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Abstract— ABBA codes are an important class of quasi-
orthogonal space-time block codes proposed by Tirkkonen et
al.. Recently, they have become more attractive for practi-
cal applications because Yuen et al. have shown that ABBA
codes allow pair-wise real-symbol decoding (or equivalently,
single-complex symbol decoding) complexity; it is the minimum
decoding complexity (MDC) achievable by any non-OSTBC.
Additionally, MDC-ABBA codes can achieve full diversity while
their code rate is higher than that of OSTBC. In this paper, we
present a new, general, simple, and closed-form method to decode
MDC-ABBA codes. We explicitly derive the equivalent channel
of MDC-ABBA codes and the maximum mutual information of
MDC-ABBA. Furthermore, we prove that MDC-ABBA codes
can achieve full diversity with transmit and/or receive antenna
selection and full or limited feedback.

I. INTRODUCTION

ABBA codes [1], a class of quasi-orthogonal space-time
block codes (QSTBC), have a higher code rate than orthogonal
space-time block codes (OSTBC) [2]. Since ABBA codes
allow low complexity pair-wise complex-symbol decoding and
perform better than OSTBC [3], they have been widely studied
for coherent and non-coherent transmissions, beamforming,
and others. Recently, Yuen et al. (see [4] and references
therein) have shown that ABBA codes also enable pair-wise
real-symbol (PWRS) decoding; they call such codes minimum
decoding complexity (MDC) codes. Thus, while the decoding
complexity of MDC-ABBA codes is equal to single complex-
symbol decoding complexity, their code rate higher than that
of OSTBC. In the following, we reserve the term "ABBA" for
the QSTBC proposed by Tirkkonen et al. [1] with pair-wise
complex-symbol decoding [3] and the term "MDC-ABBA" for
the ABBA codes with PWRS decoding [4].

Recently, several authors have investigated closed-loop
methods using phase feedback for ABBA codes (see, e.g. [5])
so that single complex symbol decoding is possible. However,
these methods may be unnecessary since the ABBA-QSTBC
are already single-symbol decodable. A few decoders designed
for ABBA codes with 4 or 6 transmit antennas [6], [7] are also
presented.

Despite of many studies on ABBA codes, the equivalent
channel of ABBA and also of MDC-ABBA codes is unknown
in the most general case with arbitrary numbers of transmit
(Tx) and receive (Rx) antennas. Additionally, suitable closed

loop methods for MDC-ABBA codes are not studied so far.
In this paper, we propose a new, general, simple, and

closed-form method to decode ABBA and MDC-ABBA codes.
We show how the ABBA space-time (ST) channel can be
decoupled into parallel independent channels, each of which
carries a pair of data symbols. Using this new representation
of the equivalent channel, we derive the maximum mutual
information (MMI) of ABBA/MDC-ABBA codes. Finally,
we show that MDC-ABBA codes achieve full diversity with
Tx/Rx antenna selection and with full or limited feedback [8].

II. DECODERS FOR ABBA AND MDC-ABBA CODES

A. System Model and Preliminaries

We consider a quasi-static Rayleigh flat fading multiple-
antenna channel. The transmitter and receiver are equipped
with M Tx and N Rx antennas. The receiver, but not the
transmitter, completely knows the channel gains.

From matrix representation theory, the mapping of a block
of K data symbols (s1, s2, · · · , sK) into a T ×M code matrix
of a STBC can be generally represented as follows [9]:

XM =
K∑

k=1

(skAk + s∗kBk) (1)

where Ak and Bk, (k = 1, 2, · · · ,K) are T × M constant
basis matrices, superscript ∗ denotes conjugate 1. The average
energy of code matrices X ∈ XM is constrained such that
E[‖X‖2

F] = T . The code rate RXM
of a STBC XM , in symbols

per channel use (pcu), is defined by RXM
= K/T .

