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Abstract— Space-time block codes (STBC) using coordinate
interleaved orthogonal designs (CIOD) proposed recently by
Khan and Rajan allow single-complex symbol decoding while
offering higher data rates than orthogonal STBC. In this paper,
we present the equivalent channels of CIOD codes. A new
maximum likelihood metric is also derived, which is simpler
than the one shown by Khan and Rajan. The exact symbol pair-
wise error probability and a tight union bound on symbol error
rate are derived. The tight union bound can be used to analyze
the performance of CIOD codes with arbitrary constellations.
We provide new optimal rotation angles based on minimizing
the union bound for various constellations. Furthermore, a new
signal design combining signal rotation and power allocation is
presented for rectangular quadrature amplitude modulation.

I. INTRODUCTION

Orthogonal space-time block codes (OSTBC) [1], [2], a
special class of space-time block codes (STBC!) are one of
the most attractive space-time coding techniques to exploit the
spatial diversity of the multiple input multiple output (MIMO)
fading channels. While OSTBC enable low-complexity max-
imum likelihood (ML) detection, their code rate is low when
there are more than 2 transmit (TX) antennas.

To improve the code rate of OSTBC and maintain single-
symbol decoding complexity, some alternative code designs
have been introduced recently. They are quasi-orthogonal
space-time¢ block codes (QSTBC) with minimum decoding
complexity [3] and STBC using coordinate interleaved orthog-
onal designs (CIOD) [4]. Since the maximal rate of CIOD
codes is higher than or equal to that of OSTBC, MDC-QSTBC
[2]-[4], they will be the subject of our study.

While OSTBC achieve full diversity for any constellation,
CIOD codes may not achieve full-diversity with the conven-
tional constellations such as quadrature amplitude modulation
(QAM) or phase shift keying (PSK). To achieve full diversity,
modulation symbols may need to be rotated an angle « [4].
Proper choice of angle o will maximize the code diversity and
also minimize the error performance. The authors in [4] use the
coding gain parameter [5] to derive the optimal « for QAM.
However, maximizing the coding gain amounts to minimizing
the worst-case codeword pair-wise error probability (CPEP),
which does not guarantee the minimization of the symbol
error rate (SER). In general, how to find the optimal signal
designs for QAM, PSK, and other constellation with good

IDepending on the context, STBC stands for space-time block
code/codes/coding.

Fax: (1-780) 492 1811

minimum Euclidean distance such as lattice of equilateral
triangular (TRI) (also called hexagonal (HEX)) or amplitude
PSK (APSK) [6] in terms of minimal SER is still unknown.

In this paper, we derive equivalent channels of CIOD
codes. A new ML metric is also presented, which is more
insightful than that presented in [4], yet offers lower detection
complexity. A closed form symbol pair-wise error probability
(SPEP) is derived. Hence the union bound on the symbol error
rate (SER) can be easily evaluated. For all the tested cases, the
union bound is within 0.1 dB of the simulated SER. Therefore,
this bound can be used to accurately analyze the performance
of CIOD codes, and moreover, to optimize the signal rotation
for an arbitrary constellation. We furthermore present a new
approach to design signal transformation for rectangular QAM
(QAM-R) yielding better performance than the existing ones
in [4], [7].

II. SYSTEM MODEL

We consider data transmission over a quasi-static Rayleigh
flat fading channel. The transmitter and receiver are equipped
with M Tx and N receive (Rx) antennas. The channel gain
hig (1= 1,2,--- M;k = 1,2,---,N) between the (4, k)-
th Tx-Rx antenna pair is assumed CA/(0, 1)2. We assume no
spatial correlation at either Tx or Rx array. The channel gains
are known perfectly at the receiver, but not the transmitter.

