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Abstract— This paper considers multiple symbol differential
detection (DD) for both single-antenna and multiple-antenna
systems over flat Ricean-fading channels. We derive the optimal
multiple symbol detection (MSD) decision rules for both M -
ary differential phase-shift keying (MDPSK) and differential
unitary space-time modulation (DUSTM). The sphere decoder
(SD) is adopted to solve the MSD for MDPSK. As well, an
improved SD is proposed by using the Schnorr-Euchner strategy.
A suboptimal MSD based decision feedback DD algorithm is
proposed for the MSD of DUSTM. We also develop a sphere
decoding bound intersection detector (SD-BID) to optimally
solve the MSD problem for DUSTM, which still maintains low
complexity. Simulation results show that our proposed MSD
algorithms for both single-antenna and multiple-antenna systems
reduce the error floor of conventional DD but with reasonably
low computational complexity.

I. INTRODUCTION

Digital receivers using differential detection (DD) are at-
tractive for flat fading channels, because such receivers do not
require channel state information (CSI) and are robust against
the carrier phase ambiguity. However, it is well-known that the
conventional differential detection (CDD) has an irreducible
error floor in flat fading, time selective channels and is 3 dB
worse than its coherent counterpart. In single-antenna systems,
multiple-symbol detection (MSD) of M -ary differential phase-
shift keying (MDPSK) has been proposed in [1], where N +1
consecutive received samples are jointly processed to detect
N data symbols. MSD reduces the error floor, and when N
goes to infinity, the performance of MSD converges to that of
coherent detection (CD). But the complexity of MSD is usually
high, exponential in N − 1, which prevents it from practical
use. Recently, the sphere decoder (SD) [2] has been applied to
reduce the complexity of MSD [3]. On the other hand, decision
feedback differential detection (DF-DD) [4] offers reasonable
performance while still maintaining low complexity.

DD for singe-antenna systems has recently been generalized
to multiple-antenna systems. Hochwald and Sweldens [5] have
developed a general framework for differential unitary space-
time modulation (DUSTM) via finite group theory [5]. They
exist for any number of antennas. Constellation design, search
method and performance are treated in detail in [5]. DUSTM
performs poorly unless the fading rate is low. Naturally,

attempts have been made to extend MSD to DUSTM. In [6],
noncoherent receivers for DUSTM based on MSD and DF-DD
are derived. We have recently derived, for MSD of DUSTM
over quasi-static fading channels, an efficient MSD bound
intersection detector (BID) in [7], [8]. Our BID is optimal
and can be more efficient than [6] in high signal-to-noise ratio
(SNR) regimes.

In certain radio propagation environments, the channel can
be described by a Ricean distribution with a Rice factor K.
There are only a handful of papers dealing with DD receivers
for Ricean channels [9]. For single-antenna systems, a DF-
DD scheme for flat Ricean-fading channels based on linear
prediction is proposed in [9]. A MSD-based DF-DD decision
rule for Ricean fading is also given in [9]. Besides this work,
no other paper treats DD in single-antenna Ricean channels.
Furthermore, no other paper treats DD and MSD schemes for
multiple-antenna systems over Ricean channels.

In this paper, we first investigate the optimal and efficient
MSD of MDPSK. A general MSD decision rule is derived
for flat Ricean-fading channels. The decision rule reduces to
the one in [10] for Rayleigh fading channels when K = 0
and the one in [1] for AWGN channels when K → ∞. We
consider using the SD to solve the MSD problem, which has an
integer quadratic form. To further reduce the SD complexity,
the Schnorr-Euchner search strategy [11] is extended to PSK
constellations. We then generalize the optimal decision rule
to multiple-antenna Ricean channels. A quasi-static fading
channel is assumed. To the best of our knowledge, the optimal
MSD decision rule for DUSTM transmitted over Ricean
channels and an efficient detector have not been derived in
the open literature. However, the MSD complexity of DUSTM
grows exponentially with LN , where L is the DUSTM con-
stellation size. In order to reduce this detection complexity, we
propose a suboptimal MSD-based DF-DD using our BID [7].
Although the proposed DF-DD scheme does not achieve ML
performance, it performs substantially better than CDD with
complexity only linear in N . Furthermore, we combine the
branch and bound (BnB) principle and BID, and give a sphere
decoding bound intersection detector (SD-BID), which offers
ML performance. Surprisingly, in high SNR, the complexity
of SD-BID is even lower than that of the DF-DD scheme.
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II. MULTIPLE SYMBOL DIFFERENTIAL DETECTION IN