We now review the main properties of OSTBC OM to be
used later. The basis matrices of OSTBC satisfy [2]:

A†
iAi + B†

i Bi = IM , i = 1, 2, · · · ,K (2a)

A†
iAj + B†

jBi = 0M , 1 ≤ i < j ≤ K (2b)

A†
iBj + A†

jBi = 0M , i, j = 1, 2, · · · ,K. (2c)

1From now on, superscripts T and † denote matrix transpose and transpose
conjugate. The n × n identity and all-zero matrices are denoted by In

and 0n, respectively; diag(x) denotes a diagonal matrix with elements of
vector x on its main diagonal. ‖X‖F denotes Frobenius norm of matrix X
and ⊗ denotes Kronecker product [10]. E[·] denotes average. A mean-m
and variance-σ2 circularly complex Gaussian random variable is written by
CN (m, σ2). �(X) and �(X) stand for the real and imaginary parts of a
matrix X , respectively.
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Let the data symbols are drawn from a constellation with
unit average power. To guarantee the average power constraint,
the OSTBC matrices are multiplied by a constant κ = 1

MROM
.

For notational brevity, κ is not shown.
We next examine the algebraic structure of ABBA QSTBC

codes. Let Ak and Bk (k = 1, 2, · · · ,K) be the t × m
basis matrices of an OSTBC Om. Two blocks of data,
each of K symbols, are mapped into two code matrices
A and B of Om as A =

∑K
k=1 (skAk + s∗kBk),B =∑K

k=1

(
sk+KAk + s∗k+KBk

)
. The ABBA code matrices for

M = 2m Tx antennas are constructed from Om as

QM =
[A B
B A

]
=

K∑
k=1

(Ck ⊗ Ak + C†
k ⊗ Bk) (3)

where Ck = (skΠ0 + sk+KΠ), Π =
[
0 1
1 0

]
. Note that Π =

Π−1,Π2 = I2.

B. Equivalent Channel of ABBA and MDC-ABBA Codes

For the sake of simplicity, we first consider one Rx antenna
and generalize the results for N > 1 later.

Let h = [h1 h2 · · · hM ]T denote the channel vector with
hi ∼ CN (0, 1). Let Q ∈ QM be a transmitted code matrix,
the Rx signal vector is y =

√
ρκ Qh + w, where w is noise

vector with independently, identically distributed (i.i.d.) entries
∼ CN (0, 1); ρ is the average Rx signal-to-noise ratio (SNR).

The conventional approach for decoding ABBA codes can
start from expanding the metric ‖y − √

ρκQh‖2
F. In the

following, we present a new method, in which the equivalent
channel of ABBA codes is represented in an elegant form.

From (3), we have

y =
√

ρκ

K∑
k=1

2∑
i=1

[(
Πi−1 ⊗ Ak

)
hsk+(i−1)K

+
(
Π1−i ⊗ Bk

)
hs∗k+(i−1)K

]
+ w . (4)

Let eki =
(
Πi−1 ⊗ Ak

)
h, Ek =

[
ek1 ek2

]
,fki =(

Π1−i ⊗ Bk

)
h, Fk =

[
fk1 fk2

]
, and sk =

[
sk sk+K

]T
,

(4) can be rewritten as

y =
√

ρκ
[
E1 F1 E2 F2 · · · EK FK

]
× [

sT
1 s†

1 sT
2 s†

2 · · · sT
K s†

K

]T
+ w . (5)

We now use a trick in [11] to decode OSTBC for our next
derivation. The following equation is equivalent to (5):[

y
y∗

]
=

√
ρκ

[
E1 F1 · · · EK FK

F ∗
1 E∗

1 · · · F ∗
K E∗

K

]
︸ ︷︷ ︸

G

× [
sT
1 s†

1 · · · sT
K s†

K

]T
+

[
w
w∗

]
. (6)

We can show that the columns of matrix G are orthogonal.

