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Abstract— We develop a polynomial-time detector for max-
imum likelihood (ML) detection over multiple-input multiple-
output (MIMO) channels. Our proposed polynomial moment
relaxation (PMR) detection gives a unified framework for MIMO
detection with relaxation including semi-definite relaxation as a
special case. We give three approaches to replace a finite alphabet
constraint with a polynomial constraint. Since both the objective
function and the constraints are polynomials, we use a moment
relaxation approach by applying the dual theories of moments
and positive polynomials solvable by semi-definite programming.
With different relaxation orders, our PMR achieve a flexible
trade-off between complexity and performance.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems, employing
multiple antennas at both the transmitter and the receiver,
can potentially achieve remarkably high spectral efficiencies
in rich scattering multipath environments. As a result, the
design of MIMO communication systems for high date-rate
wireless communications has attracted a significant interest.
A prime example is the Bell Laboratories layered space time
(BLAST) architecture [1], which has been proposed to exploit
the potentially enormous MIMO link capacity.

In spatial multiplexing systems such as BLAST, a funda-
mental receiver function is the detection of transmitted data
symbols. The optimal maximum likelihood (ML) detector
achieves the minimum error probability for i.i.d. data symbols,
a requirement which holds in many cases. However, the
complexity of the ML detector (MLD) grows exponentially in
the number of transmit antennas and the signal constellation
size, making it computationally prohibitive in most cases.
Therefore, various computationally efficient linear receivers
such as the zero-forcing (ZF) detector and the minimum mean-
square error (MMSE) detector are popular. In [1], the V-
BLAST detector with optimal ordering, nulling and inter-
ference cancellation is proposed. However, these suboptimal
detectors cannot fully exploit the diversity order offered by the
MIMO channel. In [2], sphere decoding (SD) for the MLD
is proposed for attaining low complexity in high SNR. Even
though the VLSI implementations of SD have already been re-
ported in [3], the variation of its time complexity can be high,
leading to undesirable variable detection delays. Alternative
detectors with constant time complexity are desirable.

In this paper, we consider a relaxation approach to MIMO
detection which requires minimizing a quadratic cost function
over the discrete set of all possible transmit vectors. In the

relaxation approach, this discrete set is embedded in a larger
multidimensional continuous space and the minimization is
performed over this continuous space. The resulting minimum
solution is mapped back into the original discrete space. In
[4], semi-definite relaxation (SDR) has been applied to code-
division multiple-access (CDMA) systems with binary phase
shift keying (BPSK). However, SDR can be loose and is not
applicable to any constellations, which motivates the search
for tighter and universal relaxations. We present a unified
framework for MIMO detection with relaxation including SDR
as a special case, and some existing linear suboptimal detectors
can be considered to be further relaxations of the polynomial
moment relaxation (PMR). We find that any finite-alphabet
constraint can be relaxed to be a polynomial constraint. Three
approaches for the formulation of the polynomial constraint
are given, resulting in different tightness of relaxation. Since
both the objective function and the constraints are polyno-
mials, we use a moment relaxation approach by using the
dual theories of moments and positive polynomials [5], [6]
solvable by semi-definite programming (SDP) [7] with a
polynomial-time complexity. As the relaxation order increases,
the solution of the relaxed problem converges to that of
the MLD. Under certain conditions, the optimal solution is
achieved by the PMR. Our PMR provides a flexible trade-off
between complexity and performance. By fixing the number
of iterations in SDP, we ensure that the PMR has constant
average time complexity.

Notation: Bold symbols denote matrices or vectors. (·)T

denotes transpose. R denotes the real number set. �{x} and
�{x} denote the real part and image part of x, respectively.
‖(·)‖2 is 2-norm of (·). A circularly complex Gaussian variable
with mean µ and variance σ2 is denoted by z ∼ CN (µ, σ2).
For a matrix A, A � 0 denotes positive semi-definiteness.
The operator ⊗ denotes Kronecker product.  =

√−1. We
use Matlab notation throughout this paper.