SINGLE-ANTENNA SYSTEMS

A. Single-antenna system model

Let us consider a communication system employing M -
ary DPSK. l = log2(M) binary bits are Gray mapped to
data-carrying symbols v[n] from an M -ary PSK constellation
V = {e2πm/M |m = 0, 1, . . . , M − 1}, where n is the symbol
discrete-time index. v[n] is then differentially encoded, and
the corresponding channel input symbols s[n] are obtained as

s[n] = v[n]s[n − 1], n ∈ Z. (1)

We assume that the channel does not change significantly
during one symbol interval T , and transmitter and receiver
filters with square-root Nyquist characteristics [4]. Therefore,
the channel is frequency-nonselective (flat), and the received
signal r[n] can be written as

r[n] = h[n]s[n] + w[n], n ∈ Z (2)

where h[n] is the Ricean fading gain and w[n] ∼ CN (0, σ2
n)

denotes additive white Gaussian noise (AWGN). h[n] is a
complex Gaussian random process, and can be expressed as

h[n] = hd[n] + hs[n] (3)

where hd[n] is the direct component hd[n] = E{h[n]} =
e2πfDTnhm (hm is the magnitude of the fading process, and
fD is the Doppler frequency due to users’ mobility). The
scattered component hs[n] is a zero mean Gaussian process
with autocovariance function ϕh[k] = E{(h[n + k] − hd[n +
k])(h[n] − hd[n])∗} = σ2

hJ0(2πfDTk) (J0(·) denotes the
zeroth order Bessel function of the first kind, and σ2

h =
E{|hs[n]|2}) according to the Jakes’ model. Note, however,
that the MSD decision metric derived in the following is not
limited to the Jakes’ model. The Rice factor K is defined as

K =
|hm|2
σ2

h

. (4)

B. Multiple-symbol differential detection for MDPSK

To reduce the error floor in time selective channels and
bridge the gap between CDD and CD, MSD jointly detects the
N − 1 differentially encoded symbols given N consecutively
received symbols. We consider the received symbols from n =
k + 1 to n = k + N . Without loss generality, we set k = 0
and omit k in the following. The input output relationship (2)
can be written in vector form as

r = SDh + w (5)

where r = [r[1], . . . , r[N ]]T , w = [w[1], . . . , w[N ]]T , h =
[h[1], . . . , h[N ]]T , and SD is a diagonal matrix

SD =




s[1]
s[2]

. . .
s[N ]


 . (6)

Using (3), (5) can be rewritten as

r = SD(hs + hd) + w (7)

where hs = [hs[1], . . . , hs[N ]]T , and hd =
[hd[1], . . . , hd[N ]]T . Since both hs and w are complex
Gaussian, SDhs + w is also complex Gaussian. Therefore, r
is a Gaussian vector, and the conditional probability density
function (pdf) given SD is

f(r|SD) =
1

πN detCr
exp

{−(r − r̄)HC−1
r (r − r̄)

}
(8)

where r̄ = SDhd, and Cr is the covariance matrix of r and
is given by

Cr =SDChSH
D + σ2

nIN . (9)

The Ch in (9) denotes the covariance matrix of h and can be
represented as

Ch =




ϕh[0] ϕh[1] · · · ϕh[N − 1]

ϕh[−1] ϕh[0]
...

...
...

...
. . .

...
ϕh[−N + 1] · · · · · · ϕh[0]


 . (10)

Since s[n] are MPSK symbols, SDSH
D = IN . Hence,

detCr = det(SDChSH
D + σ2

nIN ) = det(Ch +
σ2

nIN )SH
DSD = det(Ch + σ2

nIN ) is independent of SD.
Therefore, the ML MSD decision rule, from maximizing the
pdf (8), is equivalent to minimizing

g(SD) =(SH
Dr − hd)H(Ch + σ2

nIN )−1(SH
Dr − hd). (11)