The ST encoder maps the data symbols into a T x M code
matrix > X = [C”]Tx 1> Where ¢;; is the symbol transmitted
from antenna : at time ¢. The average energy of code matrices
is constrained such that E[||X||%] =T

The received signals y;;, of the kth antenna at time ¢ can be
arranged in a matrix Y of size 7' x N. Thus, one can represent
the Tx-Rx signal relation as

Y = pXH+Z (1)

where H = [hy], and Z = [z]rxn, and z;; are indepen-
dently, identically distributed (i.i.d.) CA/(0,1). The Tx power

2The abbreviation CA (m,02) stands for a mean-m and variance-o?

circularly complex Gaussian random variable. We also set common notations
to be used thr0u1gh out the paper. R(X) represents the real part of matrix
X. Superscripts |, *, and T denote matrix transpose, conjugate, and transpose
conjugate, respectively. An n X n identity and all-zero m X n matrices are
denoted by I,, and 0,, %, respectively. The diagonal matrix with elements
of vector & on the main diagonal is denoted by diag(z). | X || denotes
Frobenius norm of matrix X and @ denotes Kronecker product. -] denotes
average.
3We use the term "codeword” and "code matrix" interchangeably.
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is scaled by p so that the average SNR at cach Rx antenna is
p, independent of the number of Tx antennas.

The code matrix of an STBC can be represented in a general
linear dispersion form [1], [8] as follows:

K
X = Z (arAr + b By) 2
k=1
where A and By, (k = 1,2,--- | K) are T x M complex-
valued constant matrices, ag and by are the real and imaginary
parts of the symbol s,. We sometimes use the notation
Xni(s1,89,...,8K) to emphasize the transmitted symbols and
the number of Tx antennas.
The code rate Ry s of an ST code A designed for M Tx
antennas is the ratio of data symbols transmitted in an ST code
matrix and the number of channel uses 7: Ry »r = K/T.

III. CONSTRUCTION OF CIOD CODES

The CIOD code for M Tx antennas is constructed from two
OSTBC components, Oy, and Oy, where M = My + Mo
[4]. The size of code matrices of Oy, and Opy, are 11 x M,y
and T5 x M,, respectively; there are K7 and Ko complex
symbols are embedded in Oy, and Oy, , respectively. Addi-
tionally, the matrices Oy, and Oy, are scaled by constants
r1 and ko to satisfy the power constraint.

Let K be the least common multiple (lem) of K and Ko,
ny = K/Khng = K/Kz, T1 = n1T17T2 = TLQTQ A blOCk
of K = 2K data (information) symbols s; = a; + jb; (

—1),i=1,2,..., K is mapped to the intermediate symbols

g (k=1,2,... K) as follows:
ar +ibig, k=12,... K;
B = { ax +jb,;f(7 k—K+1,KE+2,... K &

By this encoding rule, the coordinates of the symbols

81,89,...,8 are interleaved with the coordinates of the
symbols sy, ., 891 g - -, 895 Now we construct n; OSTBC
code matrices Onr, ; (i = 1,2,...,ny) and ny OSTBC code

matrices Oar, ; (j = 1,2,...,n2) and arrange them in the
intermediate matrices C1 and (o as

OMl,l(xth? weey xKl)
Oy 2(TK 41, TR 42, -5 oK, )
Cl — 3 b
| OMy g ($(n171)K1+17 Ly —1)K1421 > Tg)
O (TR 11 TR 12y TRAKS)
c 0M2,2(1R+K2+1795K+K2+27 e 7$R+2K2)
2 = .

| O o (T R4 (ny— 1)Kt 15 TR (na—1) K125 - - - s T2K)
Hence, the size of ¢y and Gy are T} x My and Th x Mo,

respectively. The CIOD code matrix is formulated by

c— |VF C1 OflxMQ . @)
OTQ X My \/ CZ
where R1 = m , Ko = m are the factors to

normalize the Tx power. Note that x is not always shown
for notational brevity. The size of the CIOD code matrices are
TxM,where T =T +15 =nT1 +nTs, M = M, + Ms.

