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Abstract— We present a unified algebraic structure of space-
time block codes (STBC) with orthogonality called orthogonality-
embedded space-time (OEST) codes. Previously known codes,
including orthogonal, quasi-orthogonal, semi-orthogonal, and
non-orthogonal rate-one circulant space-time codes, are special
cases of OEST codes. To construct OEST codes, the generalized
complex or real orthogonal designs are employed with two main
differences: (1) each data symbol is replaced by a circulant
matrix; (2) the scalar product is replaced by the Kronecker
product. We show that each group of transmitted symbols
embedded in the circulant matrices can be separately detected
without any interference from other groups. Signal rotations are
used to obtain full diversity and optimal coding gain.

I. INTRODUCTION

Space-time block codes (STBC) are designed to exploit

the diversity and/or the capacity of multiple-input multiple-

output (MIMO) wireless fading channels. Among the existing

codes, orthogonal STBC (OSTBC) [1]–[3] are ones of the

most well-known STBC. The columns of the OSTBC code

matrix are all orthogonal to each other allowing single-symbol

detection. However, orthogonality entails low code rates [4]; a

code rate of one symbol per channel use (pcu) with complex

constellations exists for 2 transmit (Tx) antennas only.

Quasi-orthogonal STBC (QSTBC) (e.g. [5]) has therefore

been proposed to increase the code rate of OSTBC. The

columns of QSTBC code matrices are non-orthogonal in pairs

and QSTBC admit low decoding complexity. Nevertheless, the

rate-one QSTBC exist for 4 Tx antennas only. Recently, semi-

orthogonal algebraic STBC (SAST) has been introduced [6]

providing rate-one STBC for any number of Tx antennas. In

the SAST code matrices, the left-half columns are orthogonal

to right-half columns. This fact leads to the separation decod-

ing of the transmitted symbols into two groups. In general,

OSTBC, QSTBC and SAST code matrices exhibits different

degrees of column orthogonality and decoding complexity.

The question is that whether a general algebraic structure of

those codes exists and how to decode this generalized code?

We address those questions in this paper. We present a

new class of STBC called orthogonality-embedded space-time

(OEST) code. The generalized complex or real orthogonal

designs are exploited as the structural basis. Each transmitted

symbol is replaced by a circulant matrix and the scalar product

is replaced by the Kronecker product [7]. OEST codes sub-

sume OSTBC, QSTBC [5], SAST and rate-one circulant ST

codes [8], [9]. The general decoder of OEST codes is derived.

OEST codes bring new insights on the class of ST codes

with flexible rate-performance-decoding complexity tradeoffs.

Other related problems such as unitary space-time modulation

and channel information feedback can be further developed

systematically from the OEST framework.

II. PRELIMINARIES

A. System Model

We consider data transmission over a quasi-static Rayleigh

flat fading channel. The transmitter and receiver are equipped

with M Tx and N receive (Rx) antennas. The receiver, but

not the transmitter, completely knows the channel gains.

A general representation of STBC in the linear dispersion

form is given below [10]:

XM =
K∑

k=1

(skAk + s∗kBk) (1)

where Ak and Bk, (k = 1, 2, · · · ,K) are T × M constant

basis matrices, superscript ∗ denotes conjugate 1. The average

energy of code matrices X ∈ X is constrained such that

EX = E[trace(X†X)] = E[‖X‖2
F] = T , where ‖X‖F denotes

Frobenius norm of matrix X [7]. The code rate RXM
of

a STBC XM designed for M Tx antennas, in symbols per

channel use (pcu) is defined by RXM
= K/T .

We next review the constructions and properties of OSTBC

[3], [4] and rate-one circulant codes [8], [9], which are

necessary to design OETS codes.

B. Orthogonal Space-Time Block Codes

In the following, we just consider the generalized complex

orthogonal designs [3], [4] only. The results can be easily

extended to generalized real orthogonal designs.