Note that SH
D is a diagonal matrix. Since the multiplication

between a diagonal matrix and a vector is commutative, we
can rewrite (11) as

g(s) = (RDs∗ − hd)H(Ch + σ2
nIN )−1(RDs∗ − hd) (12)

where RD is a diagonal matrix with diagonal elements from
vector r, and s = [s[1], s[2], . . . , s[N ]]T . The matrix (Ch +
σ2

nIN )−1 can be Cholesky factorized as (Ch + σ2
nIN )−1 =

UHU, where U is upper triangular. Let G = (URD)∗ (also
upper triangular) and y = (Uhd)∗. The MSD decision rule
for Ricean channels can be obtained as

ŝ = arg min
s∈VN

‖y − Gs‖2. (13)

If ŝ has been estimated from (13), the transmitted signals can
be differentially detected as

v[k] = ŝ[k]ŝ∗[k − 1]. (14)

Remarks:
• When K = 0 ⇒ hd = 0, (13) reduces to the deci-

sion metric in [3], which corresponds to Rayleigh-fading
channels. When K → ∞, σ2

h → 0, and (13) reduces to

ŝ = arg min
s∈VN

‖r − SDh‖2. (15)

Eq. (15) corresponds to coherent detection with perfect
CSI.
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C. Sphere-decoder based MSD

The Fincke and Phost (FP) [2] is well-known as the SD in
communication theory.

Basically, the SD examines the candidate vectors s that lie
within a hypersphere of radius R:

‖y − Gs‖2 ≤ R2. (16)

Suppose that the initial radius R is large enough so that the
hypersphere (16) contains the ML solution. Let the entries of
G be denoted by gi,j , i ≤ j. The diagonal terms of G are
non-zero (gi,i �= 0). Since G is upper triangular, (16) can be
written as

N∑
i=1

∣∣∣∣∣∣yi −
N∑

j=i

gi,jsj

∣∣∣∣∣∣
2

≤ R2. (17)

Note that each term in (17) is nonnegative. A necessary
condition for s to lie inside the hypersphere is

|yN − gN,N ŝN |2 ≤ R2 (18)
...

...
N∑

i=1

∣∣∣∣∣∣yi −
N∑

j=i

gi,j ŝj

∣∣∣∣∣∣
2

≤ R2. (19)

Eqs. (18)-(19) can be checked one by one. The candidate set
for sN can be obtained as

IN = {s| |yN − gN,Ns|2 ≤ R2, s ∈ V}. (20)

After ŝk+1 has been chosen, we define

d2
k+1 =

∣∣∣∣∣∣yk+1 −
N∑

j=k+1

gk+1,j ŝj

∣∣∣∣∣∣
2

(21)

R2
N = R2, R2

k = R2
k+1 − d2

k+1. (22)

We can get the candidate set for sk as

Ik =


s

∣∣∣∣∣∣

∣∣∣∣∣∣yk − gk,ks −
N∑

j=k+1

gk,j ŝj

∣∣∣∣∣∣
2

≤ R2
k, s ∈ V


 .

(23)
When a valid candidate vector ŝ is found, all the Rk’s are
updated according to

R2
N = ‖y − Gŝ‖2, R2

k = R2
k+1 − d2

k+1, k = N − 1, . . . , 1.
(24)

This updating results in a smaller hypersphere with ŝ on its
surface. The same process continues until all the candidate
points within the hypersphere have been checked. The vector
with minimum g(ŝ) in (12) is output as the ML solution.

The initial radius R should be chosen according to the
statistic of g(s) in (11)

g(s) = (SH
Dr − hd)H(Ch + σ2

nIN )−1(SH
Dr − hd). (25)

If s is the true solution, using (5), x = SH
Dr−hd = hs+SH

Dw
is a zero mean complex Gaussian vector with autocovariance

matrix Cx = Ch+σ2
nIN . Therefore, e = xH(Ch+σ2

nIN )−1x
is a chi-square random variable with 2N degrees of freedom.
We can choose R2 to make the probability that e is less than
R2 very high:

∫ R2

0

xN−1e−x/2

Γ(N)2N
dx = 1 − ε, (26)

where ε is set to a value close to 0 (e.g., ε = 0.1), and Γ
is the gamma function. If no signal point was found within
the hypersphere, we increase the probability 1 − ε (e.g., ε =
0.12, 0.13, . . .) until the ML solution is found.

