacts the TH precoder.

A. Linear Precoding

For linear transmitter precoding, an NMT × NMR(MT ≥
MR) transformation matrix L is used to preprocess transmitted
symbols so that LX instead of X is transmitted. The matrix
L depends on the overall channel conditions and several
performance criteria. With the ZF criterion, we choose
GLZF = I, i.e., LZF = G†; ICI is thus completely eliminated.
In practical implementation, the average transmit power for
each OFDM symbol should be constant, and large fluctuations
are undesirable, i.e., (1/MT )E[LXXHLH] = (Es/MT )LLH,
where Es = E[|X[k]|2], ∀ k, should be constant. However,
the channel inverse G† not only increases the average transmit
power but also makes it variable from symbol to symbol.
Moreover, if the channel transfer function has zeros outside
the unit circle, the system will be unstable. To alleviate these
problems, one can design a linear precoder subject to a power
constraint. Under the power constraint EL and with the MMSE
criterion, we have LMMSE =

√
EL/NMT GH (GGH +

(tr(RWW)/EL)INMR
)−1, where RWW = E[WWH], and

tr(A) denotes the trace of matrix A. Although the MMSE
linear precoder outperforms the ZF one at low signal-to-noise
power ratio (SNR), the former approaches the latter at high
SNR due to noise enhancement. In any event, a linear precoder
may be hard to implement in OFDM as the reliable feedback
of frequency-offset information to the transmitter is difficult,
and hence, it will not be considered further.

B. Nonlinear Precoding

We now consider THP for ICI reduction in closed-loop
OFDM systems. Direct application of conventional THP
requires complete CSI at the transmitter, including channel-gain
matrix H and the ICI matrix S, which is unrealistic. We first
prove that the ICI coefficient matrix between the uth transmit
and the vth receive antenna Su,v is approximately unitary.
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Fig. 2. Block diagram of THP in MIMO OFDM.

Consequently, the frequency offsets do not need to be fed back
to the transmitter. The resulting nonlinear TH precoder reduces
ICI in closed-loop SISO and MIMO OSTBC OFDM.

1) Properties of the ICI Coefficient Matrix: The following
properties related to the ICI coefficient matrix on the {u, v}th
channel (7) can be derived using (4).

1) Conjugate odd symmetry. The ICI coefficient matrix Su,v

given by (7) is a function of the normalized frequency
offset εu,v , Su,v = Su,v(εu,v). An ICI coefficient ma-
trix with a negative frequency offset can be obtained as
the complex transpose of the matrix corresponding to
a positive frequency offset with same magnitude, i.e.,
SH

u,v(εu,v) = Su,v(−εu,v).
2) Unitary. The ICI coefficient matrix can be approximated

as a unitary matrix, i.e., Su,vSH
u,v = SH

u,vSu,v = IN .
Therefore, the inverse of the interference matrix can be
easily calculated by taking the conjugate transpose since
S−1

u,v = SH
u,v .

A proof of these properties, which are used in the design of the
nonlinear precoder, is in the Appendix.

2) TH Precoding (THP): Using these properties of the ICI
coefficient matrix, we are now ready to design the nonlinear
TH precoder. The whole setup (Fig. 2) involves a receiver-
based feedforward matrix D and a transmitter-based upper
triangular feedback matrix B = [B(i, j)]. Before discussing
how to choose these matrices, let us briefly explain how the
transmitter precoding operates.

Given the data carrying symbols a[k] ∈ A (the M -ary con-
stellation), the transmitted symbols X[k] are successively cal-
culated via the feedback filter as

X[k] = MOD2
√

M


a[k] −

k−1∑
j=0

B(k, j)X[j]




= a[k] + q[k] −
k−1∑
j=0

B(k, j)X[j]. (10)

The initial signal constellation A is periodically expanded
by the modulo arithmetic feedback structure at the trans-
mitter. The modulo 2

√
M operation can be considered as

the signal-dependent addition a[k] + q[k], where the real and
imaginary parts of q[k] are the unique integer multiples of
2
√
M for which �{X[k]} ∈ (−√

M,
√
M ] and 	{X[k]} ∈

(−√
M,

√
M ]. Thus, the power of the precoded transmitted

signals is bounded. If a[k] is an i.i.d. sequence with variance
Es and uniformly distributed on A, then X[k] is also i.i.d.
with variance (M/M − 1)Es and uniformly distributed within
bounds slightly larger than those of the initial constellation [11].
The modulo operation employed at the transmitter is nonlinear,

and a slicer at the receiver uses the same modulo operation in
detecting the points of the initial constellation A.