Proof: We will show that the following equations hold:[
Ek

F ∗
k

]† [
El

F ∗
l

]
= E†

kEl + F T
k F ∗

l = 02 for k �= l, (7a)[
Ek

F ∗
k

]† [
Fl

E∗
l

]
= E†

kFl + F T
k E∗

l = 02 ∀k, l. (7b)

We just provide the proof for (7a); (7b) can be shown similarly.
Let Zkl = (E†

kEl + F T
k F ∗

l ), its element can be calculated as

[Zkl]ij = e†
kielj + fT

kif
∗
lj = h†[(Πj−i) ⊗ (A†

kAl + B†
kBl)]h

=
{

0, k �= l;
h†(Πj−i ⊗ Im)h, k = l.

(8)

Thus, Zkl = 02 if k �= l.
Since for k = l, the matrices Zkk = Z ∀k, where the entries
of Z are zij = h†(Πj−i ⊗ Im)h. In particular, z1,1 = z2,2 =
‖h‖2

F, z1,2 = z2,1 =
∑m

i=1(hih
∗
i+m + h∗

i hi+m). Therefore, Z
is a circulant real matrix and can be represented as

Z =
m∑

i=1

H†
i Hi (9)

where Hi =
[

hi hi+m

hi+m hi

]
. To separate the transmitted

vector sk(k = 1, 2, . . . K) at the receiver, we multiply the
two sides of (6) with

[
E†

k F T
k

]
to get

E†
ky + F T

k y∗ =
√

ρκZsk + (E†
kw + F T

k w∗) . (10)

Thus
[
E†

k F T
k

]
plays the role of the spatial signature of the

data vector sk.
We now generalize the result of (10) for the case of multiple

receive antennas, N ≥ 1. The subscript n (n = 1, 2, . . . , N)
is added to the channel gain vector h. The channel matrix
H is therefore written as H =

[
h1 h2 · · · hN

]
, where

hn =
[
h1n h2n · · · hMn

]T
.

It is not hard to show that the matrix Z in (9) becomes

Z =
N∑

j=1

m∑
i=1

H†
i,jHi,j (11)

where Hi,j =
[

hi,j hi+m,j

hi+m,j hi,j

]
. Therefore, (10) is general-

ized for multiple Rx antennas as follows:

N∑
n=1

(E†
knyn + F T

kny∗
n)

︸ ︷︷ ︸
ŷk

=
√

ρκZsk +
N∑

n=1

(E†
knwn + F T

knw∗
n)

︸ ︷︷ ︸
w̄k

(12)
where yn is the received signal vector of the nth antenna,

Ekn =
[
ek1,n ek2,n

]
, for k = 1, 2, . . . ,K, (13a)

eki,n =
(
Ak ⊗ Πi−1

)
hn, for i = 1, 2, (13b)

Fkn =
[
fk1,n fk2,n

]
, (13c)

fki,n =
(
Bk ⊗ Π1−i

)
hn , (13d)

and w̄k is noise vector with covariance matrix V =
E[w̄kw̄†

k] = Z �= IM . The color noise w̄k can be whitened
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by a whitening matrix Ĥ−1 = Z− 1
2 ; (12) with whitened noise

is given below

Ĥ−1ŷk =
√

ρκĤsk + Ĥ−1w̄k︸ ︷︷ ︸
ŵk

. (14)

Thus, (14) is the general equivalent Tx/Rx signal relation
for ABBA codes.

C. General Decoder for ABBA Codes

To achieve full diversity, K data symbols sk+K (k =
1, 2, . . . ,K) must be rotated by an angle α [3]. If sk ∈ S ,
where S is a unit average energy constellation, for example
QAM, PSK, then sk+K ∈ ej α S. Including the complex
symbol rotation, (14) becomes

Ĥ−1ŷk =
√

ρκĤ diag(1, ej α)sk + ŵk, j2 = −1. (15)

Let R = diag(1, ej α), s̄ = [s̄1 s̄2], where s̄1 ∈ S, s̄2 ∈ ej α S
the maximum likelihood (ML) solution of (15) is

sk = arg min
s̄

‖Ĥ−1ŷk −√
ρκĤRs̄‖2

F. (16)

One can use a sphere decoder [12] to solve (16). Additionally,
the right hand side of (16) can be simplified so that

sk = arg min
s̄k

(
ρκs̄T

kR†ZRs̄k − 2
√

ρκ
(ŷ†
kRs̄k)