The SD complexity is dependent on the initial radius.
To reduce such dependence, Schnorr and Euchner (SE) [11]
suggested an important improvement of the SD; the main idea
is that the algorithm should first examine the signal points
nearest to the center of the hypersphere. While a modified SE
principle has been applied by Lampe et al. [3] in a zigzag
fashion, they do not sort the candidate set Ik according to d2

k.
Note that d2

k (21) can be rewritten as

d2
k = Ak − Bk cos

(
2πmk

M − φk

)
(27)

Ak =
∣∣∣yk −∑N

j=k+1 gk,j ŝj

∣∣∣2 + g2
k,k (28)

Bk = 2
∣∣∣gk,k

(
yk −∑N

j=k+1 gk,j ŝj

)∗∣∣∣ (29)

φk = arg
[
gk,k

(
yk −∑N

j=k+1 gk,j ŝj

)]
(30)

Now (23) can be written as, mk = 0, 1, . . . ,M − 1,

Ik =
{

e 2π
M mk

∣∣∣∣Ak − Bk cos
(

2πmk

M
− φk

)
≤ R2

k

}
. (31)

For each mk ∈ {0, 1, . . . ,M − 1}, we compute d2
k and test

whether it is less than R2
k. If it is less than R2

k, mk is stored
in Ik, and d2

k is stored in Dk. Finally, Ik is sorted according
to d2

k. Note that each test in (27) only needs 4 flops but in
[3] it needs 7 flops. The sorting and R2

k updating increase
complexity savings.

D. MSD-based DF-DD

To further reduce the complexity, the MSD (13) can be
easily modified to MSD based DF-DD. Assuming correct
decisions on ŝN−1 = [ŝ[1], ŝ[2], . . . , ŝ[N − 1]]T , the MSD
based DF-DD can be obtained as

ŝ[N ] =

arg min
s[N ]∈V

‖y − G(:, 1 : N − 1)ŝN−1 − G(:, N)s[N ]‖2.

(32)

The V-BLAST detection algorithm [12] for multiple-antenna
systems can also be used to solve (13). It is interesting
to compare SD, DF-DD and V-BLAST. In V-BLAST, the
estimation of s[i] is based on the previous decisions ŝ[j],
i + 1 ≤ j ≤ N , which can be explained as DF-DD with
observation size N − i + 1. Therefore, V-BLAST involves N
DF-DD with window size 1, 2, . . . , N . The average complexity
of V-BLAST is only about 1/2 of that with DF-DD but it
results in a large error floor. The SD can generalize V-BLAST.
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In each step, it does not make hard decision. In high SNR, the
SD complexity approximates that of V-BLAST and is also less
than that of DF-DD. Hence, SD outperforms V-BLAST and
DF-DD in both performance and complexity in high SNR.

III. MULTIPLE SYMBOL DIFFERENTIAL DETECTION IN

MULTIPLE-ANTENNA SYSTEMS

A. Multiple-antenna system model

We consider a multiple-antenna system with Nt transmit and
Nr receive antennas. Each block of the transmitted symbols
occupies T time slots with interval Ts, resulting the block
interval TB = TsT . The transmitted symbols during the nth
block is denoted by the T × Nt matrix S[n] = [st,i[n]], t =
1, 2, . . . , T and i = 1, 2, . . . , Nt, where st,i[n] is transmitted
from the ith antenna in the t + (n − 1)T time slot.

We consider a flat Ricean-fading multiple-antenna channel
from a rich scattering environment. The complex base-band
received signal at the jth receive antenna, j = 1, 2, . . . , Nr,
at time slot t in the nth block can be written as

rt,j [n] =
Nt∑
i=1

hi,j [n]st,i[n] + wt,j [n], (33)

where hi,j [n] denotes the channel gain from the ith transmit
antenna to the jth receive antenna, and wt,j [n] is the complex
additive white Gaussian noise at the jth receive antenna.
The additive Gaussian noise at different receive antennas are
independent and have equal variance σ2

n. Similar to single-
antenna channels, hi,j [n] is a complex Gaussian random pro-
cess and can also be expressed as the summation of the direct
component (hd)i,j [n] and the scattered component (hs)i,j [n]

hi,j [n] = (hd)i,j [n] + (hs)i,j [n]. (34)