In conventional THP for the system described in (5), assum-
ing that G is a G×G square matrix, the feedforward matrix
is designed at the receiver by using a QR factorization of the
overall channel matrix

G = DHT (11)

where the feedforward matrix D is a unitary matrix, and
T = [T (i, j)] is an upper triangular matrix [19]. Given the
overall channel matrix G, the feedback matrix under the ZF
criterion becomes B = PT, where the scaling matrix P =
diag[T−1(1, 1), . . . , T−1(G,G)] keeps the average transmit
power constant. This conventional THP design requires that
both the frequency offset and channel response are available at
the transmitter, which is undesirable. Exploiting the properties
of the ICI coefficient matrix, we propose a TH precoder using
only partial CSI at the transmitter.

a) SISO OFDM: When we only have one transmit an-
tenna and one receive antenna, the overall channel matrix G
is an N ×N matrix. As in (11), we need a QR factorization of
the overall channel matrix G. However, G = SH can be con-
sidered as a QR factorization because the ICI coefficient matrix
S is an N ×N unitary matrix, and the channel-gain matrix
H is N ×N diagonal. The feedback matrix thus is B = PH,
where the scaling matrix P = diag [T−1(1, 1) · · ·T−1(N,N)];
T (m,m) is the mth main-diagonal entry of the matrix T,
which is obtained by the Cholesky factorization HHH = TTH.
Regardless of the modulo reduction, the average power of the
transmitted signal X = B−1A can be given as

EX =E
[
H−1P−1AAHP−HH−H

]
=EsE

[
H−1TTHH−H

]
= EsI. (12)

At the receiver, the feedforward matrix is D = SH. Note that
if we directly factorize the overall channel matrix G, which
decomposes G as a product of a unitary matrix and an upper
triangular matrix, we have to know both channel response and
frequency offset at the transmitter. Since the ICI coefficient
matrix S is unitary and the H is a diagonal matrix in the
SISO case, G = SH can be considered as QR factorization,
i.e., we do not need to factorize the overall channel matrix.
The channel-gain matrix H becomes the feedback matrix
at the transmitter, and SH becomes the feedforward matrix at
the receiver. Hence, the knowledge of frequency offset at the
transmitter is not necessary.

Since the linear predistortion via B−1 equalizes the cas-
cade GPD, after the unitary prefilter D at the receiver,
the data symbols a[k] are corrupted by an additive noise as
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Y [k] = a[k] + q[k] +W ′[k], where W ′[k] is the kth entry of
filtered noise vector W′ = PDW with individual variance
σ2

W ′
k

= σ2
WT

−2(k, k). Since the modulo arithmetic device at
the receiver applies the same modulo operation as that at the
transmitter, unique estimates of the data symbols are generated.
Consequently, after discarding the modulo congruence, the
proposed precoder completely cancels ICI.

b) MIMO OFDM: For the MIMO case, we have the
NMR × NMT overall channel matrix G, the NMR × NMRMT

ICI matrix S (6), and the NMRMT × NMT channel-gain ma-
trix H (8). For convenience of signal detection, we assume that
MR ≥MT . In the most general case, each transmit–receive
antenna pair may have a different frequency offset if the collo-
cated antennas do not share the same oscillator. In this section,
we consider the case ofMR different frequency offsets, i.e., for
the vth receive antenna, ε1,v = ε2,v = · · · = εMT ,v = εv , and
εv �= εv′ , ∀ v �= v′.

Since the frequency offset εu,v , ∀ u, is identical to εv , S1,v =
· · · = SMT ,v = Sv; and Sv is an N ×N unitary matrix. The
overall channel matrix G can be rewritten as

G = SH (13)

where the NMR × NMT channel-gain matrix is

H =


 H1,1 · · · HMT ,1

...
. . .

