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Abstract- Space-time block codes (STBC) using coordinate
interleaved orthogonal designs (CIOD) proposed recently by
Khan and Rajan allow single-complex symbol decoding while
offering higher data rates than orthogonal STBC. In this paper,
we present the equivalent channels of CIOD codes. A new
maximum likelihood metric is also derived, which is simpler
than the one shown by Khan and Rajan. The exact symbol pair-
wise error probability and a tight union bound on symbol error
rate are derived. The tight union bound can be used to analyze
the performance of CIOD codes with arbitrary constellations.
We provide new optimal rotation angles based on minimizing
the union bound for various constellations. Furthermore, a new
signal design combining signal rotation and power allocation is
presented for rectangular quadrature amplitude modulation.

I. INTRODUCTION

Orthogonal space-time block codes (OSTBC) [1], [2], a
special class of space-time block codes (STBC1) are one of
the most attractive space-time coding techniques to exploit the
spatial diversity of the multiple input multiple output (MIMO)
fading channels. While OSTBC enable low-complexity max-
imum likelihood (ML) detection, their code rate is low when
there are more than 2 transmit (Tx) antennas.

To improve the code rate of OSTBC and maintain single-
symbol decoding complexity, some alternative code designs
have been introduced recently. They are quasi-orthogonal
space-time block codes (QSTBC) with minimum decoding
complexity [3] and STBC using coordinate interleaved orthog-
onal designs (CIOD) [4]. Since the maximal rate of CIOD
codes is higher than or equal to that of OSTBC, MDC-QSTBC
[2]-[4], they will be the subject of our study.
While OSTBC achieve full diversity for any constellation,

CIOD codes may not achieve full-diversity with the conven-
tional constellations such as quadrature amplitude modulation
(QAM) or phase shift keying (PSK). To achieve full diversity,
modulation symbols may need to be rotated an angle a [4].
Proper choice of angle a will maximize the code diversity and
also minimize the error performance. The authors in [4] use the
coding gain parameter [5] to derive the optimal a for QAM.
However, maximizing the coding gain amounts to minimizing
the worst-case codeword pair-wise error probability (CPEP),
which does not guarantee the minimization of the symbol
error rate (SER). In general, how to find the optimal signal
designs for QAM, PSK, and other constellation with good

'Depending on the context, STBC stands for space-time block
code/codes/coding.

minimum Euclidean distance such as lattice of equilateral
triangular (TRI) (also called hexagonal (HEX)) or amplitude
PSK (APSK) [6] in terms of minimal SER is still unknown.

In this paper, we derive equivalent channels of CIOD
codes. A new ML metric is also presented, which is more
insightful than that presented in [4], yet offers lower detection
complexity. A closed form symbol pair-wise error probability
(SPEP) is derived. Hence the union bound on the symbol error
rate (SER) can be easily evaluated. For all the tested cases, the
union bound is within 0.1 dB of the simulated SER. Therefore,
this bound can be used to accurately analyze the performance
of CIOD codes, and moreover, to optimize the signal rotation
for an arbitrary constellation. We furthermore present a new
approach to design signal transformation for rectangular QAM
(QAM-R) yielding better performance than the existing ones
in [4], [7].

II. SYSTEM MODEL
We consider data transmission over a quasi-static Rayleigh

flat fading channel. The transmitter and receiver are equipped
with M Tx and N receive (Rx) antennas. The channel gain
hik (i = 1,2, ,M;k = 1, 2, ,N) between the (i,k)-
th Tx-Rx antenna pair is assumed CJV(0, 1)2. We assume no
spatial correlation at either Tx or Rx array. The channel gains
are known perfectly at the receiver, but not the transmitter.
The ST encoder maps the data symbols into a T x M code

matrix 3 X = [C]tiTXM' where cti is the symbol transmitted
from antenna i at time t. The average energy of code matrices
is constrained such that E[ X 2] = T.
The received signals Ylk of the kth antenna at time t can be

arranged in a matrix Y of size T x N. Thus, one can represent
the Tx-Rx signal relation as

Y pXH+Z (1)
where H = [hik], and Z = [Zik1TxN, and Zik are indepen-
dently, identically distributed (i.i.d.) CJV(O, 1). The Tx power

