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Abstract- A class of rate-one space-time block codes (STBC)
allowing the decoding of transmitted symbols into four groups is
recently proposed by Yuen, Guan and Tjhung. This code is called
four-group decodable STBC (4Gp-STBC). In this paper, the
equivalent channel of 4Gp-STBC is derived and a new method to
decode 4Gp-STBC based on sphere decoders is presented.
Furthermore, the performance of 4Gp-STBC is analyzed. A New
signal rotation method is proposed, which performs better than
the existing one.

Keywords-Space-time block codes, quasi-orthogonal,
performance analysis, low decoding complexity.

I. INTRODUCTION

The demand of high data rate communications over
wireless systems has been increasing tremendously [1].
Wireless systems, as a counterpart of wireline networks, are
required to provide the services for bandwidth consuming
applications such as video data. However, the time-varying
nature of wireless channels is the major source of erroneous
transmission. Therefore, the advanced transmission techniques
must be designed to combat with the fading wireless channels.

One of the techniques to mitigate the effect of fading
wireless channels is space-time coding (STC) [2]. The spatial
diversity of multiple-input multiple-output (MIMO) channel is
exploited to improve the reliability of the wireless
communication links. Among the designs of STC, space-time
block codes (STBC) attract significant interest of research
since they have low decoding complexity and yet provide full-
diversity ofMIMO channels [1].

The first STBC has been proposed by Alamouti [3] for the
systems with two transmit antennas and multiple receive
antennas. This code is shown to be a special case of orthogonal
STBC (OSTBC) employing orthogonal designs [4]. Thanks to
the minimal decoding complexity, OSTBC have been
integrated in the third generation (3G) mobile wireless
standards [5]. However, the main disadvantage of OSTBC is
their low code rate; the rate-one code for complex
constellations exists for two antennas only.

In order to design the high-rate STBC, the orthogonal
constraints must be relaxed leading to the designs of quasi-
orthogonal STBC (QSTBC) (see, e.g. [6], [7]). QSTBC also
have low-decoding complexity. However, the rate-one code
can be obtained for four antennas only.

Keeping the low decoding complexity as the design
principle, several rate-one STBC for any number of transmit
antennas have been proposed (see, e.g. [8], [9], [10]). These
codes allow the decoding of transmitted symbols into two-
group; thus the decoding complexity is significantly reduced
compared with other rate-one codes in [1 1], [12].

Recently, a class of rate-one STBC has been proposed by
Yuen, Tjung and Guan [13]. This code has an even lower
decoding complexity than that of the codes in [8], [9], [10]
since the transmitted symbols can be separated into four group
for maximum likelihood (ML) detection. We call this code
four-group decodable STBC (4Gp-STBC) for short.

In this paper, we will analyze the performance of the 4Gp-
STBC in [13] by deriving the pair-wise error probability (PEP).
The union of the PEP is less than 0.1 dB from the simulated
PEP. Therefore, this bound can be used to optimize the
performance of the codes. By product, an equivalent channel of
the code is presented so that the low-complexity sphere
decoders [14] can be exploited.

The paper is organized as follows. Section II introduces the
system model and basic notations. Section III presents the
construction of the 4Gp-STBC and their PEP calculation.
Finally, conclusions and remarks are summarized in Section V.

II. SYSTEM MODEL

A. Notation
We first set the common notations to be used throughout

the paper. Superscripts T, *, and H denote matrix transpose,
conjugate, and transpose conjugate, respectively. The identity
and all-zero square matrices of proper size are denoted by I and
0. Unless otherwise stated, all the vectors are column and
denoted by underlined lowercase letters. The diagonal matrix
with elements of vector x on the main diagonal is denoted by
diag(x). XF stands for Frobenius norm of matrix X and (&
denotes Kronecker product [15]. E[x] denotes average of x. A
mean-m and variance-_2 circularly complex Gaussian random
variable is written by CN(m, u2).

We will deal with different types of signals. For clarity, we
use the small letters a and b to solely represent the real and
imaginary parts of the input information symbol s. Hence

s=a+jb, j= -1. (1)
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In general, 9i(X) and 3(X) denote the real and imaginary
parts of matrix X, respectively.