...
H1,MR

· · · HMT ,MR


 (14)

and the NMR × NMR ICI matrix is

S = diag[S1 · · · SMR
]. (15)

Since the Sv is unitary, S is also a unitary matrix.
Instead of factorization of the overall channel matrix G, we

design the filters of THP by QR factorization of the channel-
gain matrix H

H = FHT (16)

with an NMR × NMR unitary matrix F and an NMR × NMT

upper triangular matrix T

T =
[

T̆
0N(MR−MT )×NMT

]
(17)

where T̆ is an NMT × NMT upper triangular matrix. We de-
sign the feedforward matrix as D = FSH so that G = DHT =
SFHT = SH. Since both F and S are unitary, the feedforward
matrix D is unitary as well. The feedback filter is set as an
NMT × NMT matrix B = P̆T̆, where the NMT × NMT diag-
onal matrix P̆ satisfies E[T̆HP̆HP̆T̆] = I. At the receiver, the
scaling matrix is P = [P̆ 0NMT ×N(MR−MT )]. The received
signals at the output of the slicer can be given as

Â = PDGB−1A + PDW = ΨA + W′ (18)

where Ψ = PDGB−1 = PDDHP† is approximately an
NMT × NMT identity matrix, if perfect channel-gain matrix H
is known at the transmitter.

The proposed TH precoder for both SISO and MIMO OFDM
systems, not needing the knowledge of frequency offsets at the
transmitter, reduces information load in the feedback channel
and avoids the possible frequency-offset transmitter mismatch
due to feedback errors and delay in practical implementation.
With perfect information of channel impulse response at the
transmitter and knowledge of frequency offset at the receiver,
our proposed THP outperforms than linear precoding. Further-
more, because the feedback filter is moved to the transmitter
in the TH precoder, the error propagation, which inevitably
degrades BER in DFE, is avoided. Therefore, lower BER can
be expected for THP.

3) TH Precoder for Alamouti-Coded OFDM: We next con-
sider the important special case of OSTBC, the Alamouti code
[20] for 2 transmit antennas and multiple receive antennas. The
Alamouti code is used in space–time transmit diversity, which
has been adopted by the 3GPP because it maximizes diversity
gain [3], [4]. We also generalize the proposed precoder design
for an arbitrary number of transmit antennas.

The Alamouti code can be described by a 2 × 2 code

matrix C =
[
c1 −c∗2
c2 c∗1

]
, i.e., two symbols c1 and c2 and their

conjugates are transmitted over two time slots [20]. At the
first time slot, the c1 and c2 are transmitted from the antenna
1 and 2, respectively; during the next symbol period, −c∗2 is
transmitted from the antenna 1, and c∗1 is from the antenna 2.
Consequently, in Alamouti-coded OFDM with proposed THP,
the output sequence of the feedforward filter can be given as

[
Ã1 Ã3

Ã2 Ã4

]
= Ψ

[
A1 −A∗

2

A2 A∗
1

]
+ W′ (19)

where the 2N × 2N matrix Ψ =
[
ĨN 0
0 ĨN

]
as in (18);

ĨN is approximately an identity matrix. The vectors A1 =
[a1[0] · · · a1[N − 1]]T and A2 = [a2[0] · · · a2[N − 1]]T are
transmitted over the first and second antenna at the first time
slot, respectively; and the −A∗

2 and A∗
1 are transmitted in

sequence in consecutive time slots. The received signal matrices
can be represented as

Â1 = Ã1 + Ã∗
4 = 2A1 + W′

1 + W′∗
4

Â2 = Ã2 − Ã∗
3 = 2A2 + W′

2 − W′∗
3 . (20)

4) TH Precoder for Generalized OSTBC OFDM: AnMT ×
T code matrix for generalized orthogonal STBC [21] obeys

CCH =

(
Nc∑

n=1

|cn|2
)

I (21)

for all complex codewords cn, whereNc represents the number
of symbols transmitted over the T time slots. The rate is defined
as Nc/T . Complex orthogonal designs with full rate do not
exist for more than two antennas. Complex orthogonal designs
with 3/4 rate for three and four transmit antennas and 1/2 rate
for arbitrary number of transmit antennas are described in [21].
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WhenMT > 2, the received signals are


 Ã11 · · · Ã1T

...
. . .