)
. (17)

D. General Decoder of MDC-ABBA Codes

Since Ĥ is real, we can rewrite (12) by decoupling the real
and imaginary parts of the two sides of (12) as[

Ĥ−1
(ŷk)
Ĥ−1�(ŷk)

]
=

√
ρκ

[
Ĥ 02

02 Ĥ

] [
(sk)
�(sk)

]
+

[
(ŵk)
�(ŵk)

]
. (18)

In order to achieve full-diversity, signal transformations are
required. There are two existing signal transformation methods
proposed by (1) Yuen, Guan, and Tjhung [4] and (2) Wang,
Wang, and Xia [13] for QAM constellations. Due to the space
limit, we present the results with the signal transformation by
Yuen-Guan-Tjhung only.

Let the input symbols are dk = ak + j bk, dk+K = ak+K +
j bk+K , where dk, dk+K ∈ S. Let sk = pk + j qk, sk+K =
pk+K + j qk+K be the transmitted symbols. We can jointly
transform the real input symbols ak, bk, ak+K and bk+K

by a real transformation R to generate transmitted symbols
pk, qk, pk+K , and qk+K as[

pk pk+K qk qk+K

]T = R
[
ak bk ak+K bk+K

]T
.

(19)

It can be showed that the rotation in [4] is of the form

RY GT =
[
U 02

02 U

]
(20)

where

U =
[
cos(α) sin(α)
sin(α) − cos(α)

]
, (21)

and optimal angle for QAM in terms of coding gain is α =
1
2 arctan(1

2 ) = 13.28250 [4].

Using (19) and (20), we rewrite (18) as

Ĥ−1
(ŷk) =
√

ρκĤU
[
ak bk

]T + 
(ŵk) , (22a)

Ĥ−1�(ŷk) =
√

ρκĤU
[
ak+K bk+K

]T + �(ŵk). (22b)

Let ck =
[
ak bk

]T
, ck+K =

[
ak+K bk+K

]T
, and c̄ =[

ā b̄
]T

such that d̄ = (ā + j b̄) ∈ S. The ML solutions for
(22a) and (22b) are

ck = arg min
c̄

(
ρκc̄TUZU c̄ − 2

√
ρκc̄TU
(ŷk)

)
, (23a)

ck+K = arg min
c̄

(
ρκc̄TUZU c̄ − 2

√
ρκc̄TU�(ŷk)

)
. (23b)

The above equations (23a) and (23b) are the general detection
equations of MDC-ABBA codes.

From (14) and (22), Ĥ is the equivalent channel of ABBA
and MDC-ABBA codes. The important properties of the
equivalent channel Ĥ are given as follows.

Lemma 1: The equivalent channel matrix Ĥ and its inver-
sion Ĥ−1 are real and circulant.

III. MAXIMUM MUTUAL INFORMATION

The MMI of ABBA (and also MDC-ABBA) codes can be
calculated using the equivalent channel Ĥ [9].

CQ2m
=

K

T
E

{
log2 det

(
I2 + ρκĤ†Ĥ

)}

=
K

T
E


log2 det


I2 + ρκ

N∑
j=1

m∑
i=1

H†
i,jHi,j





 .

(24)

The coefficient K
T appears because that the MMI of ABBA

codes is a sum of MMI of K orthogonal blocks of data
averaged over T channel uses.

We can use a unitary discrete Fourier transform matrix F2 to
diagonalize the circulant matrices Hi,j without changing the
distribution of CQ. Let λi,j,p (p = 1, 2) be the eigenvalues
of Hi,j . Since the vectors of eigenvalues are the Fourier
transform of the channel vector [hi, hi+m]T. Thus, λi,j,p are
independent and λi,j,p ∼ CN (0, 1). By denoting Λi,j =
diag (λi,j,1, λi,j,2), (24) becomes

CQ = RO,m E


log2 det


1 +

ρ

mRO,m

N∑
j=1

m∑
i=1

|λi,j,p|2




 .