B. System Model
We consider data transmission over a quasi-static Rayleigh

flat fading channel, i.e. the channel is fixed for the duration of a
codeword, but can vary from one codeword to another
codeword. The transmitter and receiver are equipped with M
transmit and N receive antennas. The channel gain hik (i = 1, 2,
... M; k = 1, 2, ..., N) between the (i, k)-th transmit-receive
antenna pair is assumed CN(O, 1). We assume no spatial
correlation at either transmit or receive array, and the receiver,
but not the transmitter, completely knows the channel gains.

The ST encoder parses data symbols into a T-by-M code
matrixX as follows:

X = [Ct]iI i=1,...,M (2)
t=l, ..,T

where cti is the symbol transmitted from antenna i at time t. The
average energy of code matrices is constrained such that

E[trace(XHX)] = EOX |F] EEEctji T. (3)
i=l t=l

The received signals Ylk of the k-th antenna at time t can be
arranged in a matrix Y of size T-by-N. Thus, one can represent
the transmit-receive signal relation as

Y = pXH + Z (4)

where H= [hik], and Z = [Zik] of size T-by-N, and Zik are
independently, identically distributed (i.i.d.) CN(O, 1). The
transmit power is scaled by p so that the average signal-to-
noise ratio (SNR) at each receive antenna is p, independent of
the number of transmit antennas. However, p is sometimes
omitted for notational brevity.

The mapping of a block of K data symbols (SI, S2, ..., SK)
into a T-by-M code matrix can be represented in a general
dispersion form [16] as follows:

K

X = (akAk+bkBk) (5)
k=i

where Ak and Bk, (k = 1, 2, ..., K) are T-by-M complex-valued
constant matrices; they are commonly called dispersion
matrices.

The code rate RXM of an ST codeX designed for Mtransmit
antennas is the ratio of data symbols transmitted in an ST code
matrix and the number of channel uses T: RXM = KIT.

III. PERFORMANCE OF FOUR-GROuP DECODABLE STBC
In general, the transmitted symbols of a STBC are jointly

ML decoded [16]. This approach leads to high decoding
complexity for the high-rate STBC. Therefore, it is desirable to
reduce the decoding complexity by separating transmitted
symbols into subgroups. This design philosophy has been
implemented for OSTBC and QSTBC by imposing stringent
orthogonal constraints on the dispersion matrices [4],[6],[7].

Due to the orthogonal constraints, the code rate of OSTBC and
QSTBC are less than 1 for more than 4 antennas. Therefore,
the orthogonality constraints must be further relaxed for the
designs of high-rate STBC with low complexity.

A. Encoding
The sufficient condition so that the transmitted symbols can

be separated at the receiver is specified in [17, Theorem 1]. If
two symbols sp and 5q are separable at the receiver, their
dispersion matrices must be satisfied:

AHA +AHA =0
p q q p

BHB +BHB =0
p q q p

AHB +BHA =0
p q q p

(6a)

(6b)

(6c)

Furthermore, Yuen et al. identify a class of four-group
decodable STBC (4Gp-STBC) in [13] by providing sufficient
conditions to make a STBC become four group decodable.

Proposition 1: Given a 4Gp-STBC for Mtransmit antennas,
with code length T, and K sets of dispersion matrices denoted
as lAq, Bq}, 1 < q < K. A 4Gp-STBC with code length 2T for
2M transmit antennas, which consists of 2K sets of dispersion
matrices denoted as lAq, Bq}, 1 < q< 2K, can be constructed
using the following four mapping rules:

LAk °

AB [Ak ° Ak]

B kl -ljAk

A = jBk 0

B2k °k] (7)

The recursive construction of 4Gp-STBC specified in
Proposition 1 suggests that we can start with the rate-one
minimum decoding complexity QSTBC (MDC-QSTBC) for 4
transmit antennas proposed in [18] to construct 4Gp-STBC for
8, 16 transmit antennas and so on, because MDC-QSTBC is
one of the STBC satisfying (6); the resulting STBC is thus
called 4Gp-QSTBC. For practical interest, we will illustrate the
encoding process of 4Gp-QSTBC for 8 transmit antennas from
the MDC-QSTBC for 4 transmit antennas in the following.