...
ÃMT 1 · · · ÃMT T


 =


 ĨN · · · 0

...
. . .

...
0 · · · ĨN


C + W′ (22)

where the element in the NMT × T code matrix C is aMT × 1
transmitted OFDM symbol vector. For instance, for 1/2 rate
OSTBC OFDM with 4 transmit antennas, the input matrices
for ML-detector can be given by

Â1 = Ã11 + Ã22 + Ã33 + Ã44 − Ã∗
15 − Ã∗

26 − Ã∗
37 − Ã∗

48

Â2 = Ã21 − Ã12 + Ã34 − Ã43 + Ã∗
25 − Ã∗

16 + Ã∗
38 − Ã∗

47

Â3 = Ã31 − Ã13 + Ã24 − Ã42 + Ã∗
35 − Ã∗

17 + Ã∗
28 − Ã∗

46

Â4 = Ã41 − Ã14 + Ã23 − Ã32 + Ã∗
45 − Ã∗

18 + Ã∗
27 − Ã∗

36.

(23)

5) TH Precoder for MT ×MR Distinct Frequency Offsets:
In this section, we consider the most general case where we
have MT ×MR different frequency offsets. When the fre-
quency offsets are different between different transmit–receive
antenna pairs, the ICI coefficient matrix Su,v �= Su′,v′ , ∀ u �=
u′, v �= v′, and the ICI matrix S in (6) is not unitary. The
feedforward filter D = FSH is thus not unitary as well, where
F is obtained by QR factorization of the channel-gain matrix H
in (8). After the feedforward filter, the noise variance matrix is
RW ′W ′ = PDRWWDHPH, which is not a diagonal matrix,
i.e., the noise is correlated. A whitening processor is thus
needed for the ML detection. A whitening filter as in [22] can
be used to whiten the colored noise and reduce computational
complexity of ML decoding. This whitening filter is equivalent
to a weight matrix for MMSE restoration of the desired signal
followed by whitening of the residual interference and noise.
An ML detection in addition to a slicer generates the estimate
of the transmitted symbol â[k].

C. Effect of Mismatch on Precoding Performance

If ideal feedback and precise channel estimates exist,
closed-loop systems offer a substantial advantage over their
open-loop counterparts. However, erroneous estimates and/or
imperfect feedback results in transmitter channel mismatch,
i.e., the channel information that is available at the transmitter
differs from the actual channel at the time of transmission due to
imperfect estimation, feedback delay, and errors. We consider
two cases of channel mismatch. In the first case, the receiver
knows H perfectly, but the transmitter has imperfect channel
matrix Ĥ because of feedback delay or noise. In the second
case, the receiver has the imperfect channel estimate HR, while
the transmitter has HT , which is a noise-corrupted version of
HR because of imperfect feedback. The HT is unknown at the
receiver. Since we do not need to send frequency offsets back
to the transmitter, the frequency-offset transmitter mismatch is
not considered here. The impact of frequency-offset mismatch
in conventional THP is shown in the simulation part.

Without the proposed TH precoder, the SNR of an OFDM
system in the presence of frequency offset can be given as [23]

SNRu,v =
sinc2(εu,v)σ2

Hu,v
Es[

1 − sinc2(εu,v)
]
σ2

Hu,v
Es + σ2

W

(24)

where σ2
Hu,v

= E [|Hu,v[k]|2], ∀ k. When εu,v = 0, the SNR

converts to SNR0
u,v = σ2

Hu,v
Es/σ

2
W . With the TH precoder, if

the channel-gain matrix H is perfectly known at both transmit-
ter and receiver, the SNR for the kth subcarrier can be given as
SNR0

u,v = σ2
Hu,v

Es/σ
2
W ′[k].

Let B̂ and D̂ correspond to the feedback and feedforward
filters of THP designed for Ĥ �= H. The D̂G − B̂ has a term
g0[k] at the zero-lag tap for the kth subcarrier. The output
SNR is

SNRu,v[k] =
g20 [k]Es

σ2
ICIu,v

[k] + σ2
W ′ [k]

. (25)

The residual ICI limits the output SNR and degrades the system
performance.