Assuming the Rice factor K is common to all paths, K is de-
fined as K = |(hd)i,j |2/E{|(hs)i,j |2} [13]. We assume that all
path gains are statistically independent (E{hi,j [n]h∗

i′,j′ [n]} =
0) and have the same autocorrelation function ϕh(τ). We
assume that the fading channel is quasi-static (QS), i.e.,
channel variations within each block are negligible, whereas
the channel changes from block to block1. Therefore hi,j [n]
has correlation ϕh[k] = ϕh(kTB). Typically, when Jakes’
model is used, ϕh[k] is given by

ϕh[k] = E{(hs)i,j [n](hs)∗i,j [n + k]} = σ2
hJ0(2πkfdTB),

(35)
where σ2

h denotes the variance of the fading process, and fD

is the Doppler spread due to users’ mobility. The QS condition
is met when fDTB < 0.03 [6]. The matrix form of (33) is

R[n] =S[n]H[n] + W[n]
=S[n](Hd[n] + Hs[n]) + W[n],

(36)

where R[n] = [rt,j [n]] is the T × Nr receive matrix, H[n] =
[hi,j [n]] is the Nt ×Nr channel matrix, and W[n] = [wt,j [n]]

1QS assumption is only used for derivation. However, we do not assume
QS in the simulation.

is the T × Nr noise matrix. The second equality comes from
(34), where Hd[n] = [(hd)i,j [n]], and Hs[n] = [(hs)i,j [n]].

In [5], the signals are modulated by choosing a matrix from
a finite group V = {Vl, l = 0, 1, . . . , L − 1}, where Vl is a
T × Nt unitary matrix (VlVH

l = IT ), and L = 2NtR, and R
denotes the data rate. To make DUSTM feasible, we assume
T = Nt and V0 = INt

. The NtR binary information bits are
first converted to an integer l within [0, L−1], and V[n] = Vl

is chosen from V . The transmitted symbol at the nth block is
encoded as

S[n] = V[n]S[n − 1]. (37)

In the first block, S[0] = V0 is sent. The internal composition
property of a group ensures that S[n] ∈ V and is unitary for
any positive n. Specifically for diagonal constellations, the
unitary matrices Vl are chosen as

Vl = diag{e2πu1l/L, e2πu2l/L, . . . , e2πuNt l/L}, (38)

where ui for i = 1, 2, . . . , Nt are optimized to achieve the
maximum diversity product [5].

B. Multiple-symbol differential space-time detection

We consider the sequence from n = k + 1 to n = k + N .
Let R̄[k] = [RH [k + 1],RH [k + 2], . . . ,RH [k + N ]]H and
H̄[k] = [HH [k+1],HH [k+2], . . . ,HH [k+N ]]H . We ignore
the time index k in the following for simplicity. The input-
output relationship for the N symbols can be expressed as

R̄ =S̄DH̄ + W̄ = S̄D(H̄d + H̄s) + W̄, (39)

where S̄D is a block diagonal matrix

S̄D =




S[1]
S[2]

. . .
S[N ]


 (40)

and H̄d = [HH
d [1],HH

d [2], . . . ,HH
d [N ]]H ,

H̄s = [HH
s [1],HH

s [2], . . . ,HH
s [N ]]H , and W̄ =

[WH [1],WH [2], . . . ,WH [N ]]H . Similar to the argument in
single-antenna systems, vec(R̄) is also a complex Gaussian
vector, and the conditional pdf given S̄D is

f(R̄
∣∣ S̄D) = A exp

{−tr
(
(R̄ − S̄DH̄d)HC−1

R (R̄ − S̄DH̄d)
)}

.
(41)

where A = 1
(πNNt det(CR))Nr

. The autocovariance matrix CR

is given by

CR =E{R̄R̄H} = S̄DCH S̄H
D + Nrσ

2
nINtN , (42)

where CH is the covariance matrix of H̄ and can be repre-
sented as

CH = Nr(Ch ⊗ INt
), (43)

where ⊗ denotes the Kronecker product, and Ch is given
by (10). Since S[n] (n = 1, . . . , N ) are unitary matrices,
S̄DS̄H

D = INtN . We have

CR =S̄DCH S̄H
D + Nrσ

2
nINtN

=NrS̄D (C ⊗ INt
) S̄H

D ,
(44)
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where C = Ch + σ2
nIN+1. We can show that det(CR) does

not depend on S̄D. Therefore, maximizing (41) is equivalent
to minimizing

g(S̄D) = tr
(
(R̄ − S̄DH̄d)HC−1

R (R̄ − S̄DH̄d)
)
. (45)

Note that

C−1
R =

1
Nr

S̄D

(
C−1 ⊗ INt

)
S̄H

D . (46)

We Cholesky factorize C−1 as C−1 = UHU, where U
is upper triangular. Using the Kronecker product property
(A ⊗ B)(C ⊗ D) = AC ⊗ BD, C−1 ⊗ INt

= (U ⊗
INt

)H(U ⊗ INt
) = ŪHŪ, and Ū is also upper triangular.