Proposition 1: Let OQ be an STBC with R rows, Q
columns, and K symbols per code matrix. OQ is an OSTBC

if and only if its basis matrices Ak and Bk in (1) satisfy

A†
iAi + B†

i Bi = IQ, i = 1, 2, · · · ,K (2a)

A†
iAj + B†

jBi = 0Q, 1 ≤ i < j ≤ K (2b)

A†
iBj + A†

jBi = 0Q, i, j = 1, 2, · · · ,K. (2c)

1From now on, superscripts T and † denote matrix transpose and transpose
conjugate. The n × n identity and all-zero matrices are denoted by In and
0n, respectively. E[·] denotes average. A mean-m and variance-σ2 circularly
complex Gaussian random variable is written by CN (m, σ2). The minimum
Euclidean distance of a constellation is given by dmin
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Proposition 2: The maximal code rate of OSTBC for Q =
2a − 1 or Q = 2a, where a is any positive integer, is a+1

2a .

Assume that the data symbols are drawn from a constella-

tion with unit average power. To guarantee the average power

constraint, the OSTBC code matrices are contracted by a

constant κ. We can show that κ = 1
QROQ

.

The coding gain [1] of OSTBC can be easily found to be

GOQ
=

1
QROQ

d2
min. (3)

C. Rate-one circulant STBC

The idea to employ circulant matrices [11] to build rate-one

ST codes has appeared in [8], [9]. We call such codes circulant

ST codes. The code matrix of circulant ST codes is

C =

⎡
⎢⎢⎢⎣

u1 u2 · · · uP

uP u1 · · · uP−1

...
...

...

u2 u3 · · · u1

⎤
⎥⎥⎥⎦ . (4)

To achieve full diversity, the transmitted signals are designed

as follows. Let P be the number of Tx antennas, let s =
[s1, s2, · · · , sP ]T be a data vector of P symbols to be rotated

before transmission. The transmitted vector u is given by

u = Θs (5)

where Θ = diag[ 1, φ1/P , · · · , φ(P−1)/P ] and φ is called

a Diophantine number [8]. A rate-one circulant ST code (or

linear threaded algebraic ST (LTAST)) matrix is given by [8]

CP =
1√
P

C . (6)

The coding gain of rate-one LTAST code is upper-bounded by

[8, Eq. (7)]

GCP
≤ 1

P
d2
min . (7)

Some optimal values of φ so that the maximal coding gain

can be obtained are specified as follows [8, Theorem 2].

• If P = 2r, r ≥ 1, then φ = j for S carved from the ring

of Gaussian integers or,

• If P = 2r03r1 , r0, r1 ≥ 0, then φ = e2 j π/6 and constel-

lations S carved from the ring of Eisenstein integers.

[8, Theorem 1] also suggests how to select φ for PSK

constellations; however, computer search is required to find

the φ that maximizes the coding gain. For a special case with

P = 2, we have the following result without proof for brevity.

Proposition 3: Consider the rate-one circulant ST codes for

P = 2. One of the two transmitted symbols is drawn from an

M -ary PSK constellation S and the other one is drawn from

ej αS. The coding gain of circulant codes is maximized if and

only if the rotation angle α is
(2k+1)π

M for k = 0, 1, ..., M − 1
if M is even and

(2k+1)π
M , k = 0, 1, ..., 2M − 1 if M is odd.

We next briefly review some important properties of circu-

lant matrices, which are not recognized in [8], [9].

D. Properties of Circulant Matrices

A P × P matrix C is called a circulant matrix if

C =

⎡
⎢⎢⎢⎣

x1 x2 · · · xP

xP x1 · · · xP−1

...
...

...

x2 x3 · · · x1

⎤
⎥⎥⎥⎦ . (8)

Let x = [x1 x2 · · · xP ]T. We can add the argument x to

C as C(x).
Proposition 4: Basic properties of the circulant matrices:

P1 C is circulant if and only if C† is circulant.