II. SYSTEM MODEL

A MIMO system with NT transmit antennas and NR receive
antennas is considered. We focus on spatial multiplexing
systems, where the signals are spatially independent rather
than jointly encoded. NT k binary bits are mapped into NT

complex symbols from a finite constellation Q of size s = 2k

and Q = {q1, q2, . . . , qs}. The data stream is demultiplexed
into NT equal length substreams, and each of which is
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simultaneously sent through NT antennas over a rich scattering
channel. We assume that the MIMO channel is flat fading.
Each receive antenna receives signals from all the NT transmit
antennas. The received signals can be written as

r = Hx + n (1)

where x = [x1, . . . , xNT
]T , xi ∈ Q, is the transmitted

signal vector, r = [r1, . . . , rNR
]T , ri ∈ C, is the received

signal vector, H = [hi,j ] ∈ CNR×NT is the channel matrix,
and n = [n1, . . . , nNR

]T , ni ∼ CN (0, σ2
n), is an additive

white Gaussian noise (AWGN) vector. The elements of H are
identically independent distributed (i.i.d.) complex Gaussian,
hi,j ∼ CN (0, 1). The components of n are i.i.d. and ni ∼
CN (0, σ2

n). We assume that the channel is perfectly known
to the receiver, but we do not assume NT ≤ NR. The
detection proposed in this paper can also handle the case with
NT > NR. Note (1) models any linear, synchronous and flat
fading channels, i.e., it can be directly applied to multiuser
detection in CDMA. Therefore, the detector proposed in this
paper can be readily applied to CDMA systems.

Assuming uncorrelated noise and transmitted signals, the
MLD that minimizes the average error probability is given by

x̂ = arg min
x∈QNT

‖r − Hx‖2. (2)

Due to the discrete nature of Q, (2) is a NP-hard problem and
exhaustive search for x̂ has a complexity exponential in NT .

III. POLYNOMIAL CONSTRAINT FORMULATION

Three approaches for the relaxation of a finite alphabet
constraint to a polynomial constraint are given in this section.

A. Formulation I

We find that each xi ∈ Q can be expressed as

xi = f1(bi) + f2(bi), i = 1, . . . , s (3)

where bi = [bi
1, . . . , b

i
k]T , bi

j ∈ [−1, 1] for j = 1, . . . , k,
and f1(bi), f2(bi) are polynomials in bi. Therefore, Eq. (2)
becomes

ˆ̃b = arg min
b̃∈{−1,1}NT k

∥∥∥r − H(f1(b̃) + f2(b̃))
∥∥∥2

(4)

where b̃ = [(b1)T , . . . , (bNT )T ]T and f1(b̃) =
[f1(b1), . . . , f1(bNT )]T . Eq. (6) can be further relaxed
as

ˆ̃b = arg min
b̃∈R

NT k

∥∥∥r − H(f1(b̃) + f2(b̃))
∥∥∥2

s.t. b̃2
i = 1, i = 1, . . . , NT k.

(5)

For example, for QPSK, Q = {1+ , 1− ,−1+ ,−1− },
we have

f1(b1, b2) = b1, f2(b1, b2) = b2. (6)

For 8-QAM, Q = {1 + , 1 − ,−1 + ,−1 − , 3 + , 3 −
,−3 + ,−3 − }, and

f1(b1, b2, b3) = b1 + 2b2, f2(b1, b2, b3) = b3. (7)

For 8-PSK, Q = {eπi/4| i = 0, 1, . . . , 7}, and

f1(b1, b2, b3) =
1 −√

2
4

b1b3 − 1
4
b2b3 +

1 +
√

2
4

b1 − 1
4
b2

f2(b1, b2, b3) =
1 −√

2
4

b2b3 +
1
4
b1b3 +

1 +
√

2
4

b2 +
1
4
b1.

(8)

For squared QAM with s = 22k1 , we have

f1(b1, . . . , bk1) =
k1∑

i=1

bi2i−1

f2(bk1+1, . . . , b2k1) =
k1∑

i=1

bi+k12
i−1.