This factorization needs to be done only once. After several
manipulations and ignoring constants, we can simplify (45) as

g(S̄D) =
∥∥ŪH̄d − ŪS̄H

DR̄
∥∥2

F
=
∥∥Ȳ − ŪS̄H

DR̄
∥∥2

F
(47)

where Ȳ = ŪH̄d = [YH [1],YH [2], . . . ,YH [N ]]H , and
Y[n] is an Nt ×Nr matrix. The MSD rule for DUSTM over
multiple-antenna Ricean channels is given by{

Ŝ[1], . . . , Ŝ[N ]
}

= arg min
S[1],...,S[N ]∈V

∥∥Ȳ − ŪS̄H
DR̄

∥∥2

F
. (48)

The transmitted signals can be differentially detected as

V̂[n] = Ŝ[n + 1]ŜH [n]. (49)

When Nt = Nr = 1, the MSD rule (48) for multiple-
antenna systems reduces to the single-antenna MSD rule (13).
Remarks:

• When K = 0 ⇒ Hd = 0, (48) reduces to the decision
metric in [7], which corresponds to the case of Rayleigh
fading channels. When K → ∞, σ2

h → 0 and (48)
reduces to{

Ŝ[1], . . . , Ŝ[N ]
}

= arg min
S[1],...,S[N ]∈V

‖R̄− S̄DH̄d‖2. (50)

Eq. (50) is, in fact, coherent detection with perfect CSI.
• When K increases, the MSD performs more like a

coherent detector, which has complexity linear in N .
However, solving (50) needs exhaustively search over a
set size L. We use the previously-derived BID to reduce
the complexity for (50).

For brevity, we cannot outline the details of the BID
algorithm. For the whole BID algorithm and efficient imple-
mentations, the interested readers can refer to [7], [8].

C. Efficient MSD detection

We now present our sphere decoding bound intersection
detector (SD-BID) to solve the MSD rule (48). As with the
SD, we only examine the candidates that satisfy

‖Ȳ − ŪS̄DR̄‖2 ≤ R2. (51)

Let the entries of U be denoted by ui,j , i ≤ j. Taking the
upper triangular and Kronecker product structure of Ū into
account, (51) can be written as

N∑
i=1

∥∥∥∥∥∥Y[i] −
N∑

j=i

ui,jS[j]R[j]

∥∥∥∥∥∥
2

F

≤ R2 (52)

To proceed, we start from S[N ]. Using the BID, we can obtain
its candidate set. When all Ŝ[i] has found, all the Ri’s are
updated according to

R2
N = ‖Ȳ−ŪS̄DR̄‖2, R2

i = R2
i+1−d2

i+1, i = N −1, . . . , 1.
(53)

The same process continues until all the candidates that meet
(51) have been checked. The best candidate is output as
the ML solution. The initial radius R can also be obtained
according to the statistic of g(S̄D) in (45)

g(S̄D) = tr
(
(R̄ − S̄DH̄d)HC−1

R (R̄ − S̄DH̄d)
)
. (54)

If S̄D is the true solution, using (36), X = S̄H
DR̄−H̄d = H̄s+

SH
DW̄ is zero mean complex Gaussian with autocovariance

matrix CX = Ch + σ2
nIN . Therefore e = tr{XH(Ch +

σ2
nIN )−1X} is a chi-square random variable with 2NNrNt

degrees of freedom. Similar to the SD, R2 can be chosen to
make the probability that e is less than R2 very high. The
Schnorr and Euchner (SE) [11] can also be generalized to
SD-BID. These details can be found in the journal version of
our paper.

