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Abstract— 1We develop an efficient linear programming detec-
tor (LPD) for multiple-input multiple-output (MIMO) systems.
Instead of using the usual l2 norm, our proposed LPD uses the
l1 norm as the detection metric, resulting in a mixed-integer
linear program (MILP). Two branch-and-bound algorithms are
proposed to solve the MILP. The solution of the MILP achieves
the same full diversity order as the maximum likelihood detector.
The MILP is further relaxed to a linear program (LP), which can
be readily solved using the standard simplex method. We show
that in some cases the solution of the LP is guaranteed to be that
of the MILP. The LPD is also extended to the joint detection and
decoding of linear block coded MIMO systems. Our LPD can be
immediately implemented using mature circuits design for the
simplex algorithm.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems, employing
multiple antennas at both the transmitter and the receiver, can
achieve remarkably high spectral efficiencies in rich scattering
environments. As a result, the design of high data-rate MIMO
communication systems has attracted a significant interest. A
prime example is the BLAST (Bell Laboratories layered space
time) architecture [1], which has been proposed to exploit the
potentially enormous MIMO link capacity.

In spatial multiplexing systems, a fundamental receiver
function is the detection of transmitted data symbols. The
optimal maximum likelihood detector (MLD) minimizes the
error probability. However, the complexity of the MLD grows
exponentially with the number of transmit antennas, making
it computationally prohibitive in many cases. Consequently,
various efficient but suboptimal receivers are popular. In [1],
the V-BLAST detector with optimal ordering, nulling and
interference cancellation is proposed. However, it can only
achieve a diversity order one. In [2], sphere decoding (SD),
an algorithm for the MLD, is proposed for attaining low com-
plexity in high SNR. Although the VLSI implementation of
SD has been reported [3], the variation of its time complexity
can be high, leading to undesirable variable detection delays.
Alternative detectors with constant time complexity are thus
desirable. However, all these detectors are based on l2 norm.

In this paper, we consider a linear programming (LP)
formulation of the MIMO detection problem. We observe that
the bottleneck of the former detectors [1], [2] is the use of l2
norm as the metric resulting in complicated integer quadratic

1This work was supported in part by Caltech’s Lee Center for Advanced
Networking.

programming [2] or involving in matrix decomposition [1], [2].
In [4], [5], LP is used for decoding of linear codes. As in [4],
[5], we use l1 norm in our linear programming detector (LPD),
which results in a mixed-integer linear program (MILP). Two
branch-and-bound (BnB) algorithms are proposed to solve the
MILP. We prove that the solution of the MILP achieves the
same full diversity order as the maximum likelihood detector.
The MILP is further relaxed to a LP, which can be readily
solved using standard simplex methods. We show that in
some cases the solution of LP is guaranteed to be that of
the MILP. We also consider the LPD for the joint detection
and decoding of linear block coded MIMO systems. The LP
decoding for linear block codes over additive white Gaussian
noise (AWGN) channel in [6] is adopted into the LPD for the
uncoded MIMO systems. The major advantage of our LPD is
that it can be immediately implemented using mature circuits
design for the simplex algorithm [7].

Notation: R and C denote the real and complex number sets.
�{x} and �{x} denote the real part and imaginary part of x,
respectively. ‖(·)‖2 and ‖(·)‖1 are the l2-norm and l1-norm of
(·). A circularly complex Gaussian variable with mean µ and
variance σ2 is denoted by z ∼ CN (µ, σ2). j =

√−1.

II. SYSTEM MODEL

We consider a spatial multiplexing MIMO system with n
transmit antennas and m receive antennas. Source data are
mapped into complex symbols from a finite constellation Q̃.
We assume a rich scattering memoryless channel. The received
signals may be written as

ỹ = H̃x̃ + ñ (1)

where x̃ = [x̃1, . . . , x̃n]T , x̃i ∈ Q̃ is the transmitted signal
vector, ỹ = [ỹ1, . . . , ỹm]T , ỹi ∈ C is the received signal
vector, H̃ = [h̃i,j ] ∈ C

m×n is the channel matrix, and
ñ = [ñ1, . . . , ñm]T ∈ C

m is an additive white Gaussian noise
(AWGN) vector. The elements of H̃ are identically indepen-
dent distributed (i.i.d.) complex Gaussian, h̃i,j ∼ CN (0, 1).
The components of ñ are i.i.d. and ñi ∼ CN (0, σ2

n). We
assume that the channel is perfectly known to the receiver.
But we do not assume n ≤ m because without modification,
our LPD can be directly used to solve the rank deficient
system with n > m. Note this model (1) is not restricted
to MIMO systems. It models any linear, synchronous and
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memoryless channels with crosstalk. For brevity, we restrict
our considerations to MIMO.

