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A General Combinatorial
Sphere Decoder and its Application
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Abstract— The conventional problem of searching the shortest
vector z of a N -dimensional lattice L(H) with generating matrix
H ∈ R

N×M is considered in a more general setting. There are P
generating matrices H i ∈ R

N×M (i = 1, 2, ..., P ) of the P lattices
L(H i). For a (bounded) integer vector b ∈ Z

M , we obtain P
lattice points H ib. Let di be the Euclidean norm of H ib. The
problem of interest is how to search for a vector b so that the
maximum of di is minimized. We propose a new sphere decoder
called combinatorial sphere decoder (CSD) to solve this problem.
One of the applications of the new CSD is presented in detail to
show its effectiveness.

Index Terms— Shortest vector search, closest point search,
sphere decoder, partial transmit sequence.

I. INTRODUCTION

CONSIDER a lattice L(H) = {Hb | b ∈ Z
M}, where

H ∈ R
K×M is the basis matrix and K ≥ M , and an

arbitrary point x ∈ R
K , the closest point search (CPS) in the

Euclidean sense l2 (CPS-l2) problem [1] can be formulated as
follows:

b̂ = arg min
b

{‖x − Hb‖2} . (1)

When x coincides with the origin, the CPS problem becomes
the shortest vector search (SVS) [2], [3] and is defined as

b̂ = arg min
b

{‖Hb‖2} . (2)

The CPS and SVS problems have many applications in com-
munications (see [1], [4] and references therein).

We now investigate a min-max problem, which can be
considered as a generalization of the SVS problem and can
be easily extended to CPS problem. Assume that P matrices
Hi ∈ R

N×M (i = 1, 2, . . . , P ) generate P lattices L(Hi) =
{Hib | b ∈ Z

M}. For a given vector b, we obtain P lattice
points Hib. Let di be the Euclidean norm of Hib. Our
problem of interest is to find a vector b so that the maximum
of di is minimized, or mathematically,

b̂ = arg min
b

max
Hi

{‖Hib‖2} . (3)

If P = 1, the min-max search (3) reduces to the SVS
problem (2). When P = K, N = 1, and Hi consists
of only one row ith of a K-row matrix H , the min-max
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search (3) becomes the CPS in terms of infinite norm l∞
(CPS-l∞) [2]. Since (2) can be solved efficiently by a sphere
decoder [1], [3], a natural question is that whether (3) can be
solved systematically by a variant of the conventional sphere
decoders. More important, how does one efficiently implement
this decoder?

We address these questions in this letter by presenting
a generalization of the sphere decoder called combinatorial
sphere decoder (CSD). The usefulness of CSD is illustrated
by an example, in which the partial transmit sequence (PTS)
is used to reduce the intercarrier interference (ICI) [5] for
orthogonal frequency division multiplexing (OFDM) systems.

II. COMBINATORIAL SPHERE DECODER

We first review the basic ideas of sphere decoder along
with the enumerating method proposed by Fincke and Pohst
[3]. The SVS problem (2) can be rewritten by

b̂ = arg min
b

b†H†Hb . (4)

The necessary condition for b to minimize the cost metric
(4) is the lattice point Hb lies in a hypersphere of a large
enough covering radius r. Let A(b) = {b | ‖Hb‖2 ≤ r}.

Assume that H†H is full rank. This assumption is some-
times violated (e.g. when P = K, N = 1), however, we
still can find a way to get around with further constraints.
This point will be made clearer in Section III. Using Cholesky
factorization, one can find an upper-triangle square matrix R
such that R†R = H†H . Then

r2 ≥ b†H†Hb = b†R†Rb =
M∑
i=1

M∑
k=i

(Ri,kbk)2

= (RMMbM )2 + (RM−1,MbM + RM−1,M−1bM−1)2 + . . .

The following necessary conditions can be drawn:

r2 ≥ (RMMbM )2

r2 ≥ (RM−1,MbM + RM−1,M−1bM−1)2

. . .

This set of inequalities can be used to find admissible bk

(k = 1, 2, . . . ,M) as follows. We first look for possible values
of bM . Since Rkk obtained from Cholesky factorization is
positive, the admissible integer values of bM must satisfy

−
⌈

r

RMM

⌉
≤ bM ≤

⌊
r

RMM

⌋
(5)

where �·� and �·� denote ceiling and floor functions, respec-

tively. Define LM = −
⌈

r
RMM

⌉
and UM =

⌊
r

RMM

⌋
as the

lower and upper bounds of bM . Hence LM ≤ bM ≤ UM .
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For each value of bM , define aM−1 = RM−1,MbM ,
r2
M−1 = r2 − RM,MbM , the admissible values of bM−1 are⌈−rM−1 − aM−1

RM−1,M−1

⌉
≤ bM−1 ≤

⌊
rM−1 − aM−1

RM−1,M−1

⌋
. (6)

or LM−1 ≤ bM−1 ≤ UM−1.
Similarly, all admissible values of bM−2 to b1 can be found.