Note that MDC-QSTBC in [18] is actually equivalent to the
ABBA codes [19]. We can write the code matrix of MDC-
QSTBC for 4 transmit antennas as

a6 +]a3 a2 + ja4

F=4
a2 + ja4
b, +jb3

- b2 + jb4
x1 X2

2 1

x3 x4

x4 x3

a, -a3
b2 + jb4
b1- jb3
x3 x4

x4 x3

x1 X2

- X2 x1

b1 + jb3 b2 + jb4
b2+ jb4 b1 - jb3
a1 + ja3 a2 + ja4
a2 + ]a4 al - A3 (8)
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where xi = a] + ja3, X2 a2 + ja,4, x3 = bI + jb3, and x4 = b2 +
jb4 are intermediate symbols used to highlight the ABBA
structure ofMDC-QSTBC codes [7], [18]. The four transmitted
symbols si = ai + jbi, (i = 1, ..., 4) in the code matrix F4 can be
separated at the receiver for ML detection. We now build the
code matrix of 4Gp-QSTBC for 8 transmit antennas from F4
using mapping rules in (7) below:

x1

.X5

x2
. v
6

X3

.X7x7
X4

X8

X5

xi

x2
X7

X3

X8

X4

X2

X6

xi
x5
X4

X8

X3

X7

X6

X2

X*

x1

X8

X4

X7

X3

X3

X7

X4

x8
x1

X5

X2

X6

X7

X3

X8x8
x4
X5

x1

X6

X2

X4

X8

X3

x7
X2

X6

x1

X5

X8

X4

X7

x3
X6

X2

X5

x1

where xi a1 + ja5, X2 = a2 + ja6, x3 = b1 + jb5, x4 = b2 + jb6,
x5 = a3 + ja7, X6 = a4 +ja8, X7= b3 + jb7, andx8 = b4 + jb8 are
intermediate variables.

B. Decoding
We know that the four symbols sl, ..., s4 of F4 can be

separately detected. Therefore, from Proposition 1, the 4
groups of 8 symbols of F8 can be detected independently.
These 4 groups are (Si, S2), (S3, S4), (S5, S6), and (S7, S8). We will
present the decoding of4Gp-QSTBC for 8 transmit antennas in
details. To provide more insight into the decoding of 4Gp-
QSTBC, we will derive an equivalent code and the equivalent
channel of F8. Furthermore, using the equivalent channel of F8,
we can use a sphere decoder [14] to reduce the complexity of
the ML search.

The equivalent code of F8 is obtained by column
permutations for the code matrix of F8 in (9): the order of
columns is changed to (1, 3, 5, 7, 2, 4, 6, 8). This order of
permutations is also applied for the rows of F8. We obtain a
permutation-equivalent code ofF8 below:

(9)

Assume that the transmit symbols are drawn from a
constellation with unit average power. The transmit-receive
signal model in (3) for the case of STBC G follows

Y = 8GH+Z. (12)

Let

x= [X1 x2 . . . X8 ,

Y= 1 ... Y4 Y5 ... Y8 I

Z =Z1 z4 Z5 z*l , and

Ihi
h2

h4

h2 h3 h4
h1 h4 h3
h4 hi h2

h3 h2 hl_

h5 h6

h6 h5

h7 h8

h8 h7

h7 h8

h8 h7 . (13)
h5 h6

h6 h5_

We have an equivalent expression of (12) as

Y= fx+z
- 0H2 - H*

L-2

(14)

H

Note that H1 and H2 are block-circulant matrices with circulant-
blocks [20]. Thus they are commutative and so do H1* and H2*.
We can multiply both sides of (14) with HH to get

IH 4H*Hl + H2*H2
w

HH z. (15)
1 H1 2H2H2 n

It is not hard to show that the noise elements of vector n are
correlated with covariance matrixfHH. Thus this noise vector
can be whiten by multiplying both side of (15) with the matrix
(HHH)-l'2 . Let HI=H*H +H*H, (15) after the noise1 1 222

whitening step is equivalent to the following equations

G [= DI D

where

x1

x2DI = X
X3

_X4

X2 X3 X4

X1 X4 X3

X4 x1 X2

X3 X2 xi_

(10)
H-1/2wI = NFP8fl/2XI + nl,

H-1/2w = p8H1/28X2 + n_p 8H12x-2+

(16a)

(16b)

where
X5 X6 X7 X8

X6 X5 X8 X7.

X7 X8 X5 X6

X8 X7 X6 X5_

(1 1)

The sub-matrices D1 and D2 have a special form called block-
circulant matrix with circulant blocks [20].