IV. EQUIVALENT CHANNELS AND ML DECODER

Since the mapping rule of the real and imaginary parts of
symbols s; are known, one can write explicitly the dispersion
matrices of these symbols. For notational convenience, we
reserve the letters A and B for the dispersion matrices of
OSTBC and use the letters £ and F for the dispersion matrices
of CIOD codes; there are K — 2K pairs of such matrices
Ey, Fr (1 = 1,2,. .., K). Additionally, we can write A;(Oyy;)
or B;(Ou,) to denote the dispersion matrices of OSTBC Oy,
(7 = 1,2). Since A;(Ons,) or B;(On,) are known, we can
write Fj and Fj, explicitly though they are quite lengthy.

We can wrlte the CIOD codes using the dispersion form
(2) as ¢ = Zk | (ag By + b Fy), note that K = 2K and
K lcm{K 1 K 2}

To simplify our analysis, we first consider the number of
Rx antennas is N = 1 and generalize for NV > 1 later.

Let the channel vector be h = [h1  ho ha]', the
hT]T, the data vector d =
ax bg] , the additive noise vector

be z = [z1 29 zT]T. Let C be a CIOD code matrix,
the Tx-Rx signals in (1) becomes
K
y=/pCh+z = \/ﬁz (arExh + by Fh) + 2
E=1
=./p [Elh Fih Esh Ihh

Rx vector be y = [y1 2
[al bg a bg

Fxh g h] d+ z.

®)
In (5), the scalars <1 and x9 are not included for brevity. We
can rewrite (5) equivalently as

Yy o Elh Flh EKh FKh z
(©)
_ |Exh Ik N .
Let Hy = {E,’;h* F,jh*} for k=1,2,..., K, it follows

HiHy = ding (hi,he) £ 71, forl Sk <K, (a)

'F{L'F(}f = diag (i@? iLl) £ ﬂ27 for K <k< K7 (7b)

HIH = Oaxa, fork #1. (70)
where by — 23200 |i)2, by = 2300 |Ry)2.
Thus if the two s1des of (0) are multlphed by Hk, one gets
= Yy ~ ap = z
H), H = /ity M +H] M : ®)
N——— e S —
Yr dy. Zx

where p=1if l <k < Kandp=2if K <k < K.

The matrix HL plays the role of the signature of the
data vector dj. Since the data vectors dj can be completely
decoupled, (8) can be used for ML detection. However, the
noise vector Zj, is color with covariance matrix Hp, it needs to

be whiten by a whitening matrix H 172 . After this whitening
step, (8) becomes

~ 71/

TR TN Vit N ©)
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We can conclude that the matrices H; — fﬁ/ . and Ho —
ﬂ%/ 2 are the equivalent channels of CIOD codes.

The ML solution of (9) is

dj, = arg rgin(pd;ﬂpdk — 2/ pR(B1)di). (10)
k

The result in (10) can be generalized for multiple Rx
antennas. To this end, we inclu(je the scalars x1 and ko for
completeness. We can show that 1 = 2k Zévzl M k412,

_ N -
b= 260 S S il 00 = S L |2 e
. - |Eyh, Fih,
Y, is the Rx vector of nth antenna, Hy, , = E: R e h:ﬁj s

h,, is the nth column of the channel matrix H.

From (8), the decoding of the real symbols a; and by
can be decoupled. However, since the symbols ai and by
are not transmitted over M channels, full diversity cannot be
achievable. Hence, we need to spread out these symbols over
M channels by applying a real unitary rotation 2, as

_ cos(ap)
® sin(ep)

sin(oyp)

—cos(ap)|’ (r=1,2),

to the data vectors dj [4], [7]. Including the rotation matrix
to (9) and (10), we have

L 1/2 L 1/2 L —1/2
H, = Vot Rpdi + 7, (an
and
di = argmln(pdkR HpRpd — 2/pR(GL)Rpdy).  (12)

Akin to the decoding of OSTBC, the decoding metric (12)
of CIOD codes does not involve the dispersion matrices [9].
This fact greatly reduces the decoding complexity compared
with the one proposed in [4, eq. (84)], where the dispersion
matrices of symbols are required. In the next section, we
will investigate the performance of CIOD codes with different
types of constellations by exploiting the special structure of
the equivalent channels.