We obtain the set A(b) of candidate vectors b. If the initial
radius r is too small, after the first search the set A(b) may be
empty. The radius r can be increased and the search is restarted
until A(b) is nonempty. The solution of the SVS problem (2)
can be found in the set A(b) faster than the exhaustive search
over all possible vectors b.

The above decoder to solve the SVS problem can be called
Fincke-Pohst sphere decoder (FP-SD). We now apply the FP-
SD to solve the min-max problem (3). Since there are P
lattices, one can select an initial radius r > 0, and run P FP-
SD’s in parallel. Each FP-SD for lattice L(Hi) will generate
a candidate set Ai(b). The solution vector b̂ of the min-max
problem (3) should be in the set A(b) = ∩P

i=1Ai(b). If the
initial radius r is too small, A(b) may be empty, one needs
to increase the radius and run the search again until the set
A(b) is nonempty.

There are two limitations of the above searching procedure.
First, if the number of lattices P is large, the number of FP-
SD to be run in parallel will be large; the algorithm may
be too complex to implement. Second, the complexity of the
algorithm depends largely on the initial radius.

We thus propose the combinatorial sphere decoder to solve
these two problems. The main idea of CSD is to combine
P -parallel FP-SD’s into a single sphere decoder to reduce
the complexity of P FP-SD’s greatly. Then the lattice-point
enumeration method proposed by Schnorr and Euchner [6] is
applied to reduce the dependence of the complexity on the
initial radius [4].

A large (possibly infinite) initial radius r is used for the
CSD to search for the first candidate sequence. At each step
of searching admissible values of bm (m = 1, 2, . . . ,M ), the
compound lower and upper bounds of bm are calculated by

Lm = max(L1
m, L2

m, . . . , LP
m),

Um = min(U1
m, U2

m, . . . , UP
m)

where Li
m and U i

m (k = 1, 2, . . . , P ) are the lower and upper
bounds of symbol bi

m derived from the corresponding equation
of lattice Hi.

Whenever a candidate vector b is found, the sphere radius
of CSD is updated so that

r = max
i=1,...,P

(‖Hib‖2). (7)

Since the candidate vector lies inside the initial sphere, the
new updated radius is smaller than the initial one, thus the
maximum Euclidean norm of all the lattice vectors reduces.
Then the CSD is run again to search for a new candidate
inside the new radius in a zig-zag fashion of Schnorr-Euchner
enumeration method [6]. The search is ended when no new
candidate vector is found. The solution of the min-max search
(3) is the last candidate vector found.

Remarks on the complexity: The expected complexity of SD
for CPS problem is shown to be exponential in the number of
variables for any implementation of sphere decoder, including
Schnorr-Euchner enumeration [7], [8]. Thus the complexity of
the proposed CSD is also exponential. However, the complex-
ity reduction of CSD compared with the exhaustive search is
significant. We will examine a particular application of CSD
in the following to show its effectiveness.

III. OPTIMAL PARTIAL TRANSMIT SEQUENCE SEARCH

FOR ICI REDUCTION IN OFDM SYSTEMS

In OFDM systems, ICI caused by frequency offset (FO) [9]
can be mitigated by using the partial transmit sequence (PTS)
[5]. Exhaustive search is used in [5] to find the best PTS
weights, which has exponential complexity in the number of
the PTS weights. We therefore will apply the CSD to reduce
the complexity of the PTS search.

To simplify the analysis, we consider the transmission of
OFDM signal with K subscarrier over AWGN channels and
binary PTS weights (−1, 1). Define the normalized FO by
ε = δf/∆f , where ∆f is the subscarrier spacing, δf is the
carrier FO. The baseband received signal yk at subcarrier kth
(k = 1, 2, . . . ,K) can be given by [9]

yk = S0ck + Ik + nk (8)

where ck is the data symbol sent over kth subcarrier, nk is
the additive white Gaussian noise (AWGN) at the receiver,

Ik =
K−1∑

i=0,i �=k

Skici is the ICI from the other subcarriers on

subcarrier k,

Ski =
sin [π (i − k + ε)]

K sin
[

π
K

(i − k + ε)
] exp

[
jπ

(
1 − 1

K

)
(i − k + ε)

]
,

(9)

and S0 = Skk is independent of the subcarrier index k.
The interference-to-carrier power (ICR) ratio of subcarrier

kth is given by |Ik|2
|S0ck|2 . Furthermore, the peak ICR (PICR) is

defined as [5]

PICR = max
1≤k≤K

{
|Ik|2

|S0ck|2
}

. (10)

In AWGN channels, at high signal-to-noise ratio (SNR), ICI
power dominates AWGN noise. The data symbol with higher
ICR will likely experience higher error rate. Therefore, reduc-
ing PICR will improve the error rate performance. To do this,
in [5], the data vector c

[
c1 c2 . . . cK

]T
is partitioned

into M equal-sized disjoint blocks c = [c1 c2 . . . cM ]T , each
block consists of K0 = K/M contiguous subcarriers. The
symbols of block cm are multiplied by weight bm, where
|bm| = 1, for m = 1, 2, . . . ,M . Let b = [b1 b2 . . . bM ].
Application of the PTS weights to the data vector c results
in vector ĉ. We can rewrite (8) to include the effect of PTS
weights compactly as