(9)

B. Formulation II

Due to the finite alphabet nature of Q, each xi ∈ Q satisfies
following equation

f(xi) =
s∏

j=1

(xi − qj) = 0. (10)

The ML detection problem (2) can thus be relaxed as

x̂ = arg min
x∈CNT

‖r − Hx‖2

s.t. f(xi) =
s∏

j=1

(xi − qj) = 0, i = 1, . . . , NT .
(11)

To avoid the complex operation, Eq. (11) can be transformed
into a real problem as

ˆ̃x = arg min
x̃∈R

2NT

‖r̃ − H̃x̃‖2

s.t. f1(�{xi},�{xi}) = 0 and f2(�{xi},�{xi}) = 0
i = 1, . . . , NT

(12)

where

r̃ =
[ �{r}

�{r}
]

, x̃ =
[ �{x}

�{x}
]

(13)

and

H̃ =
[ �{H} −�{H}

�{H} �{H}
]

. (14)

f1(�{xi},�{xi}) = �{f(xi)} and f2(�{xi},�{xi}) =
�{f(xi)}, which are also polynomial in �{xi} and
�{xi} with maximum order k. For example, for BPSK,
f1(�{xi},�{xi}) = �{xi}2 − 1 and f2(�{xi},�{xi}) = 0.

Specifically, for decouplable constellations, i.e., squared
QAM, f1(�{xi},�{xi}) = f(�{xi}), f2(�{xi},�{xi}) =
f(�{xi}), and f1(·), f2(·) have the same form. Therefore,
(12) can be simplified as

ˆ̃x = arg min
x̃∈R

2NT

‖r̃ − H̃x̃‖2

s.t. f(x̃i) = 0, i = 1, . . . , 2NT

(15)

where x̃i is the i-th element of x̃. For example, for 16-QAM,
f(x̃i) = (x̃i + 3)(x̃i − 3)(x̃i + 1)(x̃i − 1) = x̃4

i − 10x̃2
i + 9.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3130

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 18:12 from IEEE Xplore.  Restrictions apply. 



C. Formulation III

Due to the finite alphabet nature of Q, each xi ∈ Q also
satisfies following equation

xi = f(bi) = bi
1q1+, . . . ,+bi

sqs = qT bi and
s∑

j=1

bi
j = 1,

(16)

where bi = [bi
1, . . . , b

i
s]

T , bi
j ∈ {0, 1}, and q = [q1, . . . , qs]T .

Eq. (2) can be written as

ˆ̃b = arg min
b̃∈{0,1}NT s

‖r − HAb̃‖2

s.t.Bb̃ = eNT

(17)

where b̃ = [(b1)T , . . . , (bNT )T ]T , A = INT
⊗ qT , B =

INT
⊗ eT

s , and en denotes the n × 1 vector of all ones. By
removing the finite alphabet on {0, 1}, Eq. (17) can be further
relaxed as

ˆ̃b = arg min
b̃∈R

NT s

‖r − HAb̃‖2

s.t.Bb̃ = eNT
, b̃2

i − b̃i = 0, i = 1, . . . , NT s

(18)

where b̃i is the i-th entry of b̃.
Note that (17) can be readily transformed into an opti-

mization problem on {−1, 1} by replace b̃i with (b̃′i + 1)/2,
b̃′i ∈ {−1, 1}.

Remarks:
• After relaxation, (5) and (18) have NT k and NT s vari-

ables, respectively. If NT k > NR or NT s > NR, (5)
or (18) becomes a rank deficient system, which can
be solved using the moment relaxation in Section IV.
However, increasing the rank difference NT k − NR or
NT s − NR, the performance may degrade significantly.

• The polynomial order in the formulation (15) is s/2 for
squared QAM constellations. Increasing the constellation
size, the problem size increases drastically in the moment
relaxation in Section IV. To overcome these difficulties,
hybrid formulations can be used. For example, for 16-
QAM, we can combine formulations I and II, and for
each xi ∈ Q, we have xi = bix̃i, where bi ∈ {−1, 1}
and x̃2

i − 4x̃i + 3 = 0. The polynomial order is reduced
from 4 to 3. We can also combine formulations I and
III. For each xi ∈ Q, we have xi = bi

1(3bi
2 + bi

3), where
bi
1 ∈ {−1, 1}, bi

2, b
i
3 ∈ {0, 1} and bi

2 + bi
3 = 1. The

number of variables is reduced from 4 to 3.