1) First Case: In the first case, the receiver has perfect
knowledge of the channel H, but the transmitter has an incor-
rect estimate Ĥ because of errors or delay in the feedback link.
The received signals are

Â = PDGB̂−1A + W′ = Ψ̂A + W′ (26)

where Ψ̂ = P̆T̆B̂−1 = BB̂−1. Obviously, Ψ̂ is not an identity
matrix as Ψ in (18). Generally, BB̂−1 is not a diagonal matrix
and introduces residual ICI. For SISO systems, since B is a
diagonal matrix, BB̂−1 is also a diagonal matrix. Hence, in
a SISO system, if both S and H are perfectly known at the
receiver, errors in Ĥ in our precoder only results in signal power
loss but no residual ICI.

2) Second Case: In the second case of channel information
mismatch, the receiver has an imperfect frequency-offset esti-
mate Ŝ and the incorrect channel-gain estimate HR, while the
transmitter has HT , which is the noise-corrupted version of
HR. The HT is unknown at the receiver, and HT �= HR �= H.
At the transmitter, B̂ is constructed from HT and at the receiver
D̂ from HR and Ŝ. This leads to a nonidentity matrix Ψ̂ =
P̂D̂GB̂−1. With the proposed THP in Alamouti-coded OFDM,
the received signals in (19) become

Â = Ψ̂A + W′ =
[
Ψ̂1 Ψ̂2

Ψ̂3 Ψ̂4

]
A + W′ (27)

where the N ×N matrices Ψ̂1 and Ψ̂4 are not approximately
identity, and Ψ̂2 and Ψ̂3 are not zero matrices. The signal
matrices for the ML detection are hence given by

Â1 =Ψ̂1A1+Ψ̂
∗
4A1+Ψ̂2A2−Ψ̂

∗
3A2+W′

1+W′∗
4

Â2 =Ψ̂
∗
1A2+Ψ̂4A2+Ψ̂3A1−Ψ̂

∗
2A1+W′

2−W′∗
3 . (28)

Clearly, cochannel interference (CCI) and residual ICI are
introduced to the combined signals. In SISO systems, no CCI
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occurs, however, since D̂DH �= IN and TT̂−1 �= IN , residual
ICI is still introduced.

IV. CORRELATED SPATIAL CHANNELS

The MIMO channel with spatial correlations of its gains is
studied in this section. The correlated channel model builds
on previous work reported in [24] and [25]. For the sake of
simplicity, we assume a uniform linear array at the transmitter
and receiver with identical antenna elements. The channel
matrix H̃ is assumed to be zero-mean (Rayleigh fading) circu-
larly symmetric complex Gaussian distributed with a separable
spatial correlation function.

For a frequency-selective channel withMT transmit andMR

receive antennas, the lth tap gain can be represented by an
MR ×MT matrix h(l), ∀ l. A channel-gain vector from all the
taps is *h = [vec(h(0))T · · · vec(h(L− 1))T]T, where vec(·)
denotes the vectorization operator [24]. According to the model
in [25], the spatial gain correlation matrix can be represented by

R = E[*h*hH] = RP ⊗ RT
T ⊗ RR (29)

where RP is the L× L path correlation matrix; if the paths
between each transmit–receive antenna pair are uncorrelated,
the RP = diag [σ2

0 · · ·σ2
L−1] is only determined by the power

delay profiles. The RT and RR are the transmit and receive
antenna correlation matrices. From [24], the entries of RT and
RR are

RT (m,n) = J0

(
2π∆|m− n|dT

λ

)

RR(m,n) = J0

(
2π|m− n|dR

λ

)
(30)

where J0 is zero-order Bessel function of the first kind, and
∆ = arcsin(r/d) is the angle spread [24]; the r is the radius
of the scatter ring, and the d is the distance between transmit
and receive antennas. The λ = c/fc is the wavelength of a
narrowband signal with center frequency fc. The antennas at the
transmitter and receiver are spaced by dT and dR, respectively.
The tap gain vector therefore can be obtained as

vec (h(l)) =
[
RT

T ⊗ RR

]1/2
vec (hw(l)) (31)

where vec(hw(l)) is an MRMT -dimensional vector of
i.i.d. zero mean complex Gaussian random variables with
variance σ2

l .
Using h(l) in (31), ∀ l, the spatially correlated channel-

gain matrix H̃ can be constructed as the same structure as
H (8) or H (14). The proposed nonlinear TH precoder can
also be used in MIMO OFDM when the spatial channels are
correlated. With known fading correlations at the transmitter,
we do QR factorization of H̃ instead of H or H. The design of
feedback and feedforward filters is the same as that described
in Section III.