V. SER UNION BOUND AND OPTIMAL SIGNAL DESIGNS

We first consider the data vectors dj, = [aj bg|' for
1 < k < K. These data vectors are sent over the same
equivalent channel fﬁ/ ® and therefore they have the same
error probability; we thus drop the subindex & for short. Let
d— [ab]" and d — [a b]T be the transmitted and the erroneous
detected vectors, let 6, = a — @, 69 = b —b, A =[5 5T,
From (11), the SPEP of the symbol pair d; and dj can be
expressed by the Gaussian tail function as [10]

5a {1 R1A|2
Pl = dlftr) = @ | PHEL

where Ny = 1/2 is the variance of the real part of the elements
of the white noise vector 7, Y22 i (11). Let

R s R

(13)

9 sin{cv ) (14)

Using the Craig’s formula [11] to derive the conditional
SPEP in (13), one has

Pld— dif) = @ ( p(ﬁ%m;ﬁ%hz))
WLk —p(B2hy + B3hs)
— ;/O exp ( T > df

1 7T/2N
=k |

M
T _pmﬁflhi,jP)
jljl (}_[1 exp ( 4sin” 0
Hexp ( )) do.  (15)

We can apply a method based on the moment generating
function (MGF) [12], [13] to obtain the unconditional SPEP
in the following:

Py(d — d)
l/ﬂ/z 1ef pr1 o 1+
T Jo 4sin” 0

The above SPEP is given for symbols s; sent over the
equivalent channel 7{;. For the symbols s (f( < k < K)
transmitted over the equivalent channel 7,, the SPEP can be
found similarly:

PH252|h 7J|
4sin® 0

pr2/33 >M2N 4o
) d

4sin“ @
(16)

Py(d — d)
1 (/2 72 \ —MzN 59\ —MIN
:_/ <1+p’7zfl> <1+p’71§2> d6
T Jo 4sin“ @ 4sin” @
an
where
Bi]  [cos(az) sin(ag)| {d1 18
Go|  |sin(ag) —cos(an)| [da] " (18)
Assume that d;, dj, di, dn, (i,§,m,n =1,2,..., L), are

signals drawn from a constellation S of size L. From the SPEP
expression (15) and (17), we can find the union bound on SER
of CIOD codes with constellation S as

Pu(8) = Pu(8) + Py a(S) (19)
where
1 L—-1 L
Pui(s) =1 S > Pldi— dy), (20)
i=1 j=i+1
1 L—1 L
Pua(S)=7 D > Pldm — dn) 1)

For a fixed SNR, the union bound P,(S) depends on the
constellation S and the rotation angles «; and «s. Thus one
can find the optimal values of «; and «y to minimize the
union bound on SER. Note that a;; and oy can be optimized
separately. We can run computer search to find the optimal
values of « and .
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In practice, signal constellation S is usually symmetric via
either horizontal or vertical axis of the Cartesian coordinate
system. We can assume that S is symmetric via the vertical
axis. If S is symmetric via the horizontal axis, we can always
rotate the whole constellation an angle of 7/2 to make it
symmetric via the vertical axis.

Assume that vy = 7w/2— . Then, for each pair of symbols
(diydj) = ([as, b]T, [ay, bj]T?’ we can find one and only
one pair (dp,, dy) = ([ai, —b;]", [a;, —bs]T) so that Py(d; —
d;) = Pa(dp, — dy). Therefore, P, 1(S) = P, 2(S); and if
Ceope 18 the optimal value of «;, then 7/2 — ap is optimal
for a. Hence, we just write the value of «; and imply that
the value of ay = 7/2 — ay.