2The abbreviation CJV(m, U2) stands for a mean-m and variance_U2
circularly complex Gaussian random variable. We also set common notations
to be used through out the paper. X(X) represents the real part of matrix
X. Superscripts T, , and t denote matrix transpose, conjugate, and transpose
conjugate, respectively. An n x n identity and all-zero m x n matrices are
denoted by In and 0mxn, respectively. The diagonal matrix with elements
of vector x on the main diagonal is denoted by diag(x). IIXIIF denotes
Frobenius norm of matrix X and X denotes Kronecker product. E[.] denotes
average.
3We use the term "codeword" and "code matrix" interchangeably.
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is scaled by p so that the average SNR at each Rx antenna is
p, independent of the number of Tx antennas.
The code matrix of an STBC can be represented in a general

linear dispersion form [1], [8] as follows:
K

X = : (akAk + bkBk) (2)
k=l

where Ak and Bk, (k = 1,2, ,K) are T x M complex-
valued constant matrices, ak and bk are the real and imaginary
parts of the symbol sk. We sometimes use the notation
XM (Si, S2. . ., jSK) to emphasize the transmitted symbols and
the number of Tx antennas.
The code rate RX,M of an ST code X designed for M Tx

antennas is the ratio of data symbols transmitted in an ST code
matrix and the number of channel uses T: RX,M = K/T.

III. CONSTRUCTION OF CIOD CODES
The CIOD code for M Tx antennas is constructed from two

OSTBC components, OM. and OM2, where M = M1 + M2
[4]. The size of code matrices of OM. and OM2 are T1 x M1
and T2 x M2, respectively; there are K1 and K2 complex
symbols are embedded in OM, and OM2, respectively. Addi-
tionally, the matrices OM. and OM2 are scaled by constants
'i and K2 to satisfy the power constraint.

Let K be the least common multiple (1cm) of K1 and K2,
ni = K/Kl,n2 = K/K2, T1 = nlT1,T2 n2T2. A block
of K 2K data (information) symbols si ai + j bi (j2
-1), i 1, 2,. .., K is mapped to the intermediate symbols
Xk (k 1,2,..., K) as follows:

_|ak + 'b+K k = i,2,...,~K;
ak+jb K' k =K+1,K+2,...,K. ()

By this encoding rule, the coordinates of the symbols
Si, S2, .... SK are interleaved with the coordinates of the
symbols S1±K, S2+K, * * *, S2K. Now we construct ni OSTBC
code matrices OM,,i (i = 1, 2,... , ni) and n2 OSTBC code
matrices M2,j (j = 1, 2, ... ,rn2) and arrange them in the
intermediate matrices Ci and C2 as

Mi,x1)(Xl X(2.* )KX±,KI)
OMI,2(XK±2lKXK±21,± ...* X*±*2Ki)

OCMI,ni ( (nl-1)K,+ 1 (ni-1)Ki+2, * X*K)2
Cr M2,1(XK+1 XK+2, *...* K+K2)

(DM2,2(Xk+K2+1: zK+K2+2: * X*K+2K2)
C2 =.

_(DM2,n2 (Xk+(n2-1)K+1 K+n-1)K+2** K)K(i1K2±+1 ~XK± (n2 1)2±2 ...X2KJ_
Hence, the size of Ci and C2 are T1 x M1 and T2 x M2,
respectively. The CIOD code matrix is formulated by

c [ '{iCi OTIXM2] (4)
LOT2XMl A2 C2 j

where K 1 1M2 M2Ro are the factors toMlRo,Ml~~2 M2R,M2
normalize the Tx power. Note that K is not always shown
for notational brevity. The size of the CIOD code matrices are
T x M, where T = T1+ T2 = ni Ti + n2T2, M = M1 + M2.