IV. MOMENT RELAXATION FOR POLYNOMIALS

Both the objective function and constraints in the three
formulations are polynomials. In the following, we consider a
general polynomial constrained optimization problem:

P : min
x∈Rn

p(x)

s.t. gi(x) ≥ 0, i = 1, . . . , r,
(19)

where p(x) is a real-valued polynomial of degree at most m,
and gi(x) is a real-valued polynomial of degree at most wi,

i = 1, . . . , r. If there exists an equality constraint f(x) = 0,
we can rewrite it as f(x) ≥ 0 and −f(x) ≥ 0. P includes
all the three polynomial formulations in Section III. P can be
written as

PK : min
x∈K

p(x) (20)

where K is a compact set defined by polynomial inequalities
gi(x) ≥ 0.

Before preceding, we define the basis for the m-degree real-
valued polynomials as

1, x1, . . . , xn, x2
1, x1x2, . . . , x

2
n, . . . , xm

1 , . . . , xm
n . (21)

Let s(m) be its dimension. The m-degree polynomial p(x)
can then be written as

p(x) =
∑
α

pαxα (22)

where α = [α1, . . . , αn], xα = xα1
1 xα2

2 · · ·xαn
n , and∑n

i=1 αi ≤ m. p = [p[0,0,...,0], . . . , p[0,0,...,m]]T ∈ Rs(m) is
the coefficient vector of p(x) in the basis (21).

The mean idea of moment relaxation is to replace PK with
the equivalent problem [5]

PK : min
µ∈P(K)

∫
p(x)µ(dx) (23)

where PK is the space of finite measures on K. We have the
following proposition

Proposition 1: The problems PK and PK are equivalent in
that

(a) inf PK = inf PK .
(b) If x∗ is a global minimizer of PK , µ = δx∗ is a global

minimizer of PK .
(c) If x∗ is the unique global minimizer of PK , µ = δx∗

is the unique global minimizer of PK .

The proof of Proposition 1 is trivial and can be found in [5].
Since p(x) is a polynomial of degree at most m,∫
p(x)µ(dx) involves only the moments of µ up to order m,

which can be expressed as∫
p(x)µ(dx) =

∑
α

pα

∫
xαµ(dx) =

∑
α

pαyα (24)

where yα =
∫

xαµ(dx). Clearly, the objective function in
PK is linear in the moment variables yα. One may promptly
conclude that non-convex problem PK is transformed into a
linear programming problem or a convex problem in y =
[y[0,...,0], . . . , y[0,...,m]]T , which can be readily solved. How-
ever, y is also constrained to be the moments of a representing
measure µ. Given an arbitrary y, there may not exist a measure
µ, whose moments up to order m coincide with y.

In the one-dimensional case n = 1, characterizing those y
that have a representing measure is called the Hamburger mo-
ment problem [8]. Various necessary and sufficient conditions
for the existence of a representing measure are available in
the one-dimensional case. The theory of moments is in duality
with the theory of nonnegative polynomials and Hilbert’s 17th
problem on the representation of nonnegative polynomials
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as sum of squares, which is always possible in the one-
dimensional case. However, in the multidimensional case, not
every nonnegative polynomial can be written as a sum of
squares [5], and no sufficient condition exists for the existence
of a representing measure. We give a necessary condition in
the following.

We define the moment matrix Mm(y) of dimension s(m).
Mm(y) is constructed as follows. If Mm(y)(1, i) = yα

and Mm(y)(j, 1) = yβ , then Mm(y)(i, j) = yα+β , where
α + β = [α1 + β1, . . . , αn + βn]. Let q(x) be an arbitrary
polynomial of degree at most m with the coefficient vector
q = [q[0,0,...,0], . . . , q[0,0,...,m]]T . We have∫

q2(x)µ(dx) = qT Mm(y)q ≥ 0 (25)

for all q ∈ Rm. Therefore, the necessary condition that y
corresponds to moments of some probability measure µ on K
is that Mm(y) must be positive semi-definite or Mm(y) � 0.
Furthermore, since gi(x) ≥ 0, we have∫

gi(x)q2(x)µ(dx) = qT Mm(giy)q ≥ 0 (26)

for all q ∈ Rm, where the (j, k)-th entry of Mm(giy) is
defined as

Mm(giy)(j, k) =
∑
α

(gi)αyα+β , (27)

and yβ is the (j, k)-th entry of Mm(y). Thus, we also require
Mm(giy) � 0.