P2 if A and B are circulants of the same order, and α1 and

α2 are two scalars, then the matrices AT, α1A + α2B,

AB are circulants.

P3 All of the right circulants of the same order commute,

i.e. AB = BA.

Let α = [0 1 0 · · · 0]T be a P ×1 vector. A matrix π called

forward shift permutation [11] is defined as π = C(α). The

main property of π is given in the following [11, p. 27].

πT = π† = π−1 = πP−1. (9)

The circulant matrix in (4) can be represented as [11, p. 68]

C(x) =
P∑

i=1

xiπ
i−1. (10)

From Proposition 4 and (10), we obtain

[C†(x)C(x)]ij = xTπiπ−jx∗ = x†πj−ix . (11)

III. CONSTRUCTIONS AND PROPERTIES OF OEST CODES

A. Constructions of OEST Codes

Let the number of Tx antennas be M = PQ, where P and

Q are positive integers, and let Ak and Bk (k = 1, 2, · · · , K)
be the R×Q basis matrices of OSTBC OQ. A block of K×P
input data symbols are divided into K data vectors sk, each of

size P × 1. Each of the K data vectors is rotated as specified

in (5); then the resulting K vectors uk are used to build K
circulant code matrices Ck = C(uk) as in (6).

Now we present the main results of the paper. Two con-

structions of OEST codes are proposed as follows:

Construction I:

D =
√

κ

P

K∑
k=1

(
Ak ⊗ Ck + Bk ⊗ C†

k

)
, (12)

Construction II:

D =
√

κ

P

K∑
k=1

(
Ck ⊗ Ak + C†

k ⊗ Bk

)
. (13)

where ⊗ denotes the Kronecker product [7].

In can be shown that Construction I and II are permutation

equivalent [12, corollary 4.3.10]. We will therefore derive the

properties of the OEST codes for Construction I only.

There exist several different constructions of OSTBC (e.g.

[3], [4]). In combination with the circulant codes, there are
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a large number of OEST codes’ variants, which can be im-

plemented for the same number of Tx antennas. Additionally,

OEST codes subsume some existing STBC as we show below.

OSTBC: If P = 1, the circulant matrix Ck reduces to a

single symbol uk, OEST codes are just the original OSTBC.

QSTBC: If Q = 2, Construction II is identical with the

QSTBC codes given by Tirkkonen et al. [5].

Proof: The QSTBC in [5] is known as ABBA codes.

Its construction for M = 2Q Tx antennas is Q =
[A B
B A

]
,

where A and B are two matrices of an OSTBC OQ. Thus A
and B can be represented as

A =
K∑

k=1

(skAk + s∗kBk), B =
K∑

k=1

(
sk+KAk + s∗k+KBk

)
where Ak and Bk, (k = 1, 2, · · · , K) are the basis matrices

of OSTBC for Q Tx antennas. Hence, we have

Q =
K∑

k=1

[
sk sk+K

sk+K sk

]
︸ ︷︷ ︸

Ck

⊗ Ak +
K∑

k=1

[
s∗k s∗k+K

s∗k+K s∗k

]
︸ ︷︷ ︸

C†
k

⊗Bk

=
K∑

k=1

(Ck ⊗ Ak + C†
k ⊗ Bk). (14)

Eq. (14) is identical to the OEST Construction II (13).

SAST codes [6]: If Q = 2, and the basis matrices are the

ones of the Alamoutic code with

A1 =
[
1 0
0 0

]
, B1 =

[
0 0
0 1

]
, A2 =

[
0 1
0 0

]
, B2 =

[
0 0

−1 0

]
,

then from Construction I, we have OEST for Q = 2 as

D =
[ C1 C2

−C†
2 C†

1

]
. (15)

It is exactly the structure of SAST codes [6].

Rate-one circulant codes [8], [9]: In this case, Q = 1, A1 =
I1, B1 = 01.