We next show how to decode the code G. For the sake of
simplicity, we consider a single receive antenna. The
generalization for multiple receive antennas is straightforward.

W1 = [WI w2 w3 w ,t' W2 = [W5 W6 W7 W8]T

xl [X1 X2 X3 X4]T X2 = [X5 X6 X7 X8]T

The noise vectors n1 =H- ni n2 n3 n44
n2 =H-1 2[n5 n6 n7 n8j are uncorrelated and have
elements with distribution CN(O, 1).

At this point, the decoding of the 8 transmitted symbols in
the code matrix G can be readily decoupled into 2 independent
groups. However, since the code is a 4Gp-STBC, we can
further decompose them into 4 groups in the following.
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Denote the 2-by-2 discrete Fourier transform matrix by

F2 L1 1]. The block-circulant matrices H1 and H2 can be
2 1 - 12

diagonalized by a (real) unitary matrix T F2 0 F] [20,
22 2

Theorem 5.8.2, p. 185]. Note that I"= T, therefore,

HI = TAIT, H2 =TA2T (17)

where Al and A2 are diagonal matrices with eigenvalues of H1
and H2 in the main diagonal, respectively. Thus,

H =HH1 +H2H2= T(A A1+A2)T

Let p = TR,S. Remember that Ai is a diagonal matrix

with eigenvalues of Hi on the main diagonal. Let
2iik (i = 1,2;k = 1, 2,3,4) be the eigenvalues of Hi. Then

Ai = diag(Ai l, 2i2 i3, Ai,4 ). Furthermore,

[Ai,1'2i2' i,3, Ai,4 t = (F2 ® F)2 [hl h2 h3 h4 t.
Since hi have distribution CN(0, 1), Ai k have distribution CN(0,
4). Now the PEP in (21) can be written as

(18)

and hence H1 = T(A'1AI +A2A2 )1 T. Since H12 is a real
matrix, (16) becomes

H-12S(Wj) = p/H812j(Xi) + Si(ni),

H-1/23(w )

(22)P(d, d' H) Q PIlklik|ink 2
1 6

Applying the Craig's formula for the conditional PEP in
[23], one has

(19a)
1 /2 ,

(19b) P(d,d'I H) =- exp-
/T

Pz12z1 1 2Ak 2
i

32sin2 ax )
(23)

for i 1, 2. Note that i(xI)= [a1 a2 b1 b2] :=dl, that is
9i(xl) is only dependent on the two complex symbols s1 and S2
(see (4)). Similarly, 9i(x2),3(x1) and 3(x22) depend on the
pairs of symbols (S3, S4), (S5, S6), and (s7, s8), respectively.

From (19), the decoding of 8 transmitted symbols into four
groups has been shown explicitly. One can apply a sphere
decoder to decode the data vectors. The matrix HR12 can be
considered as the equivalent channel ofthe 4Gp-QSTBC G.

C. Performance Analysis
In (19), the four data vectors experience the same

equivalent channel and the additive noise vectors have the
same statistic; the PEPs of the four vectors are the same. We
only need to consider the PEP of the vector

di = 9(xl)= [a1 a2 b1 b2t. For notational simplicity, the
sub-index 1 of d1 is dropped.

Additionally, we can introduce redundancy on the signal
space by using a 4-by-4 real rotation matrix R to the data vector
d =[a1 a2 bl b2]T [21], hence d, =R[al a2 bl b2]T.
To keep the transmit power unchanged, the rotation matrix is
assumed orthogonal, i.e. RTR = I.

From (18a), the PEP of the pair (d,d') can be expressed
by the Gaussian tail function as [22]

P(d, d' IH) = Q HV8 (20)

where No = 1/2 is the variance of the elements of the white
noise vector 91(ni) in (19a), 3 = d -d'. From (18), one has

P(d,d H) r SRT (AA1 +A A2)TRS{ (21)

We can apply a method based on the moment generating
function [24], [25] to obtain the unconditional PEP in the
following:

P(d,d' ) = ( 8s f 2 c
(24)

Since there are four vectors to be decoded in each code
matrix, the codeword PEP is therefore bounded by 4 times the
PEP given in (24). Assume that there are C possible vectors
d, the union bound on the frame error rate (FER) is