Y = Sĉ + N = S0IK ĉ + Ŝĉ + N (11)

where S = [Si,k], IK is the K-by-K identity matrix and
Ŝ = S − S0IK .
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We define a matrix T such that: Tki = Ŝkici, (i, k =
1, 2, ...,K) and another matrix Q by applying the fol-
lowing rule: Qkm =

∑mK0
n=(m−1)K0+1 Tkn, where k =

1, 2, ...,K,m = 1, 2, ...,M . It can be shown that the ICI term
Ik becomes Ik = qkb, where qk is the k-th row of Q. The
PICR in (10) becomes:

PICR = max
1≤k≤K

{
|qkb|2
|S0ck|2

}
= max

1≤k≤K

{
b†q̂†

kq̂kb
}

(12)

where q̂k = qk/S0ck. Let Q̂ = [q̂T
1 q̂T

2 . . . q̂T
K ]T.

It is assumed that worst-case FO ε is known at the trans-
mitter [5]. The problem of finding optimal PTS weights to
minimize PICR can be mathematically given below:

b̂ = arg min
b

max
1≤k≤K

{
b†q̂†

kq̂kb
}

. (13)

The PTS method is initially proposed to reduce the peak of
ICR [5]. However, if the total ICI power, denoted by SICR,

SICR =
K∑

k=1

‖q̂kb‖2
2 = ‖Q̂b‖2

2 = b†Q̂
†
Q̂b (14)

is minimized, the overall system BER can also be reduced. We
formulate a new problem of finding a PTS sequence subject
to minimizing the total ICI power as follows:

b̂ = arg min
b

‖Q̂b‖2 . (15)

Generalization of the minimization problems subject to peak
ICI power (13) and sum of ICI power (15) can be stated as
follows. Among K subcarriers, picking K̄ subcarriers such
that their total ICI noise power SICRK̄ is largest. Find the
optimal PTS sequence so that SICRK̄ is minimized. It is well
matched with the min-max search framework (3). When K̄ =
1, minimizing PICR (13) becomes the min-max problem (3).
Additionally, minimization of total ICI noise power (15) is
equivalent to the SVS problem (2).

Using the CSD to solve (13) and (15) requires some modifi-
cations. First, our CSD works with real basis matrices. We thus
need to convert the the complex q̂i of (13) and Q̂ of (15) into
real matrices by transformations q̄i =

[
(qi)T �(qi)T
]T

and

Q̄ =
[
(Q)T �(Q)T

]T
. Second, q̄†

i q̄i is of size M×M with
rank 2 ≤ M , Cholesky factorization does not work. We can
solve the rank deficiency problem by using a trick proposed in
[10]. The main idea in [10] is that if bk has constant modulus
(which is true for the PTS weights bk [5]), then µb†b = µM ,
where µ is a constant. Thus |q̄ib|2+µM = b†(q̄†

i q̄i+µIM )b.
The new positive-definite matrix Xi = q̄†

i q̄i + µIM can be
Cholesky factorized. Xi and Q̄ can be used for our CSD.

We present the simulation results using the CSD to search
for binary PTS weights with M = 8, 16. For binary weights,
the value of bM can be set to 1 without loss of generality. The
OFDM system with 64 subcarriers and 4-QAM modulation.
For brevity, the searches (13) and (15) are called MinMax
and MinSum searches accordingly. We implement the CSD
with Schnorr-Euchner enumeration based on the improved
algorithm in [4, Algorithms II]. The initial radius is equal
to the PICR or SICR before optimization so that at least one
candidate vector b = [1 1 . . . 1]T exists.

The average flops of the proposed algorithms for a normal-
ized FO of 10% are reported as a measure of complexity. For
M = 8, the average flops counted are 270.5 × 103, 150.1 ×
103, 12.9× 103 for exhaustive search, MinMax and MinSum,
respectively. For M = 16, these numbers are accordingly
136.35×106, 12.1×106 and 0.417×106. These results show
the efficiency of the CSD in reducing the complexity of the
PTS search.

IV. CONCLUSION

We have presented the combinatorial sphere decoder to
solve a min-max search problem, a generalization the shortest
vector search problem [3]. The settings of the presented min-
max problem can be easily extended for the closest point
search problem in the Euclidean sense. An example of utilizing
the CSD in searching optimal PTS weights to reduce the ICI
in OFDM has been presented. Recently, the problem CPS-l∞
has been applied to find the optimal PTS weights to reduce
the peak-to-average-power ratio in OFDM systems [11], [12].
The proposed CSD can well be applied for this problem, that
is similar to the PICR minimization in our example. There
may be more problems that can be solved by the proposed
CSD. This fact motivates further studies on the low complexity
implementations of CSD. During the review process, one of
the reviewers raised question "why do we study the min-max
problem (3), but not a min-min problem?" Thus the min-min
problem could be a topic for another study.
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