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Abstract— Golay sequences have been introduced to construct
16-QAM (quaternary amplitude modulation) code for the or-
thogonal frequency division multiplexing (OFDM), reducing the
peak-to-mean envelope power ratio (PMEPR). As an alternative
way to construct Golay sequences, the construction of 16-
QAM using Rudin-Shapiro polynomials (RSP) was also reported
recently in several literatures. In this paper, we develop a simple
effcient construction of 16-QAM using generalized RSP, which
provides high code rate and large Hamming distance while tightly
controlling the PMEPR.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) elim-

inates the need for complex equalizers in wide-band fading

channels, while efficient hardware implementations can be

realized using the fast Fourier transform (FFT). However,

a major drawback of OFDM signals is the high peak-to-

mean envelope power ratio (PMEPR) of the uncoded OFDM

signal. Some popular PMEPR reduction techniques include

signal distortion techniques [1], [2], coding [3], [4], [5], [6],

multiple signal representation [7], [8], [9], [10], modified

signal constellation [11], pilot tone methods [12] and others.

An idea introduced in [13] and developed in [14] is to use

the Golay sequences [15] to encode OFDM signals with a

PMEPR of at most 2. These sequences have been employed

as pilot sequences by European Telecommunications Standards

Institute (ETSI) Broad Radio Acess Networks (BRAN). Re-

cently Davis and Jedwab [3] made an attractive theoretical

advance on this work and observed that the 2h-ary Golay

sequences of length 2m can be obtained from certain second

order cosets of the classical first order Reed-Muller code.

As a consequence of this intrinsic observation, Davis and

Jedwab [4] were able to obtain (m!/2)2h(m+1) codewords

(DJ-code) for the phase shift keying (PSK) OFDM signals of

2m carriers with good error-correcting capabilities, efficient

encoding and decoding, and a PMEPR of at most 2. Futher

investigation on DJ-code has been done in [6], which employs

Golay set [16] to increase the code rate by relaxing the

PMEPR.

Since quadrature amplitude modulation (QAM) sequences

are widely used in OFDM, RöBing and Tarokh[17] has studied

the Golay sequences for 16-QAM OFDM signals. By decom-

posing a 16-QAM symbol uniquely into a pair of quaternary

PSK (QPSK) symbols, they construct [(m!/2)4(m+1)]2 16-

QAM OFDM signals of length 2m starting from Golay QPSK

sequences and provide bound 3.6 on their PMEPR. More

detailed construction of 16-QAM OFDM signals using Golay

sequneces has been recently reported in [18].

As a simple way to construct Golay sequences, the Rudin-

Shapiro polynomials (RSP) [19] have been studied in [20],

[21], [22]. They obtain 2h(m+1) codewords for 2h-ary OFDM

signals of 2m carriers. Although the code rate of RSP based

construction is lower than that of DJ-code, this simple con-

struction matches with some efficient decoding scheme [23].

Further study to increase the code rate has been reported

in [20]. Recently, RSP has also been used to construct 16-

QAM code in [24], which obtains m4m+3−256(m−1) code-

words of length 2m. In this paper, we develop a simple way

to design the 16-QAM OFDM signals using the generalized

RSP [20]. We can obtain 43(2k)+2 codewords of length 22k

and provide bound 7.2 for PMEPR. Let m = 2k, we actually

construct 43m+2 codewords of length 2m, which is more than

those presented in [18], [24] for modurately large carriers.

II. PRELIMILARIES

Let j be the imaginary unit, i.e., j2 = −1. For an M -ary

phase modulation OFDM, let ξZM = {ξk : k ∈ ZM}, where

ξ = exp (2πj/M) and ZM = {0, · · · , M − 1}.

A. OFDM signals, instantaneous power and PMEPR

For a codeword c = (c0, . . . , cn−1) with c� ∈ ξZM ,

the n subcarrier complex baseband OFDM signal can be

mathematically simplified as

sc(z) :=
n−1∑
�=0

c�z
�, (1)

where z = ej2πt. The instantaneous power of the complex

envelope sc(z) is defined by

Pc(z) := |sc(z)|2. (2)

The peak-to-mean envelope power ratio (PMEPR) of the

codeword c is defined as

PMEPR(c) :=
1
n

sup
|z|=1

Pc(z). (3)
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B. Aperiodic auto-correlation and Golay sequences

For a sequence a ∈ C
n, the aperiodic auto-correlation

function Ra(·) is defined by

Ra(�) =
{ ∑n−�−1

k=0 ak+�āk, � = 0, 1, · · · , n − 1,
0, otherwise,

where āk is the complex conjugate of ak.