B. Properties of OEST codes

Theorem 1: The rate of OEST codes for M = PQ Tx

antennas is equal to the rate of OSTBC for Q Tx antennas,

i.e. RD,M = RO,Q. The upper bound of the code rate for

Q = 2a − 1 or Q = 2a is a+1
2a .

Proof: Since OEST codes have size RP × QP , their

code rate for M = QP Tx antennas is equal to the rate of

OSTBC for Q Tx antennas. The upper bound of the code rate

is directly from Proposition 2.

Theorem 2: If the circulant ST code used to construct

OEST codes achieves full diversity, then so do the OEST

codes.

Proof: From (12) we have

D†D
κ/P

=
K∑

i=1

(Ai ⊗ Ci + Bi ⊗ C†
i )† ·

K∑
j=1

(Ai ⊗ Ci + Bi ⊗ C†
i )

=
K∑

i=1

K∑
j=1

(A†
iAj) ⊗ (C†

i Cj) +
K∑

i=1

K∑
j=1

(B†
i Bj) ⊗ (CiC†

j )

+
K∑

i=1

K∑
j=1

(A†
iBj) ⊗ (C†

i C†
j )

︸ ︷︷ ︸
0M

+
K∑

i=1

K∑
j=1

(B†
i Aj) ⊗ (CiCj)

︸ ︷︷ ︸
0M

=
K∑

k=1

IQ ⊗ (C†
kCk) = IQ ⊗

(
K∑

k=1

C†
kCk

)
. (16)

For two distinct code matrices D and D̂, then

PD = (D − D̂)†(D − D̂) =
κ

P
IQ ⊗

(
K∑

k=1

∆†
Ck

∆Ck

)
(17)

where ∆Ck
= Ck − Ĉk. Since D �= D̂, there exists at least

one pair of Ci and Ĉi such that Ci �= Ĉi or ∆†
Ci

∆Ci is positive

definite. Then the matrix
(∑K

k=1 ∆†
Ck

∆Ck

)
is always positive

definite for any pairs of distinct code matrices. Therefore, the

matrix PD is always of full rank.

The coding gain of OEST codes immediately follows

GDM
= min

D �=D̂
detPD =

κ

P
min
D �=D̂

[
det

(
K∑

k=1

∆†
Ck

∆Ck

)] Q
M

.

(18)

In the worst-case, where there only exists one pair of Ci and

Ĉi such that Ci �= Ĉi, the coding gain is

GDM =
κ

P
min

Ci �=Ĉi

[
det

(
∆†

Ci
∆Ci

)]1/P

= κGCP . (19)

Thus from (7), one can use the optimal rotation of circulant ST

codes in Section II-C to maximize the coding gain of OEST

codes. The coding gain of OEST codes is upper-bounded by

GDM
≤ 1

QROQ

d2
min

P
=

d2
min

MROQ

. (20)

From (16), if M = PQ columns of OEST code matrices

are divided into Q groups, each of P consecutive columns,

then the columns of a group are orthogonal to the columns

of the other groups. We next derive a decoder exploiting this

property such that the transmitted symbols can be divided into

K subgroups with lower decoding complexity. For the sake of

clarity and simplicity, we just consider the case with N = 1
Rx antennas. The generalization for N ≥ 1 is straightforward.

C. Decoder

Let h = [h1 h2 · · · hM ]T denote the channel gain between

mth Tx antenna (m = 1, 2, · · · , M) and the Rx antenna. Let

D ∈ D be a code matrix, the Rx signal vector y is as [10]

y =
√

ρκ

P
Dh + n . (21)
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Let uk = [uk,1 uk,2 · · · uk,P ]T (k = 1, 2, · · · ,K) denote

the kth input data vector to the circulant ST encoder (6). From

(10), (12) and (21), we get

y =
√

ρκ

P

K∑
k=1

[
Ak ⊗

(
P∑

i=1

uk,pπ
p−1

)