Fig. 3. BER with THP as a function of the SNR for different values of the
normalized frequency offset for closed-loop SISO QPSK-OFDM (N = 64),
with perfect channel-gain matrix at both the transmitter and the receiver.

V. SIMULATION RESULTS

In this section, simulation results show how the proposed TH
precoder suppresses ICI in OFDM. The vehicular B channel
specified by ITU-R M. 1225 [26] is used where the channel
taps are zero-mean complex Gaussian random processes with
variances of −4.9, −2.4, −15.2, −12.4, −27.6, and −18.4 dB
relative to the total power normalized to unity. For many
wireless systems, the multipath channels fade slowly. As an
example, for wireless local area network employing a relatively
high carrier frequency of 5 GHz [27], even at a mobile speed
as high as 60 km/h, which leads to a relatively high value
of the maximum Doppler shift of 278 Hz, the corresponding
normalized maximum Doppler shift is only roughly 0.001,
when the symbol period is 3.2 µs and N = 64 (parameters of
the simulated 20-MHz OFDM system). The channel gains can
thus be assumed constant over several OFDM symbol intervals.

A. SISO OFDM

Fig. 3 gives the BER as a function of SNR for different values
of the normalized frequency offset in SISO OFDM with perfect
channel knowledge at both the transmitter and the receiver.
The performance of OFDM without precoding is shown as a
reference. The proposed THP clearly reduces ICI significantly.
For instance, with a normalized frequency offset of 10%, THP-
OFDM has almost the same BER as an OFDM system in the
absence of frequency offset, i.e., the ICI has been cancelled
almost completely.

Fig. 4 presents BER of THP-OFDM when the receiver
has perfect knowledge of channel-gain matrix H, while the
transmitter has an imperfect channel matrix Ĥ due to the
feedback channel noise. Since the feedback channel bandwidth
is usually much smaller than the downlink traffic channel
capacity, we assume the noise variance of the feedback link to
be σ2

F = σ2
W /100. The frequency offset is perfectly estimated

at the receiver. The BER of OFDM with conventional THP
is also shown as a reference in Fig. 4. In that reference case,
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Fig. 4. BER with THP as a function of the SNR for different values of the
normalized frequency offset for closed-loop SISO QPSK-OFDM (N = 64)
with perfect channel-gain matrix at the receiver and inaccurate channel-gain
matrix at the transmitter.

conventional THP uses a noise-corrupted frequency offset at the
transmitter, which leads to serious ICI residuals. Our precoder
minimizes the BER degradation by avoiding such frequency-
offset mismatch.

In Fig. 5, we assume that at the receiver, the channel-gain
matrix estimate HR is imperfect, while the transmitter uses a
channel-gain matrix estimate corrupted further by feedback er-
rors. The frequency offset is also estimated at the receiver with
reasonable quality. The estimation schemes used are described
in [28] and the references therein. We assume that the channel-
gain matrix H does not change within two consecutive OFDM
symbol periods. At SNR = 20 dB, with the frequency-offset
estimation algorithm described in [28], the average normalized
mse of the frequency-offset estimate is 1.44 × 10−3 for 10%
normalized frequency offset and 6.30 × 10−3 for 30% nor-
malized frequency offset. With the estimated frequency offset
assumed constant over at least one OFDM symbol, the channel
gains are estimated using pilot symbols as in [29], where pilot
symbols are multiplexed with the OFDM blocks in the time
domain to enable channel estimation. In order to guarantee
reasonable performance of the channel estimator, every OFDM
symbol is followed by a pilot block of length 2NCP, where
NCP is the length of cyclic prefix. In our case, N = 64, and
NCP = 16. The throughput loss incurred due to the pilot blocks
is 2NCP/(N +NCP). For a given data rate, it is possible
that N � NCP if the number of subcarriers is large. In this
case, the throughput loss will be small. With the estimation
algorithm used, at SNR = 20 dB, the average normalized mse
of the channel-gain estimates is around 0.036 with a normalized
frequency offset of 10% and 0.047 with a normalized frequency
offset of 30%. The value of mse decreases as SNR increases.
The channel-gain estimates are conveyed to the transmitter
via a noisy feedback link with noise variance σ2

F = σ2
W /100.