Let w̃i = �wi/2� be the smallest integer larger than wi/2,
and choose an integer N ≥ �m/2� and N ≥ maxi wi. Since
p(x) is also a polynomial of degree at most 2N with the
coefficients of monomials of degree higher than m zero, we
also have MN (y) � 0, and similarly MN−w̃i

(giy) � 0.
The N -th order moment relaxation problem is given by the
following positive semi-definite programming problem

QN
K : min

y
pT y

s.t. MN (y) � 0
MN−w̃i

(giy) � 0, i = 1, . . . , r.

(28)

Note that QN
K is a convex optimization problem since its

object and constraint are both convex. Let MN (y) = B0 +∑
α�=0 Bαyα (y[0,...,0] = 1) and MN−w̃i

(giy) =
∑

α Ci,αyα.
From the duality theory of SDP [7], the dual problem of QN

K

is defined by(
QN

K

)∗
: max

X,Zi

− X(1, 1) − gi(0)Zi(1, 1)

s.t. tr (X,Bα) +
r∑

i=1

tr (Zi,Ci,α) = pα, α = 0

X � 0, Zi � 0, i = 1, . . . , r.
(29)

Let p∗K and (qN
K )∗ be the minimum value of PK and QN

K ,
respectively. We have the following theorem.

Theorem 1: [5]

(a)
lim

N→+∞
(qN

K )∗ = p∗K . (30)

Moreover, as N → +∞, there is no duality gap between
QN

K and
(
QN

K

)∗
.

(b) If p(x) − p∗K has the representation

p(x) − p∗K = q(x) +
r∑

i=1

gi(x)ti(x), (31)

where q(x) is a polynomial of degree at most 2N , ti(x)
is a polynomial of degree at most 2N −wi, i = 1, . . . , r,
all sums of squares, then (qN

K )∗ = p∗K and there is no
duality gap between QN

K and
(
QN

K

)∗
. For every optimal

solution x∗ of PK , the vector

y∗ = [1, x∗
1, . . . , x

∗
n, (x∗

1)
2, . . . , (x∗

1)
2N , . . . , (x∗

n)2N ]T

(32)
is a global minimizer of QN

K . Moreover, for every optimal
solution (X∗,Z∗

1, . . . ,Z
∗
r) of

(
QN

K

)∗
, we have

p(x) − p∗K =
r0∑

i=1

λiq
2
i (x) +

r∑
i=1

gi(x)
ri∑

j=1

γi,jt
2
i,j(x)

(33)
where the coefficients vectors of the polynomials qi(x),
ti,j(x) are the eigenvectors of X∗ and Z∗

i with respective
to eigenvalues λi, γi,j , and r0 and ri is the number of
positive eigenvalues of X∗ and Z∗

i , respectively.
The proof of Theorem 1 can be found in [5]. Theorem 1
implies that even though MN (y) � 0 and MN−w̃i

(giy) �
0 are only necessary conditions, they are also sufficient as
N → +∞. Moreover, for finite N , (qN

K )∗ always provides a
lower bound on p∗K .

In (5) and (18), the variables have {−1,+1} or {0, 1}
constraint. In (19), these constraints imply x2

i = xi or x2
i = 1.

Therefore, we have

xα1
1 xα2

2 · · ·xαn
n = xβ1

1 xβ2
2 · · ·xβn

n ,

{
βi = 0, αi = 0
βi = 1, αi > 0

(34)
or

xα1
1 xα2

2 · · ·xαn
n = xβ1

1 xβ2
2 · · ·xβn

n ,

{
βi = 0, αi is even
βi = 1, αi is odd

.