(25)

In (25), p = 1 or 2 does not change the distribution of
CQ; therefore, we can set p = 1 without loss of generality.
Furthermore, let H̄ ∈ C

m×N with entries λi,j,1, we have∑N
j=1

∑|λi,j,1|2
i=1 = ‖H̄‖2

F. We arrive at the new expression
of CQ below.

CQ2m
= ROm E

{
log2 det

[
1 +

ρ

mROm

‖H̄‖2
F

]}
= COm

(26)

where CO,m is the MMI of the underlying OSTBC Om [9],
[14], which is used to construct ABBA codes. Therefore,
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Fig. 1. Channel capacity and maximum mutual information of ABBA/MDC-
ABBA codes and OSTBC over multiple-input single-output channels.

1) The MMI of ABBA/MDC-ABBA codes for M = 2m
Tx antennas equals to that of OSTBC for m Tx antennas;
i.e., by doubling number of Tx antennas and replacing
OSBTC by ABBA/MDC-ABBA codes, one can get
higher diversity benefit but not the capacity benefit.

2) Compared with OSTBC, MDC-ABBA codes can attain
larger portion of channel capacity.

The MMI of ABBA/MDC-ABBA codes and OSTBC (max-
imal rates), and channel capacity illustrated in Fig. 1 (for
M = 2, 4, 8 and N = 1) agree with the above analysis.

IV. MDC-ABBA CODES WITH ANTENNA SELECTION

Since 
(ŵk) and �(ŵk) in (22) are real Gaussian vectors
with i.i.d. entries (zero-mean and variance N0 = 1/2), the data
vectors

[
ak bk

]T
and

[
ak+K bk+K

]T
k = 1, 2, . . . ,K) ex-

perience the same channels. Thus, they are subject to the same
error probability. Furthermore, the pair-wise error probability
(PEP) of each vector is also the symbol PEP (SPEP). The
subscript k of symbols can be omitted for brevity.

Consider two arbitrary symbols d = a+ j b and d̂ = â+ j b̂.
Denote δ1 = a − â, δ2 = b − b̂,∆ = [δ1 δ2]T, the conditional
SPEP of d and d̂ can be expressed using the Gaussian Q-
function as

P (d → d̂|Ĥ) = Q




√
ρκ‖ĤR∆‖2

4N0


 . (27)

We will derive a convenient form of the argument of the
Gaussian Q-function above in the following.

x � ‖ĤR∆‖2 = (R∆)†Ĥ†Ĥ(R∆) = (R∆)†Z(R∆). (28)

Using the DFT matrix F2 to diagonalize Z, we have

Z =
N∑

j=1

M/2∑
i=1

H†
i,jHi,j =

N∑
j=1

M/2∑
i=1

F2 diag(|λi,j,1|2, |λi,j,2|2)F2.

(29)

Substituting Z into (28), one has x =∑N
j=1

∑M/2
i=1

[
(F2R∆)† diag(|λi,j,1|2, |λi,j,2|2)(F2R∆)

]
.

Let [β1 β2]T = F2R∆, note that β1 and β2 are real. Thus,

x =
N∑

j=1

M/2∑
i=1

[
β2

1 |λi,j,1|2 + β2
2 |λi,j,2|2

]
. (30)

Let β̄1 = min(|β1|, |β2|), β̄2 = max(|β1|, |β2|), we
have x ≥ ∑N

j=1

∑M/2
i=1

[
β̄2

1

(|λi,j,1|2 + |λi,j,2|2
)]

, x ≤∑N
j=1

∑M/2
i=1

[
β̄2

2

(|λi,j,1|2 + |λi,j,2|2
)]

.
Since [λi,j,1 λi,j,2]T = F2[hi,j hi+M/2,j ]T, we get

|λi,j,1|2 + |λi,j,2|2 = |hi,j |2 + |hi+M/2,j |2. Therefore

β̄2
1‖H ‖2 ≤ x ≤ β̄2

2‖H ‖2. (31)

Actually, Ĥ is dependent on H, we thus rewrite the upper
and lower bounds of conditional SPEP as

Q




√
ρκβ̄2

2‖H ‖2
F

2


 ≤ P (d → d̂|H) ≤ Q




√
ρκβ̄2

1‖H ‖2
F

2


 .