+ Bk ⊗
(

P∑
p=1

u∗
kpπ

1−p

)]
h + n

=
√

ρκ

P

K∑
k=1

P∑
p=1

[(
Ak ⊗ πp−1

)
hukp

+
(
Bk ⊗ π1−p

)
hu∗

kp

]
+ n . (22)

Let ekp =
(
Ak ⊗ πp−1

)
h, Ek =

[
ek1 ek2 · · · ekP

]
,

fkp =
(
Bk ⊗ π1−p

)
h , Fk =

[
fk1 fk2 · · · fkP

]
. We

can rewrite (22) as

y =
√

ρκ

P

[
E1 F1 E2 F2 · · · EK FK

]
× [

uT
1 u†

1 uT
2 u†

2 · · · uT
K u†

K

]T
+ n . (23)

Furthermore, the following equation is equivalent to (23)[
y
y∗

]
=

√
ρκ

P

[
E1 F1 · · · EK FK

F ∗
1 E∗

1 · · · F ∗
K E∗

K

]
︸ ︷︷ ︸

W

× [
uT

1 u†
1 · · · uT

K u†
K

]T
+

[
n
n∗

]
. (24)

We can show that the columns of matrix W are orthogonal.

Proof: We can show that the following equations hold:[
Ek

F ∗
k

]† [
El

F ∗
l

]
= E†

kEl + F T
k F ∗

l = 0P for k �= l, (25a)[
Ek

F ∗
k

]† [
Fl

E∗
l

]
= E†

kFl + F T
k E∗

l = 0P , (25b)

We just prove for (25a); (25b) can be shown similarly.

The size of matrix Zkl = (E†
kEl + F T

k F ∗
l ) is P × P . The

element [Zkl]ij of Zkl can be calculated as

[Zkl]ij = e†
kielj + fT

kif
∗
lj

= h†(A†
k ⊗ π−i+1)(Al ⊗ πj−1)h

+ hT(BT
k ⊗ πi−1)(B∗

l ⊗ π−j+1)h∗

= h†[(A†
kAl) ⊗ (πj−i)]h + hT[(BT

kB∗
l ) ⊗ (πi−j)]h∗

= h†[(A†
kAl + B†

kBl) ⊗ (πj−i)]h

=
{

0, k �= l;

h†(IQ ⊗ πj−i)h, k = l.
(26)

Thus Zkl = 0P if k �= l , this completes the proof.

Since for k = l, the matrices Zkk do not depend on the value

of k; we drop the subscript k for brevity. The entries of Z are

zij = h†(IQ ⊗ πj−i)h. (27)

Let ĥq =
[
h(q−1)P+1 h(q−1)P+2 · · · h(q−1)P+P

]T
for

q = 1, 2, · · · , Q. Then h =
[
ĥ

T
1 ĥ

T
2 · · · ĥ

T
Q

]T
, and zij

in (27) can be rewritten as

zij =
Q∑

q=1

ĥ
†
qπ

j−iĥq. (28)

Moreover, from (11), we have an elegant form of Z as

Z =
Q∑

q=1

C†(ĥq)C(ĥq). (29)

From Proposition 4, Z is also a circulant matrix.

To separate the transmitted vector uk at the receiver, we

can multiply the two sides of (24) with
[
E†

k F T
k

]
to get

E†
ky + F T

k y∗ = Zuk + (E†
kn + F T

k n∗︸ ︷︷ ︸
n̂k

) . (30)

The covariance matrix of noise E[n̂kn̂†
k] = Z is not an

identity matrix, the noise can be whitened by multiplying the

two sides of (30) with a whitening matrix Z− 1
2 . The received

signal with whitened noise is

Z− 1
2 (E†

ky + F T
k y∗) = Z

1
2 uk + Z− 1

2 n̂k︸ ︷︷ ︸
n̂

(31)

where the elements of n̂ are CN (0, 1).
To solve (31), a sphere decoder [13] can be employed.