IV. EQUIVALENT CHANNELS AND ML DECODER
Since the mapping rule of the real and imaginary parts of

symbols Sk are known, one can write explicitly the dispersion
matrices of these symbols. For notational convenience, we
reserve the letters A and B for the dispersion matrices of
OSTBC and use the letters E and F for the dispersion matrices
of CIOD codes; there are K = 2K pairs of such matrices
Ek, Fk (i = 1, 2, ... , K). Additionally, we can write Ai (OM3)
or Bi(oMj) to denote the dispersion matrices of OSTBC OMj
(j = 1,2). Since Ai (OMj) or Bi (OMj) are known, we can
write Ek and Fk explicitly though they are quite lengthy.
We can write the CIOD codes using the dispersion form

(2) as C =1 (akEk + bkFk), note that K = 2K and
K = lcm{Kl, K2}.
To simplify our analysis, we first consider the number of

Rx antennas is N = 1 and generalize for N > 1 later.
Let the channel vector be h = [hi h2 ... hM]T, the

Rx vector be y = [Yl Y2 ... hT], the data vector d =

[a, b2 a2 b2 ... aK bK] T, the additive noise vector
be z = [Z1 Z2 ... ZT] .Let C be a CIOD code matrix,
the Tx-Rx signals in (1) becomes

y
K

pCh+z = p(akEkh+bkFkh) +z
k=l

p [Elh F1h E2h F2h ... EKh FKh] d + z.
(5)

In (5), the scalars 'i and K2 are not included for brevity. We
can rewrite (5) equivalently as

fy l_ fElh Flh ... EKh FKhld + zl
[y*] [Ei*h* F1*h ... EKh FKhh Lz]

(6)

Let Ekhk[Eh Fk h for k = 1, 2,...,K,it follows

Atk-4-k diag(hl h2)

Atk Hk = diag (h2, hl)

-Xi, forI <k<K, (7a)

A-2, forK < k < K, (7b)

i-kXl = 02X2, for k #l1. (7c)

where hi = 2 EA, hi 2 h2 = 2 EI:24 hi 2.
Thus if the two sides of (6) are multiplied by 4k, one gets

(8)Yk ak + t Z

'Yk dk Zk

wherep =1 if <k<K andp =2 ifK< k< K.
The matrix (k plays the role of the signature of the

data vector dk. Since the data vectors dk can be completely
decoupled, (8) can be used for ML detection. However, the
noise vector zk is color with covariance matrix 7-p(, it needs to
be whiten by a whitening matrix p 1 2 After this whitening
step, (8) becomes

X1/2_ X/2dk+'X-(11 (9)
%i Yk f1 dk Zk.
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)1/2We can conclude that the matrices X1 = (1 and (2
X 2 are the equivalent channels of CIOD codes.
The ML solution of (9) is

dk = arg min(pdkj-ptdkdk
2 pRJ(yT)dk). (10)

The result in (10) can be generalized for multiple Rx
antennas. To this end, we include the scalars 'i and K,2 for
completeness. We can show that h= 2,i z71 Z=1 i 2

h2 = 2K2 zj=1 z4 2 Yk z=21 t n y = where

Yn is the Rx vector of nth antenna, 7Hk,n LE*$h* Fk*hl2j
hn is the nth column of the channel matrix H.
From (8), the decoding of the real symbols ak and bk

can be decoupled. However, since the symbols ak and bk
are not transmitted over M channels, full diversity cannot be
achievable. Hence, we need to spread out these symbols over
M channels by applying a real unitary rotation Rp as

R = [cos(ap)P sin(ap)
sin(ap)] (p = 1, 2),
oa)j

to the data vectors dk [4], [7]. Including the rotation matrix
to (9) and (10), we have

X- -1/2y 1/2R d+X--1/2Z(l)
'HP Yk jY7j dk Zk. 11

and

dk = argmin(pdTRT-(pRpdk 2 p TR(12)
dk kpf-(kRd)

Akin to the decoding of OSTBC, the decoding metric (12)
of CIOD codes does not involve the dispersion matrices [9].
This fact greatly reduces the decoding complexity compared
with the one proposed in [4, eq. (84)], where the dispersion
matrices of symbols are required. In the next section, we
will investigate the performance of CIOD codes with different
types of constellations by exploiting the special structure of
the equivalent channels.