The union bound on SER is plotted in Fig. 1 for a CIOD
code for M = 4 Tx antennas (M1, My) = (2, 2). For the three
examined constellations (4QAM, 8QAM-R, and 16QAM), and
oy = 31.7175° [4], the union bound becomes tight when SER
< 107! and is less than 0.1 dB apart from the simulated SER
at high SNR.

Since the union bound is tight for SER < 1072, it can be
used to optimize the values of rotation angles «; and ;.
The new optimal signal rotations for the popular constellations
based on minimizing the SER union bound are summarized
in Table I. Only the optimal values a,,; of oy are listed, the
optimal values of ay = 7/2— e The geometrical shapes of
8-ary constellations are sketched in Fig. 2. The best 8TRI in
terms of minimum Euclidean distance (carved from the lattice
of equilateral triangular) is selected [6].

Numerical Results

We compare the SER union bounds of CIOD code with
several constellations using new optimal signal designs in Fig.
3 for (My, Ms) = (2,4). Obviously, QAM signals yield the
best performance compared with other constellations of the
same size. On the other hand, TRI constellations have the
best minimum Euclidean distance; however, their performance
is inferior to that of QAM signals.

E
S

_;| | 8 SER, union bound, 16QAM
10 "5 —k— SER, simulation, 16QAM
—&— SER, union bound, 8QAM-R
—+— SER, simulation, 8BQAM-R
—5— SER, union bound, 4QAM
—x~ SER, simulation, 4QAM
& T T L L I
0 5 10 15 20 25
SNR [dB]

Fig. 1. Comparison of the simulated SER and the union bound of a rate-one
CIOD code for 4 Tx antennas ((M1, M2) = (2,2)), using 1 Rx antennas.

TABLE I
OPTIMAL ROTATION ANGLES OF POPULAR CONSTELLATIONS

[ Signa | @D | @2 [ &3» | @9 [ 33 ]
4QAM 28.939° 30.417° 29.698° 29.003° 30.778°
4TRI 20.142° 13.883° 71.739° 68.687° 75.836°
8PSK 37.690° 39.216° 38.808° 38.534° 39.857°
8APSK 10.316° 11.528° 11.181° 11.000° 12.015°
8TRI 20.309° 45.000° 11.061° 9.430° 45.000°
8QAM-R 33.037° 31.834° 29.658° 28.626° 31.737°
8QAM-SR | 12.234° 13.036° 12.925° 12.701° 13.173°
16PSK 3.485° 2.570° 2.832° 2.964° 2.200°
16TRI 19.236° 45.000° 47.116° 70.690° 45.000°
16QAM 31.436° 31.677° 31.557° 31.462° 31.704°
(LOOO 031 ?;1
010 o1 001 Qo0 001 010
o o] Q o] 0 (@] 101 000 010
o) c o)
1‘130 1(31 1C1 1;)0 o nﬁo 10 13)0 1,1)"
1;1 110
(a) BQAM-R (b) 8QAM-SR &
(¢) STRI
| 011 )
010~ 001 y o -
' A\ /010 7 T, 001
7134 \Luoc 110 [ Y\\ l 00
bl = T
11‘\\1 C/:OO \\‘ 111\0\\/75100 //
N 7 R 5
\%?70/1/ o (:19//

(d) 8PSK (e) 8APSK

Fig. 2. Geometrical shapes of §-ary constellations.

Compared with the optimal rotation angles for QAM in
terms of coding gain [4], our newly proposed rotation angles
result in marginal performance improvement. However, we
will next present a new signal design method combining power
allocation and signal rotation such that the new signal designs
outperform the ones in [4] significantly for QAM-R.