The MLD that minimizes the average error probability is

x̂ = arg min
x̃∈Q̃n

‖ỹ − H̃x̃‖2
2. (2)

Due to the discrete nature of Q, (2) is a NP-hard problem and
exhaustive search for x̂ has a complexity exponential in n.

III. LINEAR PROGRAMMING DETECTION

The l1 norm is widely used for data analysis and param-
eter estimation [8], because the cost function using l1 norm
metric is not only robust to outliers, but also computationally
tractable.

A. MILP

In this paper, we suggest detecting data symbols using l1
norm metric or

x̂ = arg min
x̃∈Q̃n

‖ỹ − H̃x̃‖1. (3)

In fact, if we assume the noise vector ñ follows the Laplace
distribution instead of the normal distribution, the MLD of the
data symbols is given by (3). Since l1 norm metric is robust
to outliers, (3) may be robust to the impulsive noise due to the
impulsive nature of man-made electromagnetic interference
and a great deal of natural noise.

Note that (3) involves complex operations. We transform
(1) to a real system as

y = Hx + n (4)

where

y =

[ �{ỹ}
�{ỹ}

]
, x =

[ �{x̃}
�{x̃}

]
, n =

[ �{ñ}
�{ñ}

]
(5)

and
H =

[ �{H̃} −�{ỹ}
�{ỹ} �{ỹ}

]
. (6)

We assume that Q̃ is a decouplable constellation, i.e., squared
quadrature amplitude modulation (QAM). �{xi} and �{xi}
belong to the same constellation Q. For example, for 4-QAM,
Q = {−1, 1}.

To detect data symbols x in (4), we consider solving the
following l1-minimization problem

(P1) min
x∈Q2n

‖y − Hx‖1 (7)

Since all the variables in (7) are real, by introducing slack vari-
ables ti, i = 1, . . . , 2n, (P1) can be classically reformulated
as an MILP. (P1) is equivalent to

(MILP1) min
∑2n

i=1 ti
s.t. Hx − t ≤ y

−Hx − t ≤ −y

xi ∈ Q, i = 1, . . . , 2n,

(8)

where t = [t1, . . . , t2n] ∈ R
2n and x ∈ Q2n are the

optimization variables. The generalized vector inequality x ≤
y means that xi ≤ yi for every coordinate i. If Q is a subset

of the integer set Z, (8) is an MILP. Note that the elements of
Q may not necessarily be integers. Due to the finite, discrete
nature of Q, solving (8) is NP-hard. In this paper, we call
(8) an MILP no matter whether Q is an integer set. Our BnB
algorithms developed in the following apply to both cases.

For the performance using the l1 norm (3), we have the
following theorem:

Theorem 1: The solution of the l1 minimization problem
(3) achieves the same diversity order as that of the MLD (2).

Proof is omitted for brevity. Theorem 1 indicates that if
the noise follows the normal distribution, the conventional
MLD only has an SNR gain over (3) and nothing more than
that. From the simulation results, we find the SNR gain is
also small. Therefore, (3) has almost the same performance as
the conventional MLD, and the former is robust to impulsive
noise. Moreover, LP technologies are mature and a multitude
of implementations is available. All in all, (3) has several
advantages over (2) from a practical point of view.

B. BnB algorithms

The most widely used method for solving MILP is BnB. Our
first BnB algorithm is given in Algorithm 1. Eq. (9) can be
solved using the simplex algorithm or the ellipsoid algorithm
[9] in polynomial time.

BnB1: (l, u, UB)
output: x̌, UB

Solve the LP1

min
∑2n

i=1 ti
s.t. Hx − t ≤ y

−Hx − t ≤ −y

l ≤ x ≤ u,

(9)

obtain the minimum v and x̂ achieving v ;
if (9) is infeasible or v > UB then return ;2

if x̂ ∈ Q2n then3

if v < UB then x̌ = x̂, UB = v;4

return;5

end6

Find the first x̂k such that x̂k /∈ Q;7

Update the k-th entry of u, uk to the largest element8

q in Q such that q < x̂k;
[x1, v1] = BnB1(l, u, x̂, UB);9

if v1 < UB then x̌ = x1, UB = v1; else x̌ = x̂;10

Update the k-th entry of l, lk to the smallest element11

q in Q such that q > x̂k;
[x1, v1] = BnB1(l, u, x̂, UB);12

if v1 < UB then x̌ = x1, UB = v1; else x̌ = x̂;13

Algorithm 1: BnB algorithm 1 for MILP

Let ρmin and ρmax denote the minimum value and max-
imum value in Q, respectively. Algorithm 1 is invoked as
BnB1(ρmin1, ρmax1,0,+∞), where 1 and 0 are all ones and
zeros vectors, respectively. Algorithm 1 is a simple modifica-
tion of the algorithm in [10]. We replace the branch process
in [10] by updating uk = 	x̂k
 and lk = �x̂k� with lines 8
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and 11 in Algorithm 1 by considering the discrete nature of
Q, where 	x̂k
 (�x̂k�) denotes the largest (smallest) integer
smaller (greater) than or equal to x̂k.