(25)24xPU=4XYp I d'k ) 1
07 i=l k=i+l

We now examine the tightness of the union bound (25)
compared with the simulated FER. Recall that the signal
rotation R plays an important role on the decoding performance
of4Gp-QSTBC. In [13], the symbols s1, s3, s5, S7 are rotated by
and angle 71, and the other symbols are rotated by an angle 72.
This type of complex signal rotations is equivalent to the real
signal rotation, denoted by RYGT, below.

cosy1

R -
sin 71

YGT 0

0O

sin7 0 0

Cos71 0 0

0 cosy2 sin 72
0 sin 72 - Cos 72

(26)

For this class of rotation matrix and 4QAM, the values
r1 = 70 and r1 = 230 maximize the coding gain [2]. In Fig. 1,
the FER of 4Gp-STBC G with the best found rotation of the
form in (26) is plotted for 4QAM and 16QAM. The union
bound becomes tight at FER <10-2.

The tight union bound at medium and high SNR suggests
that this bound can be used to optimize the signal rotation R. In
the most general case, the 4-by-4 orthogonal matrix R has no
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less than 4 independent entries. Therefore, an exhaustive search
becomes impractical.

To overcome this problem, we can optimize R based on the
asymptotic bound at high SNR. If 8yi . 0 Vi = 1,...,4, then

1+8 8sin2 a 8/sin a at high SNR, the

approximation ofthe exact PEP in (24) is

27 P 816! 4 4
P(d, '),; 8! fj!l[ (27)

The asymptotic bound in (27) unveils an important property
of the 4Gp-QSTBC at high SNR: The PEP is heavily
dependent on the product distance J4 /? (see, e.g. [21]).

Recall that / TRS; we can consider the product matrix TR is
a combined rotation matrix for the data vector d.

The exponent of SNR in (27) is -8. This indicates that the
maximum diversity order of 4Gp-QSTBC is 8 and it is
achievable if the product distance is non-zero for all possible
data vectors. Furthermore, at high SNR, the asymptotic bound
becomes very tight to the union bound and therefore, very tight
to the FER. Therefore, the larger the product distance, the
lower FER can be obtained. This observation is very similar to
the diversity-coding gain concept due to Tarokh et al. [2].
Thus, we can optimize the rotation by R so that the minimum
product distance

4

dp min =: milln 0Ai
ia1

is nonzero and maximized.

U8tJBl6AMY rotator
FER 16YGTlOAMYT at1
UB, 4AM, YG rotatorin
FER, 40AtM YGT otaton

0 5 10 15 m 25

Figure 1. Union bound on the FER and simulated FER of4Gp-STBC
with 8 transmit/1 receive antennas.

(28)

Note that the searches for the best rotation matrix R based
on the union bound (25) and the worst-case PEP (28) can be
run independently. In addition, one can use the coding gain
metric [2] to search for the matrix R [13]. The rotation matrix
minimizing the union bound of FER should yield the lowest
FER compared with the best rotation found by optimizing the
worst-case PEP and coding gain. However, we are still
searching for a method to optimize the union bound.

If the complex signals are drawn from QAM, the (real)
elements of d are in the set (+1, +3,+ 5,...). The best known
rotations for QAM in terms of maximizing the minimum
product distance are provided in [26],[27]. Denoting the signal
rotation presented in [26],[27] by RBOv, the signal rotation for
our 4Gp-QSTBC is given by

R = TRBOV (29)

The FER of 4Gp-QSTBC with 16QAM using signal
rotation in (29) and the best rotation in (26) (in terms of coding
gain) are compared in Fig. 2. Clearly, the rotation in (29)
performs better at high SNR.

FER. YeT rotation
FER~ rpo drtt
BER, YGT roaion
BER, popo ed rotaltio

12 14 16
SNR [dB]

Figure 2. Comparison of the performance of4Gp-STBC with the
proposed signal rotation and the one proposed by Yuen, Guan, and

Tjhung, 16QAM, 8 transmit/1 receive antennas.

decoding complexity. Additionally, the equivalent channel of
4Gp-STBC is presented. This channel is used to derived the
exact PEP and furthermore, to optimize the performance of
4Gp-STBC. The newly proposed signal rotation yields better
performance than the existing signal rotation method.

IV. CONCLUSION
We have presented a new method to decode and optimize

the performance of 4Gp-STBC. The new decoding method
enables the application of sphere decoders to reduce the
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