VI. OPTIMAL SIGNAL ROTATION WITH POWER
ALLOCATION

For QAM-R, e¢.g2. 8QAM-R in Fig. 2, the average powers of
the real and imaginary parts of the signal points are different.
We may change the power allocation to the real and imaginary
parts of QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary of
QAM-R signals are first multiplied by constants ¢; and o,
respectively, then they are rotated by unitary matrix Ry, Rs.
For example, let S be a constellation with signal set & =
{d|d=a+]jba,b e R}, the new constellation with new
power allocation is S = {d | d = oya + josb;a,b € R}. The
average energy of the constellation S is kept the same as that
of S, i.e. unitary. For example, the 8QAM-R with signal points
{(£3+],+14])/+/48) has constraint equation for coefficients
o1 and 09 as 5o} +03 = 6. Hence, if the value of oy is given,
the value of o5 is known explicitly.

We still use (15) to calculate the union bound on SER of
CIOD codes with signal rotation and power re-allocation; (16)
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Fig. 3. SER union bound a CIOD code with rate of 6/7 symbol pcu for 6
Tx antennas ((M1, M) = (2,4)), using 1 Rx antennas.

can be rewritten to include the power re-allocation as

R | ) A

ﬁg o sin(al)
R

The total effect of signal rotation and power re-allocation
is the non-unitary signal transform ;. Now the minimization
of the union bound is based on two variables: o (or o5) and
1. We run exhaustive computer search to find the optimal
values of o1 and «;4. In fact, there is only single value of oy
so that the union bound is minimized; this value of o is the
global solution of the union bound minimization. The optimal
values (01,09, aopr) = (0.9055,1.3784,45.0°) for SQAM-R
and (01,09, aope) = (0.8972,1.3487,43.0°) for 32QAM-R.

The union bounds on SER of 8QAM-R and 32QAM-R
using signal rotation of Khan-Rajan with oy = 31.7175° [4],
signal transformation of Wang-Wang-Xia [7, Theorem 6], and
our new signal transformation for CIOD codes with A/ = 4
(My = 2,My = 2),N = 1 are compared in Fig. 4. At
SER = 1075, our new signal transformation yields 0.2 dB
and 0.4 dB gains compared with the signal designs of Wang-
Wang-Xia and Khan-Rajan, respectively. The BER of 8QAM-
R also confirms the improvement of our newly proposed
transformation over the existing ones.

VII. CONCLUSION

We have presented the equivalent channels for CIOD codes,
enabling their decoding readily. The exact union bound on
SER has been calculated. This bound is within 0.1 dB of the
simulated SER at medium and high SNR. Thus, it can be used
to analyze the performance of CIOD codes and, more impor-
tantly, to optimize the signal rotation for any constellation with
an arbitrary geometrical shape. Performances of CIOD codes
with different constellations such as QAM, PSK, TRI have
been compared; among these constellations, QAM yields the
best performance. We further present a new approach to design

Error rate

—&— SER union bound, 32QAM-R, KR rotation

—+ SER union bound, 32QAM-R, WWX transformation

—&~ SER union bound, 32QAM-R, new transformation

10" H —=— SER union bound, 8QAM-R, KR rotation

—%— SER union bound, 8QAM-R, WWX transformation

—5- SER union bound, 8QAM-R, new transformation

—+— BER simulation, 8QAM-R, KR rotation

—&- BER simulation, 8QAM-R, WWX transformation

—&— BER simulation, 8QAM-R, new transformation
i T i

5 10 15 20 25 30 35

SNR [dB]

Fig. 4.  BER and Union bound on SER of the rate-one CIOD code with
8QAM-R and 32QAM-R for 4 Tx/1 Rx antennas (M1, Ms2) = (2,4)).

signal transformation for signal with uneven powers of the real
and imaginary parts such as QAM-R. The new signal designs
for QAM-R outperform the existing ones. The results of this
paper can be extended in different aspects such as antenna
selection and beamforming.
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