V. SER UNION BOUND AND OPTIMAL SIGNAL DESIGNS

We first consider the data vectors dk = [ak bk]T for
1 < k < K. These data vectors are sent over the same
equivalent channel Xf1/ and therefore they have the same
error probability; we thus drop the subindex k for short. Let
d= [a bIT and d [a b]T be the transmitted and the erroneous
detected vectors, let 1 = a-a, 62 = b-b, A [61 62]T
From (11), the SPEP of the symbol pair dk and dk can be
expressed by the Gaussian tail function as [10]

P(d- 7-) Q(Q 4oRA2) (13)

where No = 1/2 is the variance of the real part of the elements
of the white noise vector Xp 1 z in (11). Let

E31]
L/32- R1A = [cos(al) sin(al) 1

Lsin(agl) -COS(a8l 62L02

Using the Craig's formula [11] to derive the conditional
SPEP in (13), one has

P(d -> d|Xl) = Q (;( l+22))

1jJX~~(/ (-p(j3hjj h2) ) dO
lfw A (M 4 sin42 O

=F]09rI| (IHexp ( 4 2 0 )
M2/
I| exp -

i=l

PK2 /32 hi,j 12 )8d
4 sin2 dO.

4 sin2 0o
(15)

We can apply a method based on the moment generating
function (MGF) [12], [13] to obtain the unconditional SPEP
in the following:

P1 (d -> d)
2 (i + PK2) 1(+ PK2/2 ) dO.

T o ~~4sin2 o 4 sin2 o
(16)

The above SPEP is given for symbols sk sent over the
equivalent channel XH. For the symbols Sk (K < k < K)
transmitted over the equivalent channel X2, the SPEP can be
found similarly:

P2(d -> d)
1 7r2 { /{/3 2 (M2 M2 dO=X (1 + PK2PJ PK/3Kl2 9- I

7r 4 sin2 4 sin2
(17)

where

31 [coS(a2) sin(a2)] [a1]
Q32 sin(a2) -COS(a2)j [2

(18)

Assume that di, dj, d, dn (i, j,m,n 1, 2, ... , L), are
signals drawn from a constellation S of size L. From the SPEP
expression (15) and (17), we can find the union bound on SER
of CIOD codes with constellation S as

Pu (S) = Pu, 1 (S) + Pu,2 (S) (19)
where

L-1 L

Pu,1(S) = Z SE P(di -> dj),

IL-1 L

Pul,2(S) = L E E P(dm -> dn).
m=l n=i+1

(20)

(21)

For a fixed SNR, the union bound Pu(S) depends on the
constellation S and the rotation angles a1 and a2. Thus one
can find the optimal values of a1 and a2 to minimize the
union bound on SER. Note that a1 and a2 can be optimized
separately. We can run computer search to find the optimal
values of a1 and a2.

(14)
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In practice, signal constellation S is usually symmetric via
either horizontal or vertical axis of the Cartesian coordinate
system. We can assume that S is symmetric via the vertical
axis. If S is symmetric via the horizontal axis, we can always
rotate the whole constellation an angle of 7/2 to make it
symmetric via the vertical axis.

Assume that a2 = w/2-1a. Then, for each pair of symbols
(di,dj) = ([ai, biT, [aj, bj]T , we can find one and only
one pair (dm, dr) = ([ai, -bi] [aj, -bj]T) so that P1 (di >

d3) = P2(dm -> dn). Therefore, Pt,iX(S) = Pu,2(S); and if
aopt is the optimal value of a1, then 7/2 -aopt is optimal
for a2. Hence, we just write the value of a1 and imply that
the value of a2 = w/2- a1.

The union bound on SER is plotted in Fig. 1 for a CIOD
code for M = 4 Tx antennas (M1, M2) = (2, 2). For the three
examined constellations (4QAM, 8QAM-R, and 16QAM), and
a1 = 31.71750 [4], the union bound becomes tight when SER
< 10-1 and is less than 0.1 dB apart from the simulated SER
at high SNR.

Since the union bound is tight for SER < 10-2, it can be
used to optimize the values of rotation angles a1 and a1.

The new optimal signal rotations for the popular constellations
based on minimizing the SER union bound are summarized
in Table I. Only the optimal values aopt of a1 are listed, the
optimal values of a2 = /2 -aopt. The geometrical shapes of
8-ary constellations are sketched in Fig. 2. The best 8TRI in
terms of minimum Euclidean distance (carved from the lattice
of equilateral triangular) is selected [6].
Numerical Results
We compare the SER union bounds of CIOD code with

several constellations using new optimal signal designs in Fig.
3 for (Ml, M2) = (2, 4). Obviously, QAM signals yield the
best performance compared with other constellations of the
same size. On the other hand, TRI constellations have the
best minimum Euclidean distance; however, their performance
is inferior to that of QAM signals.