However, if Q has a very large size, the search tree formed
by BnB1 will span many nodes. Moreover, if Q has infinite
elements, BnB1 cannot work and it is trapped in an endless
loop. We next give an improved BnB algorithm to avoid these
problems, which is given in Algorithm 2.

In Algorithm 2, given the bound on
∑2n

i=1 ti, we can find
the lower bound of xk by solving the LP (10), and similarly
the upper bound of xk. Even if Q has infinite elements, the
set Q ∩ [lb, ub] is finite and the algorithm terminates after a
finite number of steps. Line 10 is introduced because we want
to have a small candidate set for xk in the first few stages.
Note that in Algorithm 2 the constraint l ≤ x ≤ u in all the
LPs are not necessary. The price we pay in Algorithm 2 is
using 2 additional LPs to get lb and ub. If the size of Q is
very large, BnB2 saves complexity over BnB1.

BnB2: (i, y, H, UB)
output: x̌, UB

if i == 0 then return;1

Solve the LP (9), obtain the minimum v and x̂2

achieving v ;
if (9) is infeasible or v > UB then return ;3

if x̂ ∈ Q2n then4

if v < UB then x̌ = x̂, UB = v;5

return;6

end7

Map x̂ to Q and the resulting vector is x0, and8

compute v0 = ‖y − Hx0‖1;
if v0 < UB then UB = v0, x̌ = x0;9

Find k = arg minj minq∈Q |x̂j − q|;10

Solve11

min xk

s.t. Hx − t ≤ y

−Hx − t ≤ −y

l ≤ x ≤ u∑2n

i=1 ti ≤ UB,

(10)

obtain the minimum lb;
Solve max xk under the same constraints as (10), and12

obtain the maximum ub;
for xk ∈ Q ∩ [lb, ub] do13

y1 = y − H(:, k)xk, delete the k-th column of H;14

[x1, v1] = BnB2(i − 1, y, H, UB);15

if v1 < UB then x̌ = x1, UB = v1, and add xk16

to the k-th entry of x̌;
end17

Algorithm 2: BnB algorithm 2 for MILP
Several improvements can be applied to reduce the complex-

ity of the BnB algorithms. In Algorithm 1, when branching
down from a node, some inequality constraints in l ≤ x ≤ u

may become equality constraints. We can write these equalities
explicitly to reduce the number of constraints.

Simplex algorithm has two phases [9]. In phase I, the

simplex algorithm solves another LP to find a vertex. The BnB
algorithm may need to solve a large number of LPs to find the
optimal solution. Therefore, it is important to reuse the results
of existing LP solutions. The similarities between parent and
child problems allow us to greatly simplify the first stage of
the simplex algorithm. The parent and child problems differ
by only one constraint. For example, if the lower bound lk on
xk in the parent problem is changed to l′k in the child problem
(line 12 in Algorithm 1), we introduce a slack variable sk and
solve an LP given by

min sk

s.t. Hx − t ≤ y

−Hx − t ≤ −y

li ≤ xi ≤ ui, i = 1, . . . , 2n, i �= k
l′k ≤ xk + sk ≤ uk, sk ≥ 0.

(11)

If the solution to the parent problem is [x̂, t̂], [x̂, t̂, lk − l′k] is
an obvious vertex of (11). If the minimum of (11) is 0, the
optimal solution to (11) is a vertex of the child problem, and
the phase I of the simplex algorithm for the child problem can
start from this vertex. If the minimum of (11) is not zero, the
child problem is infeasible. Typically, only a few pivots are
required to solve (11), much fewer than the number needed by
the phase I in standard simplex algorithm. This technique can
also be applied to Algorithm 2. In Algorithm 2, the optimal
solution to (9) is also feasible for the LPs in lines 11 and 12.
Therefore, two LPs in phase I are eliminated.

C. LP relaxation

To reduce the complexity of the MILP, we can further relax
the MILP (8) as an LP by removing the constellation constraint
on xi. The LP detector is given by

(LP1) min
∑2n

i=1 ti
s.t. Hx − t ≤ y

−Hx − t ≤ −y

ρmin ≤ xi ≤ ρmax, i = 1, . . . , 2n.