In OFDM with conventional THP, the estimated frequency
offset has to be sent back, which introduces further mismatch
due to errors in frequency-offset information available at the

Fig. 5. BER with THP as a function of the SNR for different values of the
normalized frequency offset for SISO QPSK-OFDM (N = 64) with inaccu-
rate channel-gain matrices used at both transmitter and receiver.

transmitter and may result in severe performance loss. In our
precoder, however, frequency-offset information is not needed
at the transmitter, and the errors in channel estimates only lead
to slight BER degradations.

B. MIMO OFDM

The performance of Alamouti-coded OFDM with THP is
discussed in this section. For simplicity, we assume that both
the transmitter and the receiver have the perfect channel-gain
matrix H information, and the receiver has perfect knowledge
of frequency offsets. We consider a general case where we
haveMR different frequency offsets. The values of normalized
frequency offsets are assumed to be uniformly distributed in
two intervals I = (0, 0.1] and II = (0.1, 0.3].

1) Uncorrelated Spatial Channels: In Fig. 6, the spatial
channels between different transmit and receive antenna pairs
are uncorrelated. We show the BER performance of 2 × 2 and
2 × 4 Alamouti-coded OFDM with THP in the presence of
MR different frequency offsets. The BER of 2 × 2 Alamouti-
coded OFDM without THP when εv ∈ I is provided as a
reference. Just as for SISO OFDM, our TH precoder reduces
ICI significantly in this case. When the normalized frequency
offsets εv ∈ I, the ICI can be cancelled almost completely. In
addition, a 2 × 4 OFDM system achieves better performance
due to higher diversity order. Our precoder also can be used
for the worst case when the frequency offsets corresponding
to different antenna pairs are different. The maximum possible
number of distinct frequency-offset values is MT ×MR. Our
precoder thus leads to savings of feedback capacity necessary
to transmit information onMT ×MR frequency offsets. Using
the prewhitening filter as in [22], the proposed THP for this case
has a slight degradation compared with the case ofMR different
frequency offsets.

2) Correlated Spatial Channels: In Fig. 7, we consider
2 × 2 OFDM with MR different frequency offsets. The angle
spread ∆ in (30) is set to 0.1. The distances between the
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Fig. 6. BER as a function of the SNR for different values of the normalized
frequency offset for 2 × 2 and 2 × 4 Alamouti-coded OFDM (N = 64) with
THP; perfect channel-gain estimates and uncorrelated spatial channels.

Fig. 7. BER as a function of the SNR for different values of the normalized
frequency offset for 2 × 2 Alamouti-coded OFDM (N = 64) with THP and
correlated spatial channels. The fading correlations are unknown, and ρ = 0.3
in Group 1. The fading correlations are known at the transmitter, and ρ = 0.7
in Group 2.

antennas are assumed to be less than λ/2, which causes
sufficient fading correlations. The correlation coefficient ρ is
defined as ρ = max[r(m,n)/

√
r(m,m)r(n, n)], ∀ m �= n,

where r(m,n) is the {m,n}th entry of [RT
T ⊗ RR]1/2 in (31).

Fig. 7 shows two groups of BER curves for two cases of
correlations. In the first group, ρ = 0.3, and the fading corre-
lations are unknown at the transmitter. In the second group,
ρ = 0.7, and the fading correlations are known at the transmit-
ter. With the known fading correlations at the transmitter, we
QR factorize H̃ instead of H. The BERs of 2 × 2 Alamouti-
coded OFDM with zero frequency offset and Alamouti-coded
THP-OFDM with εv ∈ I in uncorrelated spatial fading chan-
nels are given as references. The fading correlations degrade the
MIMO OFDM performance. However, THP reduces the effect

of fading correlations, and the BER loss is marginal when the
fading correlations are known at the transmitter.