Golay sequences were originally introduced to deal with the

optical problem of multislit spectrometry. Golay also predicted

that it will have possible application in communication engi-

neering [15], which was recently fulfilled by the works done

in [3], [4], [5], [6]. The original Golay sequences are defined

only for the binary sequences [15]. However, it can be easily

extended to the M -ary sequences as recently done in [4], [5],

[6].

A pair of sequences a and b of length n are said to form a

Golay pair if

Pa(z) + Pb(z) = 2n. (4)

The sequences a and b are called Golay sequences.

Obviously, PMEPR(a) ≤ 2 if a is a Golay sequence, which

tightly controls the PMEPR of the underlying OFDM signal

sa(z) by 2. This is a big advantage of using Golay sequences

to reduce PMEPR for OFDM signals. Using the aperiodic

auto-correlation function, the instantaneous power Pa(z) of

the sequence a can be represented as

Pa(z) = Ra(0) +
n−1∑
�=1

[
Ra(�)z� + R̄a(�)z−�

]
.

Therefore, equation (4) is equivalent to

Ra(�) + Rb(�) = 2nδ(�),

where δ(�) is Dirac sequence, which takes the value 1 at 0,

and takes the value 0 elsewhere.

C. Rudin-Shapiro polynomials

Besides those introduced in the introduction, the early

application of Rudin-Shapiro polynomials (RSP) [19] to con-

structing encoding and decoding schemes for OFDM can be

found in [25].

For a k ≥ 0, an RSP pair (A(z), B(z)) is recursively defined

as {
Ak+1(z) = Ak(z) + ξkz2k

Bk(z),
Bk+1(z) = Ak(z) − ξkz2k

Bk(z),
(5)

where A0(z) = B0(z) = 1 and ξk is any element in ξZM .

Formula (5) recursively produces the polynomials Ak(z)
and Bk(z) of degree 2k − 1 for any k > 0. In general,

for n = 2m, let the sequences a and b be, respectively, the

coefficients of the polynomials Am(z) and Bm(z). The 2m-

subcarrier OFDM signals are sa(z) = Am(z) and sb(z) =
Bm(z). For example, for m = 3, we have n = 8 and the

codewords{
a = (1 ξ0 ξ1 − ξ1ξ0 ξ2 ξ2ξ0 − ξ2ξ1 ξ2ξ1ξ0),
b = (1 ξ0 ξ1 − ξ1ξ0 ξ2 − ξ2ξ0 ξ2ξ1 − ξ2ξ1ξ0).

From (5), it is clear that

Pa(z) + Pb(z) = |sa(z)|2 + |sb(z)|2 = |Am(z)|2 + |Bm(z)|2

Noting |Am(z)|2+|Bm(z)|2 = 2
[|Am−1(z)|2 + |Bm−1(z)|2]

and repeating the process, we have

Pa(z) + Pb(z) = 2m
[|A0(z)|2 + |B0(z)|2] = 2n.

This shows that a and b form a Golay pair. Therefore, RSP

pair constitute a subset of Golay pair. Hence the PMEPR of

an RSP is at most 2.

By the recursive formula (5), one can construct Mm Golay

sequences. Since for any η ∈ ξZM , ηa is also a Golay sequence

if a is a Golay sequence, one can construct Mm+1 Golay

sequences by RSP.

III. NEW CONSTRUCTION OF 16-QAM CODEWORDS

Our construction of 16-QAM is based on the generalized

RSP and the decomposition of 16-QAM symbols. In the

following, we will firstly introduce the generalized RSP, then

construct the 16-QAM codewords using generalized RSP.

A. Generalized RSP

We now introduce the generalized RSP, for which we write

the formula (5) in the matrix form. Let

A2
k(z) =

(
Ak(z)
Bk(z)

)
, B2

k(z) =
(

Ak(z)
z2k

Bk(z)

)
,

and

T2
k =

(
1 ξk

1 −ξk

)
.