(12)

The LP (12) can be solved using the ellipsoid algorithm in
polynomial time. If Q has only two elements (i.e., 4QAM)
and the solution to (12) is x̂, we have the following theorem.

Theorem 2: If x̂ ∈ Q2n, x̂ is guaranteed to be the solution
of (8).

Proof: All the feasible points to (8) are also feasible to (12).
If x̂ ∈ Q2n, x̂ is feasible to (8), and it attains the optimum of
(12). Therefore, it also attains the optimum of (8).

From the simulation results, we find the LPD (12) has
good performance but it still has a large gap from (8) and
MLD. To improve the performance of the LPD (12) with
little increase in complexity, we propose to find the most
unreliable symbol xk first. For each xk ∈ Q, we cancel its
contribution to y, and use the LPD (12) to solve for the
remaining 2n − 1 symbols. The resulting vectors are denoted
by x̂i, i = 1, . . . , |Q|. The vector attains the minimum of
‖y − Hx̂i‖1 is output as the solution. The reliability of data
symbols can be measured by solving (12) first, giving the
optimal solution x̂. k = arg maxj minq∈Q |x̂j − q| is the
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index of the most unreliable symbol. This approach can also
be generalized to do ML search for the first K most unreliable
symbols. This detector is denoted by list LPD or LLPD.

Remarks:

• No matrix decomposition is needed in both (8) and (12)
as opposed to SD [2]. Therefore, our LPDs can be directly
applied to rank deficient systems without modification.

• The simplex algorithm can be readily parallelized. The
LPD (8) can be immediately implemented using mature
VLSI chip design for simplex algorithm.

• Due to the inherent nature of BnB algorithm, our BnB
algorithms for solving MILP also have small complexity
in high SNR and high complexity in low SNR, which is
similar to SD.

IV. LINEAR PROGRAMMING DECODING FOR CODED

MIMO SYSTEMS

In [11], two coding architectures, vertical coding and hori-
zontal coding, are proposed for BLAST systems. In this paper,
we consider the vertical coding with binary linear codes, where
a binary linear code is used to encode all the data bits going
to different antennas. Our decoder can be readily generalized
to the horizontal coding architecture.

At the transmitter, k independent information symbols b ∈
{0, 1}k are first encoded via a binary linear code C with
generator matrix G to produce a codeword c = G � b ∈
{0, 1}nMc , where � denotes multiplication over GF(2). Every
Mc bits in c are subsequently mapped to an element in Q with
2Mc elements. The resulting modulated vector x̃ = M(c) ∈
Qn, where M(·) denotes the mapping operation.

If x̃i is from M -QAM and Gray mapping is used, we
can always transform a system with high order QAM to an
equivalent system with 4QAM using the approach in [12].
Therefore, we only discuss 4QAM system in the following.
Each bit in c ∈ {0, 1}2n is mapped to a symbol x ∈ {−1, 1}2n

in (4). We assume the mapping 0 → −1 and 1 → +1, or
equivalently x = 2c − 1. Using the l1 norm metric, we can
detect the information bits by

(P2) min
c∈C

‖y − H(2c − 1)‖1. (13)

We first show how to relax (13) as an LP. For a given code
C, we define the codeword polytope to be the convex hull of
all possible codewords

poly(C) =

{∑
f∈C

λf f : λf ≥ 0,
∑
f∈C

λf = 1

}
. (14)

poly(C) is a polytope contained within the hypercube [0, 1]2n

with its vertices corresponding to the codewords of C. (P2)
can be relaxed as

(P3) min
c∈poly(C)

‖y − H(2c − 1)‖1. (15)

(P3) is equivalent to

(LP2) min
∑2n

i=1 ti
s.t. H(2c − 1) − t ≤ y

−H(2c − 1) − t ≤ −y

c =
∑

f∈C λf f∑
f∈C λf = 1, λf ≥ 0,

(16)

where t = [t1, . . . , t2n] ∈ R
2n and λf are the optimization

variables. Although (P3) is relaxed to (LP2), the number of
constraints in (LP2) is exponential in the code length 2n. Both
simplex and ellipsoid algorithms have exponential complexity
for solving (LP2).