D. Reduced-state DD

Assuming correct decisions of Ŝ[1], . . . , Ŝ[N − 1], the
MSD for DUSTM (48) can be readily modified to MSD
based DF-DD by replacing S[1], . . . ,S[N − 1] in (48) with
Ŝ[1], . . . , Ŝ[N −1]. Our BID can be used to solve the DF-DD.
We also note that decision feedback sequence estimator is a
special case of the reduced-state sequence estimator (RSSE)
[14]. Similarly, a reduced-state differential detector (RS-DD)
can be used to solve (48) as a generalization of the DF-DD.
Instead of assuming N − 1 correct feedbacks in (48), RS-
DD only uses M (0 ≤ M ≤ N − 1) decision feedbacks.
S[1], . . . ,S[M ] in (48) are replaced with Ŝ[1], . . . , Ŝ[M ], and
SD-BID is used for the resulting N−M dimensional problem.
If M = 0, RS-DD reduces to SD-BID and DF-DD when
M = N − 1. Thus, both the performance and complexity of
RS-DD are between SD-BID and DF-DD.

IV. SIMULATION RESULTS

We now present simulation results for both single-antenna
and multiple-antenna systems. We assume that the receiver has
perfect knowledge of K, Ch and σ2

n. Estimation algorithms
for such parameters are available in the literature.

A single-antenna system with 8DPSK and Gray encoding is
simulated over a Ricean fading channel. The Jakes’ model is
assumed for the channel. Fig. 1 shows the BER versus SNR
for MSD by the use of SD (or SD for short), MSD based
DF-DD (MSD DF-DD), prediction based DF-DD (Prediction
DF-DD) with N = 3, 6, fDT = 0.03 and Rice factor K =
3 dB. They are compared with CDD and CD with perfect CSI.
All the schemes SD, MSD DF-DD and Prediction DF-DD
significantly reduce the error floor encountered in CDD. In
fact, the error floor is virtually eliminated. The performance
difference between DF-DD and SD is about 2 dB for N = 3
at a BER of 2 × 10−4. But the gap increases to 4 dB when
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Fig. 1. The performance comparison between SD, MSD based DF-DD,
Prediction based DF-DD, CDD and CD with N = 3, 6 for 8DPSK over flat
Ricean channels (fDT = 0.03 and K = 3dB).
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Fig. 2. The performance comparison between SD-BID, MSD based DF-DD,
CDD and CD with N = 3, 6 for DUSTM (Nt = 4, Nr = 1 and R = 1)
over flat Ricean channels (fDTB = 0.03 and K = 5dB).

N = 6. The SD scheme still performs 2 dB worse than CD.
This performance loss can be reduced via increasing N .

In the MIMO case, the Nt = 4, Nr = 1 and rate R = 1
DUSTM is used. The code parameters are taken from [5]. The
Jakes’ model is assumed for each channel. The direct channel
matrix is assumed to be Hd[n] =

√
K/(K + 1)1Nt×Nr

[13],
where 1Nt×Nr

is an all one matrix.
Fig. 2 shows the BER versus SNR for SD-BID, MSD based

DF-DD (DF-DD), with N = 3, 6, fDT = 0.03 and Rice factor
K = 5 dB [13]. When N = 3, SD-BID has a 2 dB loss over
CD at BER = 5×10−4. The performance loss of SD-BID over
CD reduces as N increases. At a BER of 5 × 10−4, the DF-
DD scheme performs 0.6 dB and 1.2 dB worse than SD-BID.
We also show the performance of RS-DD in Fig. 2. When

N = 6, M = 3, RS-DD has about 0.6 dB gain over SD-BID
with N = 3, where both use 3 dimensional exhaustive search.
RS-DD outperforms SD-BID by 0.2 dB when N = 9, M = 3.
RS-DD is a good candidate to achieve good performance while
maintaining reasonable complexity.

V. CONCLUSION

In this paper, we have derived the optimal decision metrics
of multiple symbol differential detection for both MDPSK
in single-antenna systems and DUSTM in multiple-antenna
systems over Ricean fading channels. The SD has been pro-
posed to optimally solved the MSD detection problem for
MDPSK. A modification of the Schnorr and Euchner strategy
was proposed to remove the complexity dependence on initial
radius and reduce the complexity. We have also proposed
a SD-BID algorithm to efficiently solve the MSD rule for
DUSTM. The SE strategy has also been generalized to the
multiple-antenna case. Many details have been omitted for
brevity, but will be forthcoming in a journal paper.
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