Then one can rewrite formula (5) in the matrix form

A2
k+1(z) = T2

kB
2
k(z).

This immediately suggests an extension of RSP. Let θ =
exp(j2π/N). Extend A2

k(z), B2
k(z) and T2

k respectively to

AN
k (z), BN

k (z) and TN
k as

AN
k (z) =

⎛
⎜⎜⎜⎝

A0
k+1(z)

A1
k+1(z)

...

AN−1
k+1 (z)

⎞
⎟⎟⎟⎠ , BN

k (z) =

⎛
⎜⎜⎜⎝

A0
k(z)

zNk

A1
k(z)

...

z(N−1)Nk

AN−1
k (z)

⎞
⎟⎟⎟⎠ ,

TN
k =

⎛
⎜⎜⎜⎝

1 ξ1
k ξ2

k . . . ξN−1
k

1 θξ1
k θ2ξ2

k . . . θN−1ξN−1
k

...
...

...
...

1 θN−1ξ1
k θ2(N−1)ξ2

k · · · θ(N−1)(N−1)ξN−1
k

⎞
⎟⎟⎟⎠ ,

where A0
0 = · · · = AN−1

0 = 1 and ξ1
k, . . . , ξN−1

k are

any symbols taken from the constellation ξZM . Naturally, the

generalized RSP vector is iteratively defined by the formula

AN
k (z) = TN

k BN
k (z). (6)

Each polynomial entry in AN
k (z) is called a generalied RSP.

Obviously, the generalized RSP degenerates to the ordinary

RSP if N = 2. In this paper, we are interested in the case

N > 2.
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Fig. 1. Construction of 16-QAM from two QPSK.

B. PMEPR of 16-QAM sequences by generalized RSP

For a QPSK sequence Q constructed in the last subsection,

we can write it as

Q = αejπ/4U + βejπ/4V,

where U = (η0, . . . , ηn−1) and V = (ζ0, . . . , ζn−1) are the

two QPSK sequences from generalized RSP (see Fig. 1).

Using the PMEPR of generalized RSP, one can obtain the

PMEPR of 16-QAM sequences, which is summarized in the

following theorem.

Theorem 1: For the 16-QAM sequence Q of length 4k,

constructed in the last subsection, the PMEPR is at most 7.2.

Proof: Let Z = (1, z, . . . , zn−1)T . Then the 16-QAM OFDM

signal is sQ = QZ. Since Q = αejπ/4U +βejπ/4V , we have

sQ(z) = αejπ/4UZ + βejπ/4V Z.

If we can show PMEPR(U) ≤ B and PMEPR(V ) ≤ B,

then it is easy to see

|sQ(z)|2 ≤ (α + β)2Bn =
9Bn

5
.

In order to show PMEPR(Q) ≤ 7.2, we only need to show

B = 4. In the following, we will verify this result.

Since U and V are two QPSK sequences constructed by

generalized RSP. Without loss of generality, we can just

investigate U . The derived result can be directly applied to V .

Assume U1Z, U2Z, U3Z together with U0Z (= UZ) form

the generalized RSP vector. From (6), we have

3∑
�=0

|sU�(z)|2 =
3∑

�=0

|A�
m(z)|2

=
(
A4

m

)� · A4
m,

where
(
A4

m

)�
is the transpose of the matrix A4

m. Since TN
m−1

is an orthogonal matrix, we have
(
T4

m−1

)�
T4

m−1 = 4I4 and

3∑
�=0

|sU�(z)|2 =
(
B4

m−1(z)
)� (

T4
m−1

)�
T4

m−1B
4
m−1(z)

= 4
(
B4

m−1(z)
)�

I4B4
m−1(z)

= 4
3∑

�=0

(
B�

m−1(z)
)�

B�
m−1(z)

= 4
3∑

�=0

(
A�

m−1(z)
)�

A�
m−1(z)

= · · ·
= 4m

3∑
�=0

(
A�

0(z)
)�

A�
0(z)

= 4m+1 = 4n,

where I4 is the identity 4× 4 matrix. This clearly shows that

PMEPR(U) = 4. By the same reason, PMEPR(V ) = 4.

Therefore B = 4, which completes the proof.