(35)
The variables yα in QN

K can be replaced by yβ in both the
objective and constraint, and the constraints QN

K associated
with gi(x) = x2

i − xi and gi(x) = xi − x2
i (for {0, 1}) can

be removed and are hidden in yβ . The problem QN
K can be

simplified as

QN
K : min

ỹ
p̃T ỹ

s.t. M̃N (ỹ) � 0

M̃N−w̃i
(g̃iỹ) � 0, i = 1, . . . , r̃

(36)

where p̃ is formed by combining the coefficients of yα

with the same yβ after transformation, r̃ is the number of
constraints except those related to {0, 1} or {−1, 1}, and
ỹ = [y[0,...,0], . . . , y[1,...,1]]T . Since the monomial xβ has a
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degree at most n with β = [1, . . . , 1], ỹ has no more than∑n
i=1

(
n
i

)
= 2n − 1 variables.

Let w̃ = maxi w̃i. We have the following theorem for {0, 1}
or {−1,+1} constraint problem.

Theorem 2:

(a) For every N ≥ n + w̃,

(qN
K )∗ = p∗K . (37)

There is no duality gap between QN
K and

(
QN

K

)∗
.

(b) For every optimal solution x∗ of PK , the vector

y∗ = [1, x∗
1, . . . , x

∗
n, (x∗

1)
2, . . . , (x∗

1)
2N , . . . , (x∗

n)2N ]T

(38)
is a global minimizer of QN

K , and there exists a repre-
senting measure for y∗.

The proof of Theorem 2 can be found in [6]. Since ỹ has
at most 2n − 1 variables, it can be readily verified that when
N ≥ n, M̃N (ỹ) has the same rank as M̃n(ỹ), and M̃N (ỹ) � 0
is equivalent to M̃n(ỹ) � 0. Therefore, if N ≥ n + w̃, (36)
can be further simplified as

QN
K : min

ỹ
p̃T ỹ

s.t. M̃n(ỹ) � 0

M̃N−w̃i
(g̃iỹ) � 0, i = 1, . . . , r̃.

(39)

Theorem 2 can also be understood from intuition. When N ≥
n+w, there are 2n −1 variables in QN

K , which is equal to the
number of candidates (2n) in the discrete search space minus
one if no relaxation is used. In fact, QN

K does an exhaustive
search, which should return the optimal solution. Generally,
with our MIMO detection problem (5), (12) and (18) at hand,
(qN

K )∗ is guaranteed to achieve p∗K when the relaxation order
N is larger than a certain number N ′ from the same intuition.

QN
K is an SDP problem and can be efficiently solved

using the Matlab toolbox SeDuMi [9] employing interior point
method [7]. We can obtain y∗ and (X∗,Z∗

1, . . . ,Z
∗
r) by solv-

ing QN
K . From Theorem 1, if x̂ = [y∗

[1,0,...,0], . . . , y
∗
[0,0,...,1]]

T

is also the optimal solution of PK , (qN
K )∗ = p∗K . We decide

whether x̂ achieves the global minimum by comparing (qN
K )∗

with p(x̂). If |(qN
K )∗− p(x̂)| < ε|p(x̂)|, the global optimum is

achieved and x̂ is the optimal solution, where ε is a threshold
coefficient; otherwise, we can extract the optimal solution of
PK by exploiting the fact that if (qN

K )∗ = p∗K , (33) holds. Since
the right hand side of (33) is a sum of squares, a necessary
and sufficient condition for x to achieve p∗K is qi(x) = 0,
for i = 1, . . . , r0. Therefore, the optimal solution is the
common root of the set of equations qi(x) = 0, i = 1, . . . , r0.
The roots of a system of multivariate polynomial equations
can be found by following the approach in [10], where the
multivariate problem is reduced to a univariate problem. Due
to the use of floating-point arithmetic, the set of equations
may not have common roots. In [10], a clustering technique is
used to approximate the common roots. If the clustering fails,
it means that no common root can be found, (qN

K )∗ = p∗K and
no optimal solution to PK can be obtained by solving QN

K .
We can choose x̂ as a suboptimal solution.

The MIMO detector using the moment relaxation is called
polynomial moment relaxation (PMR) detector.

Remarks:

• Our experimental results reveal that in practice, especially
in MIMO detection, (qN

K )∗ is very close to p∗K for a
relatively small relaxation order N , i.e., N = 2, 3. In
addition, the probability to achieve the exact optimal
value p∗K is high for a small relaxation order. Therefore,
our PMR detector performs close to the MLD.