(32)

If both β̄1 and β̄2 are nonzero for all distinct pairs of sym-
bols, the lower and upper bounds of SPEP of MDC-QSTBC
in (32) are simply a SPEP of some OSTBC transmitted over
the same channel H with different SNR scales. Therefore, as
long as β̄1 and β̄2 are nonzero, the SPEP of MDC-ABBA
codes is bounded by two full-diversity SPEP curves, hence
MDC-ABBA codes must achieve full diversity. We can show
that the condition β̄1 and β̄2 are nonzero for all distinct pairs
of symbols is also the necessary and sufficient condition for
full diversity MDC-ABBA codes using the rank-determinant
criteria with codeword PEP [4], [15]. The details of proof is
omitted due to the space limit.

With transmit antenna selection (TAS), only M out of
Mt available Tx antennas are used. The effective channel of
MDC-ABBA codes with TAS is H̄, which consists of M
columns with largest norm of H matrix. In this case, the
matrix H in (32) is replaced by H̄. It is similar to the case
of OSTBC with TAS [8]. Since OSTBC achieve full diversity
with TAS, MDC-ABBA codes also achieve full diversity with
TAS; more important, full diversity can be obtained with
limited feedback [8]. The similar explanation can be given
with receive antenna selection (RAS). Therefore, with TAS
and RAS, MDC-ABBA codes always achieve full diversity
with full or limited feedback.

V. SIMULATION RESULTS

We present the simulation results using the new decoders for
ABBA and MDC-ABBA codes to compare their performances.
The diversity of MDC-ABBA codes with antenna selection is
also verified. All signal constellations use Gray-bit mapping.

The performances of ABBA and MDC-ABBA codes for
an open loop 4 Tx/1 Rx antenna system are compared in
Fig. 2. While the performance of MDC-ABBA codes with
4- and 16QAM closely approach to that of ABBA codes, the
former outperforms the latter with 8QAM square (8QAM-S)
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with signal points (±1,± j,±1 ± j) (unnormalized power).
Therefore the Gray-bit mapping may be not the optimal bit
mapping for ABBA codes. Performance of OSTBC rate 3/4
symbol pcu [2] with 16QAM (3 bits pcu) is also plotted in
Fig. 2. The MDC-ABBA code with 8QAM-S gains 0.5 dB
over OSTBC with the same spectral efficiency of 3 bits pcu.

Performances of an MDC-ABBA code designed for 3 Tx
antennas with TAS are presented in Fig. 3. The number of
available antennas Mt = 4 and 1 Rx antenna. Compared
with the open loop case, the MDC-ABBA code with TAS
and 16QAM gains about 1.2 dB. Especially, the performance
of

(
4
3

)
TAS is slightly better than that of an ideal imaginative

rate-one OSTBC using the same 16QAM. It is worthwhile to
remember that the performance of an ideal hypothetical rate-
one OSTBC is also the performance limit of ABBA-QSTBC
with phase feedback scheme in [5]. The performance of the
MDC-ABBA code is also compared with that of OSTBC for
the same spectral efficiency of 3 bits pcu and TAS. In this
case, MDC-ABBA codes gains 0.8 dB.

VI. CONCLUSION

We have presented a new general and closed form method to
decode ABBA and MDC-ABBA codes. The general equivalent
channel of these codes has been shown explicitly and it is
used to derive the maximum mutual information of the codes.
MDC-ABBA codes with Tx or Rx antenna selections and with
full or limited feedback is also proved to achieve full diversity.
Not only our analysis shows that the MDC-ABBA codes can
achieve a higher portion of channel capacity than OSTBC,
but also our simulations show that the former performs better
than the latter. Therefore, MDC-ABBA codes might be a good
candidate to replace OSTBC for open loop wireless channels
with more than 2 transmit antennas.
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