C. Code rate of 16-QAM by generalized RSP

For the generalized RSP of degree 4k − 1, there are 3k
variables involved in A0

k(z), and each variable has 4 choices.

Hence, one can construct 43k QPSK sequences by generalized

RSP. Since for any ξ ∈ ξZ4 , ξa is a generalized RSP

if a is a generalized RSP, one can totally construct 43k+1

distinct QPSK sequences by generalized RSP. Since we choose

different QPSK sequences to construct the 16-QAM OFDM

signals, we have totally [43k+1]2 different choices. This gives

the code rate of the 16-QAM by generalized RSP.

Theorem 2: For the 16-QAM codes of length 4k by gener-

alized RSP, the code rate is

6k + 2
4k

.

Let m = 2k, the code rate is (3m + 2)/2m, which is

higher than the constructions presented in [17], [18], [24].

Fig. 2 shows the code rate versus the code length for different

constructions. One will see our performance is better than [18],

[24] for the modurately large carriers. Since generalized RSP

is a subset of Golay set, our curve is below that in [17]. But the

generalied RSP based method in this paper is simple, efficient

and practical..

D. Hamming distance of 16-QAM by generalized RSP

For two 16-QAM symbols q1 = q(η1, ζ1) and q2 =
q(η2, ζ2), we can see q1 �= q2 if either η1 �= η2 or ζ1 �= ζ2.

Take a 16-QAM sequence Q = αejπ/4U + βejπ/4V , where

U = (η0, . . . , ηn−1) and V = (ζ0, . . . , ζn−1) are two QPSK

sequences. Then the Hamming distance (HD) of Q is the

smaller one between the Hamming distances of U and V .

In the following theorem, the Hamming distance of 16-QAM

sequences by generalized RSP is given.

Theorem 3: For the 16-QAM sequences of length 4k by

generalized RSP, the minimum Hamming distance is 4k−1.

Proof: Take the 16-QAM sequence Q = αejπ/4U +
βejπ/4V of length 4k. Since the hamming ditance of Q is
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Fig. 2. The code rates of the constructions by [17], [18], [24] and this paper
versus the length of the code. Our code rate is higher than those in [18], [24].
Our code rate is slightly below that in [17], but our mathod is simple, efficient
and practical.

determined by those of U and V , we just need to find out the

Hamming distances of U and V . In the following, we will use

induction to show that the Hamming distances of U and V are

4k−1.

For k = 1 we have A0
1(z) = 1 + ξ1

0z + ξ2
0z2 + ξ3

0z3. For

different choices of ξ1
0 , ξ2

0 , ξ3
0 , we obtain different codes. Then

the Hamming distance of U is 1 = 4k−1.

For the case k = m + 1, we have

A0
m+1 = A0

m + ξ1
mz4m

A1
m + ξ2

mz2·4m

A2
m + ξ3

mz3·4m

A3
m

Since the degrees of A0
m, · · · , A3

m are 4m−1, the cofficients of

z0, ·, z3·4m

will not add to each other. For the different choices

of ξ�
m, the derived codes are different at least at 4m places, the

length of A�
m. Therefore the Hamming distance of the code

is 4(m+1)−1. For the case of fixed choice of ξ�
m, suppose the

Hamming distance of the code by A�
m are 4m−1. Since each

A�
m includes all ξ�

i for � = 0, 1, 2, 3 and 0 ≤ i < m, there are

must one ξ�
i changes. This implies that all A�

m are not fixed

choices for two different A0
m+1. Therefore the code rate of

A0
m+1 is 4 × 4m−1 = 4(m+1)−1.

By induction, this proves the Hamming distance of U is

4k−1. For the same reason, the Hamming distance of V is

also 4k−1. Therefore the Hamming distance of Q is 4k−1,

which completes the proof.

Let 2k = m, the Hamming distance is actually 2m−2 for

this kind of codes of length 2m.

IV. CONCLUSIONS

In this paper, we introduce the generalized RSP, which can

recursively produce a large number of QPSK sequences. Then

we use these QPSK sequencs to construct 16-QAM codewords

for OFDM signals. By this construction, we can obtain 43m+2

16-QAM codewordes of length 2m, while controlling the

PMEPR by 7.2. Moreover, we find that the Hamming distance

is 2m−2 for this code of length 2m. Since this construction is

very simple and efficient, it is very practical.
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