• Let us consider the optimization problem

min
x∈Rn

xT Ax − 2dT x

s.t. xi ∈ {−1, 1}.
(40)

When the moment relaxation order is N = 1, the moment
matrix M1(y) has dimension n + 1. The (i, j)-th entry
of M1(y) is

M1(y)(i, j) =
∫

xi−1xj−1µ(dx) (41)

where x0 = 1. Let X = M1(y) and QN
K becomes

QN
K : min

X
tr (QX)

s.t.X � 0
X(i, i) = 1, i = 1, . . . , n

(42)

where

Q =
[

A −d
−d 0

]
. (43)

Eq. (42) is the same as the SDR for CDMA in [4].
Therefore, PMR generalizes SDR. It has been shown in
[4] that some existing linear detectors can be considered
to be further relaxations of the SDR. They are also further
relaxations of the PMR.
In [4], randomization is applied after obtaining X. The
solution extraction procedure in PMR can also be applied
to SDR. We first test whether |(qN

K )∗ − p(x̂)| < ε|p(x̂)|.
If so, x̂ is the optimal solution; otherwise, randomization
is performed, which saves the complexity.
Since M1(y) is a submatrix of MN (y) for N ≥ 1, we can
get an approximate solution by performing randomization
on M1(y) if the common roots finding fails and {−1, 1}
constraint exists.

• For the PMR, the complexity per iteration is also O(s3)
[11], where s is the number of variables in QN

K . Given a
tolerance ε, the number of iterations required is at most
O(s0.5 log(1/ε)) [11]. A solution to QN

K can be found
in at most O(s3.5) operations. With relaxation order N ,
the number of variables for {−1,+1} constraint is s =∑2N

i=1

(
n
i

)
, With small N and large n, s is significantly

less than 2n. Moreover, the complexity of PMR can be
made a constant by fixing the number of iterations in
solving QN

K .
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Fig. 1. Performance comparison of polynomial moment relaxation detectors
in an 2 × 2 MIMO system with 16QAM.
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Fig. 2. Performance comparison of polynomial moment relaxation detectors
in an 4 × 4 MIMO system with 16QAM.

V. SIMULATION RESULTS

The error rates of our proposed polynomial moment relax-
ation detectors are simulated for a MIMO system over a flat
Rayleigh fading channel. PMR I denotes the moment relax-
ation detector with formulation I. We compare our detectors
with the MLD.

In Fig. 1, we compare different formulations for a 2 × 2
MIMO system with 16QAM. Both PMR I with N = 1 and
PMR II with N = 2 can only achieve a diversity order 1. An
error floor is shown for PMR III. This is because the rank
difference NT s − NR is very large in Formulation III with
N = 1. A symbol error occurs if H is ill-conditioning. When
N increases by 1, both PMR I and II perform close to the
MLD and achieve a diversity order 2.

Fig. 2 show the BER performance of different PMR detec-

tors in a 4 × 4 MIMO system with 16QAM. Similarly, both
PMR I with N = 1 and PMR II with N = 2 can only achieve
a diversity order 1, and an error floor is shown for PMR III.
The number of variables for PMR I with N = 1 and PMR II
with N = 2 is 289 and 494, respectively. Therefore, PMR I
with N = 1 has less complexity than PMR II with N = 2,
while the former performs slightly better than the latter. When
N is increased by one, the diversity order of both PMR I and
II is also increased by one. Let w̃ = max w̃i. We conjecture
that the diversity order of PMR detector is N − w̃ + 1, which
increases by increasing N .

VI. CONCLUSION

In this paper, we have given a unified relaxation framework
for MIMO detection. The polynomial moment relaxation was
developed including SDR as a special case. We have presented
three approaches to replace the finite-alphabet constraint with
a polynomial constraint. Since both the objective function and
the constraints are polynomials after the transformation, we
developed the moment relaxation approach by using the dual
theories of moments and positive polynomials. The resulting
problem can be solved by semi-definite programming with
polynomial-time complexity. As the relaxation order increases,
the solution of the relaxed problem monotonously converges
to that of the MLD. Our PMR provides a flexible trade-off
between complexity and performance. Interestingly, further
work includes analyzing the probability of obtaining the ML
solution with different relaxation order, the upper bound on the
error probability, and the diversity order achieved by PMR.
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