,.. .. .. ..
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SER,a union bound, ofQA
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TABLE I
OPTIMAL ROTATION ANGLES OF POPULAR CONSTELLATIONS
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Fig. 2. Geometrical shapes of 8-ary constellations.

Compared with the optimal rotation angles for QAM in
terms of coding gain [4], our newly proposed rotation angles
result in marginal performance improvement. However, we

will next present a new signal design method combining power

allocation and signal rotation such that the new signal designs
outperform the ones in [4] significantly for QAM-R.

VI. OPTIMAL SIGNAL ROTATION WITH POWER
ALLOCATION

For QAM-R, e.g. 8QAM-R in Fig. 2, the average powers of
the real and imaginary parts of the signal points are different.
We may change the power allocation to the real and imaginary
parts of QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary of
QAM-R signals are first multiplied by constants o1 and (X2,
respectively, then they are rotated by unitary matrix R1, R2.
For example, let S be a constellation with signal set S =

{d d = a + j b, a, b C RI}, the new constellation with new

power allocation is S {d d = or,a + j ur2b; a, b C R}. The
average energy of the constellation is kept the same as that
ofS, i.e. unitary. For example, the 8QAM-R with signal points
{(±3±j. I vj)/\48} has constraint equation for coefficients
or, and u2 as 5o(X2 +(X2 = 6. Hence, if the value of or, is given,
the value of cr2 is known explicitly.
We still use (15) to calculate the union bound on SER of

CIOD codes with signal rotation and power re-allocation; (16)

Signal [ (2, 1) T (2, 2) (2, 3) (2, 4) [ (3, 3)
4QAM 28.9390 30.4170 29.6980 29.0030 30.7780
4TRI 20.1420 13.8830 71.7390 68.6870 75.8360
8PSK 37.6900 39.2160 38.8082 38.5340 39.8570
8APSK 10.3160 11.5280 11.181° 11.000° 12.0150
8TRI 20.3090 45.000° 11.061° 9.4300 45.000°

8QAM-R 33.0370 31.8340 29.6580 28.6260 31.7370
8QAM-SR 12.2340 13.0360 12.9250 12.7010 13.1730
16PSK 3.4850 2.5700 2.8320 2.9640 2.2000
16TRI 19.2360 45.000° 47.1160 70.6900 45.000°
16QAM 31.4360 31.6770 31.5570 31.4620 31.7040

010

IN0 1:10
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so that the union bound is minimized; this value of (X1 is the
global solution of the union bound minimization. The optimal
values ((X1, 52, aOPt) =(0.9055,1.3784, 45.00) for 8QAM-R
and ((X1, 52, aOPt) =(0.8972,1.3487, 43.00) for 32QAM-R.

The union bounds on SER of 8QAM-R and 32QAM-R
using signal rotation of Khan-Rajan with aE1 =31.71750 [4],
signal transformation of Wang-Wang-Xia [7, Theorem 6], and
our new signal transformation for CIOD codes with M =4
(Mi 2,M2 =2),N =1 are compared in Fig. 4. At
SER = 10-6, our new signal transformation yields 0.2 dB
and 0.4 dB gains compared with the signal designs of Wang-
Wang-Xia and Khan-Rajan, respectively. The BER of 8QAM-
R also confirms the improvement of our newly proposed
transformation over the existing ones.

VII. CONCLUSION

We have presented the equivalent channels for CIOD codes,
enabling their decoding readily. The exact union bound on
SER has been calculated. This bound is within 0.1 dB of the
simulated SER at medium and high SNR. Thus, it can be used
to analyze the performance of CIOD codes and, more impor-
tantly. to optimize the signal rotation for any constellation with
an arbitrary geometrical shape. Performances of CIOD codes
with different constellations such as QAM, PSK, TRI have
been compared; among these constellations, QAM yields the
best performance. We further present a new approach to design

10-2

10 o

10-4

10

10-6
35

Fig. 4. BER and Union bound on SER of the rate-one CIOD code with
8QAM-R and 32QAM-R for 4 Tx/I Rx antennas ((M1, M2) = (2, 4)).

signal transformation for signal with uneven powers of the real
and imaginary parts such as QAM-R. The new signal designs
for QAM-R outperform the existing ones. The results of this
paper can be extended in different aspects such as antenna
selection and beamforming.
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