VI. CONCLUSION

We have derived a nonlinear TH precoder for ICI reduction
in closed-loop SISO and MIMO OFDM. We have shown that
the ICI coefficient matrix is approximately unitary and used
this property to design the precoder for ICI suppression with
only partial CSI available at the transmitter, not including the
knowledge of frequency offsets. Since frequency offsets do
not necessary have to be fed back to the transmitter, our ap-
proach reduces the feedback load in closed-loop MIMO OFDM
systems and avoids the detrimental effect of frequency-offset
mismatch due to imperfect feedback. The degradation due to
frequency offset can be significantly reduced by the proposed
nonlinear TH precoder in both SISO and MIMO OFDM. For
spatially correlated channels, an OSTBC MIMO OFDM system
with our THP performs with negligible BER-performance loss.

APPENDIX

For simplicity, in the following proof, we omit the subscript
{u, v}.

Proof of conjugate odd symmetry property of S: As N �
1, for 1 ≤ k < N/2 and k � ε, we have

S[k] ≈ sinπ(ε+ k)
π(ε+ k)

ejπ(ε+k)

=
sinπε
π(ε+ k)

ejπε ≈ sinπε
πk

ejπε. (32)

Note that when k = 0, S[0] ≈ (sinπε/πε)ejπε. From (4), we
can immediately get S[N − k] = S[−k]. Consequently, S[k] =
−S[−k], and S[k](−ε) = S∗[−k](ε) = S∗[N − k](ε), i.e., the
ICI coefficient matrix has conjugate odd symmetry.

Proof of unitary property of S: We prove that S is unitary
in two steps. First, we prove that the diagonal entries of Z =
SHS, Z(m,m), approach unity. Second, we prove that off-
diagonal terms vanish, i.e, |Z(m,m)|2/|Z(m,n)|2 → ∞ as
ε→ 0.

Since S[N − k] = S[−k], the {m,n}th entry of Z is hence
given by

Z(m,n)=
N−1−m∑
k=−m

S[k]S∗[k +m−n]=
N−1∑
k=0

S[k]S∗[k+m−n].
(33)

Let us first consider diagonal entries of Z. When m = n,
Z(m,m) are the diagonal entries

Z(m,m) =
N−1∑
k=0

S[k]S∗[k]

=S[0]S∗[0] +
N−1∑
k=1

S[k]S∗[k]

=
sin2 πε

(πε)2
+

sin2 πε

π2

N−1∑
k=1

1
k2

(34)
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where the second term in (34) is the Riemann’s Zeta function,
i.e.,

∑∞
k=1(1/k

2) = π2/6 [30]. When N is sufficiently large,
the terms of 1/k2, ∀ k ≥ N can be omitted. We thus have∑N−1

k=1 (1/k2) ≈ π2/6. Equation (34) can be approximated as

Z(m,m) ≈ sin2(πε)
[

1
(πε)2

+
1
6

]
(35)

and limε→0 Z(m,m) = 1.
We next consider the off-diagonal terms. When m �= n,

since Z is a Hermitian matrix, i.e., Z(m,n) = Z∗(n,m), it is
sufficient to consider the case ofm > n:

Z(m,n)=S[0]S∗[m−n]+
N−1∑
k=1

S[k]S∗[k+m−n]

=
sin2 πε

π2

[
1

ε(m−n)
]
+

sin2 πε

π2

N−1∑
k=1

1
k(k+m−n)

=
sin2 πε

π2(m−n)

(
1
ε
+

N−1∑
k=1

1
k
−

N−1∑
k=1

1
k+m−n

)
. (36)

Obviously, only whenm− n = 1,Z(m,n) can reach the maxi-
mum value Z(m,n)max = (sin2 πε/π2)((1/ε) + 1 − (1/N)).
The least power ratio of the diagonal entries to the nondiagonal
entries can be given by

K =
Z2(m,m)
Z2(m,n)

>

(
1 + π2ε2

6

ε2 + ε

)2

. (37)

As ε→ 0,K → (1/ε2). The value of the normalized frequency
offset has the dominant effect on the power ratio K. For
instance, when ε = 0.3, K > 11.1, which means over 90%
energy is concentrated on the main diagonal. The value of K
rapidly increases when ε decreases. Therefore, the ICI coeffi-
cient matrix S is approximately unitary.
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