One can verify the general detection equation (31) for

existing codes such as OSTBC and SAST codes.

IV. OEST CODE EXAMPLES

Given a value of M , one can find the sets of all pairs

{(P, Q)|P, Q ∈ N, PQ = M}. Note that one can delete one

or several columns of OEST codes for M Tx antennas to

construct OEST codes for the smaller numbers of Tx antennas.

Denote OEST codes designed for the set of parameters P,Q
as DP,Q. For M = 6, there are at least 4 variants as follows.

D1,6 =
1√
4
O6 (see [4, (101)]) (32)

D2,3 =
√

2
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 u2 u3 u4 u5 u6

u2 u1 u4 u3 u6 u5

−u∗
3 −u∗

4 u∗
1 u∗

2 0 0
−u∗

4 −u∗
3 u∗

2 u∗
1 0 0

−u∗
5 −u∗

6 0 0 u∗
1 u∗

2

−u∗
6 −u∗

5 0 0 u∗
2 u∗

1

0 0 u∗
5 u∗

6 −u∗
3 −u∗

4

0 0 u∗
6 u∗

5 −u∗
4 −u∗

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Q6 (33)

D3,2 =
1√
6

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 u2 u3 u4 u5 u6

u3 u1 u2 u6 u4 u5

u2 u3 u1 u5 u6 u4

−u∗
4 −u∗

6 −u∗
5 u∗

1 u∗
3 u∗

2

−u∗
5 −u∗

4 −u∗
6 u∗

2 u∗
1 u∗

3

−u∗
6 −u∗

5 −u∗
4 u∗

3 u∗
2 u∗

1

⎤
⎥⎥⎥⎥⎥⎥⎦

= S6 (34)
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D6,1 =
1√
6

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 u2 u3 u4 u5 u6

u6 u1 u2 u3 u4 u5

u5 u6 u1 u2 u3 u4

u4 u5 u6 u1 u2 u3

u3 u4 u5 u6 u1 u2

u2 u3 u4 u5 u6 u1

⎤
⎥⎥⎥⎥⎥⎥⎦

= C6 (35)

To construct D2,3, we use the orthogonal basis matrices of

OSTBC O3 [4] by deleting the last columns of O4.

The main parameters of OEST codes for M = 6 are

summarized in Table I. We provide simulation results to

illustrate the performance the OEST codes for M = 6 with

rate of 3 bits pcu. However, except for D1,6 or O6 with symbol

rate RO,6 = 2/3 symbols pcu, there is no constellation that

matches the bit rate of 3 bits pcu. Thus, 16QAM is selected,

resulting in the bit rate of 8/3 bits pcu. The shapes of 8QAM

and 8Hex are sketched in Fig. 1. For M = 6, with 8QAM,

the optimal rotations for circulant ST codes is not available

analytically. The rotation angles φ = ej π/4 is used.

From Fig. 2, S6 yields better performance among the

investigated OEST codes. S6 with 8QAM gains about 0.5

and 1.2 dB over C6 and O6, respectively. Moreover, S6 with

8Hex even outperforms OSTBC, which has lower spectral

efficiency. The coding gain of SAST and LTAST codes are

the same; however, from simulations, SAST codes yield better

performance compared with LTAST codes (see also [6]). It

means that the geometrical distance spectrum of SAST codes

is improved compared with LTAST codes.

V. CONCLUSION

We have presented new general constructions of OEST

codes, which are a class of STBC with embedded orthogonal

designs. At the receiver, the transmitted symbols can be

decoupled into subgroups to reduce the detection complexity.

The OEST codes subsume previously known ST codes as its

special cases: OSTBC, QSTBC, SAST and rate-one circulant

ST codes. The OEST framework can also be readily extended

for differential ST modulation, in which each circulant matrix

is replaced by a unitary ST matrix (e.g. [14]). Some other

related problems such as channel information feedback can

be further developed systematically.
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