In [6], a relaxed polytope is formulated. For each row hj ,
j = 1, . . . , 2n − k of the parity-check matrix of C, let U(hj)
be the support of hj , or the set of positions of 1 in hj . Each
codeword c ∈ C must satisfy the following inequalities [6]:
for each set V ⊆ U(hj) such that |V | is odd,∑

i∈V

ci −
∑

i∈U(hj)\V

ci ≤ |V | − 1. (17)

Therefore, we have the LP joint decoder as

(LP3) min
∑2n

i=1 ti
s.t. H(2c − 1) − t ≤ y

−H(2c − 1) − t ≤ −y∑
i∈V

ci −
∑

i∈U(hj)\V

ci ≤ |V | − 1

0 ≤ ci ≤ 1, i = 1, . . . , 2n.

(18)

From Theorem 2 and Proposition 2 in [6], if ĉ is the solution
to (18), we have the following theorem.

Theorem 3: If ĉ ∈ {0, 1}2n, ĉ is guaranteed to be the
solution of (13).

If ĉ /∈ {0, 1}2n, we make hard decisions on ĉ, and recover
the transmitted bits b with a syndrome decoder. Or we can do
soft-decision decoding on ĉ directly.

Using Theorem 3, we can solve (13) exactly as an MILP
by allowing integer constraints on ci. (P2) is equivalent to

(MILP2) min
∑2n

i=1 ti
s.t. H(2c − 1) − t ≤ y

−H(2c − 1) − t ≤ −y∑
i∈V

ci −
∑

i∈U(hj)\V

ci ≤ |V | − 1

ci ∈ {0, 1}, i = 1, . . . , 2n.

(19)

(MILP2) can be solved using the BnB algorithms 1 and 2.
Note that the approach proposed in this paper can also be

extended to decoding coded MIMO systems with turbo-like
codes by considering the results in [13], which may achieve
near-capacity on a MIMO system.

V. SIMULATION RESULTS

We now present the error rates of our proposed linear pro-
gramming detectors for a MIMO system over a flat Rayleigh
fading channel.

Fig. 1 shows the symbol error rate (SER) of different linear
programming detectors in a 8×8 MIMO system with 4QAM.
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Fig. 1. Performance comparison of linear programming detectors in an 8×8
MIMO system with 4QAM.
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Fig. 2. Performance comparison of different detectors in a (8, 4) extended
Hamming coded 8 × 8 MIMO system with BPSK.

All our proposed LPDs outperform V-BLAST. Even LP1 has a
2.5-dB gain over V-BLAST at SER= 10−2. More importantly,
it appears that the diversity order of LP1 is 2, but V-BLAST
only has diversity order 1. Note that LP1 is also a polynomial
time detector. With simple modifications, LLPD has a 3.7-dB
gain over LP1 at SER= 10−3. MILP1 performs close to SD.
The performance gap between these two is only 0.5 dB at
SER= 10−4. We also find MILP1 achieves the same diversity
order as MLD, which is consistent with Theorem 1.

In Fig. 2, we compare the bit error rate (BER) of different
decoders in a (8, 4) extended Hamming coded 8 × 8 MIMO
system with BPSK. Hard decision decoding and soft decision
decoding are denoted as HDD and SDD, respectively. We
choose this simple example because the SDD can be per-
formed by exhaustive search, and we can learn the perfor-
mance loss by using our linear programming decoders. LP3

achieves almost the same performance as HDD. However, LP3

does not need to detect the coded symbols first as HDD does,
which may have high complexity. LP2 performs better than
both HDD and LP3. At BER= 10−2, LP2 has a 0.8-dB gain
over LP3. But the number of constraints in LP2 is exponential
in 2n, which is computationally inefficient. Both LP2 and LP3

perform inferior to SDD. At BER= 2×10−3, SDD has a 3.1-

dB gain over LP2. This performance gap motivates the search
for alternative tight relaxations.

VI. CONCLUSION

In this paper, we have given several linear programming
detectors and decoders for MIMO systems. All the proposed
detectors are based on the metric formulated by l1 norm as
opposed to the l2 norm used in conventional detectors. The
l1 minimization problem is first transformed into an MILP.
We have proposed two Branch-and-Bound algorithms to solve
the resulting MILP, the second of which applies to infinite
integer sets. Several improvements were also discussed for the
BnB algorithms. The MILP is further relaxed to an LP, which
can be solved in polynomial time. For decoding in binary
linear coded MIMO systems, the information bits are relaxed
to lie in a codeword polytope instead of taking only values
{0, 1}, and an LP decoder is proposed. However, this LP has
an exponential number of constraints. A relaxed polytope is
then formulated, which has the property that all the vertices
correspond to codewords. Exact decoding can also be attained
by solving an MILP after imposing an integer constraint on
the information bits. Interesting future work includes analyzing
the performance of different linear programming detectors for
uncoded systems, and deriving the performance bounds of
linear programming decoders for coded systems.
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