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Abstract— A heuristic tree search algorithm is developed for
the maximum likelihood detection and decoding problem in
a general communication system. We propose several “cheap”
heuristic functions using constrained linear detectors and the
minimum mean square errors (MMSE) detector. Even though
the MMSE heuristic function does not guarantee the optimal
solution, it has a negligible performance loss and provides a good
complexity-performance tradeoff. For linear block coded systems,
heuristic tree search is modified for soft decision decoding. High
rate codes are decoded via the minimum state trellis, and low
rate codes via the minimum complexity tree. Preprocessing is
also discussed to further speed up the algorithms.

I. INTRODUCTION

Maximum-likelihood (ML) detection achieves significant
performance gains over suboptimal algorithms in many com-
munications applications. For example, in a MT×MR uncoded
multiple-input and multiple output (MIMO) system, the ML
detector extracts MR order (full) diversity while the zero
forcing detector extracts only MR−MT +1 order diversity. The
performance advantage and high complexity of ML detector
have motivated the research on reduced complexity detectors.

The sphere decoder (SD), a special instance of Branch and
Bound (BnB), has been applied to solve the ML detection
problem in communications [1]. Recent results show that the
average complexity of the SD is exponential for fixed SNR
[2]. Although the SD is efficient for high SNRs and problems
of moderate size, in practice, low SNR operating regimes
are common and the dimension of the applications is large.
The computational SD complexity in those cases can be high.
New detection algorithms should be developed for low SNR
applications and/or for large dimensional problems.

Linear block codes that may sometimes be decoded using
hard-decision decoding (HDD). However, compared to HDD,
soft-decision decoding (SDD) provides about a 2-dB gain in
additive white Gaussian noise (AWGN) channels. Similar to
the ML detection in uncoded systems, the SDD complexity
increases exponentially in the code length. Hence, much
effort has been expended on developing efficient ML SDD
algorithms. For instance, one such algorithm [3] represents
a block code by a trellis and searches it using the Viterbi
algorithm. This is successful only for short codes as the
trellis complexity increases rapidly with the code length. The

heuristic tree search algorithm A* is used in [4] to reduce
the Viterbi-search complexity. However, all these papers treat
SDD over AWGN channels only. Only a few papers consider
SDD of linear block codes in fading channels. In [5], a SDD
algorithm using SD is developed over Rayleigh block fading
channels. An efficient ML decoder for Golay codes is proposed
in [6] for OFDM systems. SDD algorithms for frequency
selective and multiple-antenna channels are not available.

In this paper, we use the heuristic tree search algorithms
[7] widely-known in the artificial intelligence community to
reduce the complexity of ML detection. Although a heuristic
tree search algorithm has recently been proposed in [8], since
those heuristic functions incur high computational overhead,
the overall complexity reduction achievable by their use
is offset by the high computations required. Consequently,
we propose several “cheap” heuristic functions. Heuristic
functions based on constrained least squares (CLS) [9] and
generalized minimum mean square errors (GMMSE) [10] are
used for unitary and non-unitary constellations, respectively.
To further alleviate the computational burden, a minimum
mean square errors (MMSE) heuristic function is proposed,
which does not guarantee optimal detection. The resulting
complexity saving is significant, yet the performance loss
is negligible. For coded systems over fading channels, we
propose a class of efficient SDD algorithms by modifying
the heuristic tree search algorithms for uncoded systems. Both
high rate and low rate codes are efficiently decoded using the
trellis and tree structures of the codes, respectively. We give
a “minimum complexity tree” (MCT) description of a block
code. Preprocessing is also discussed to reduce the decoding
complexity.

Notation: (·)T and (·)H denote transpose and conjugate
transpose, respectively. The imaginary unit is  =

√−1.
A circularly complex Gaussian variable with mean m and
variance σ2 is denoted by z ∼ CN (m,σ2). The set of complex
numbers is C, and the N × N identity matrix is IN .

II. SYSTEM MODEL

We consider a general detection problem. At the transmitter,
k′ independent information symbols b′ ∈ GF(2q)k′

are
encoded via a systematic generator matrix G′ to produce a
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codeword c′ ∈ GF(2q)n′
. For some important block codes,

e.g., RS codes, we need to convert c′ into a vector c ∈
GF(2p)n, where qn′ = pn. Let G be the equivalent n × k
generator matrix for the (n, k) linear block code over GF(2p),
and b ∈ GF(2p)k be the information data vector. b is encoded
to the n×1 codeword c over GF(2p) as c = G�b, where �
denotes the multiplication over GF(2p). Each symbol in c is
subsequently mapped to an element in a constellation Q with
2p elements. The resulting modulated vector x = M(c) ∈ Qn,
where M(·) denotes the mapping operation. The resulting
modulated vector is then transmitted across a vector channel
H ∈ Cm×n. We assume a discrete-time baseband model. The
received signal r can be expressed as

r = Hx + n = HM(c) + n = HM(G � b) + n (1)

where n ∈ Cm×1 is the additive Gaussian noise vector. Note
the H in (1) denotes a general channel model. An identity ma-
trix H represents an additive white Gaussian noise (AWGN)
channel. A diagonal matrix H denotes flat fading channels. A
band matrix H represents a frequency selective fading channel.
When H is a full matrix, it represents MIMO channels.
Throughout this paper, we assume that the perfect channel
knowledge is available at the receiver side and AWGN. If G
is a block identity matrix G = In and k = n, (1) reduces
to an uncoded system. Therefore, (1) is a general model that
represents several existing coded and uncoded systems.

The ML soft decision decoder that minimizes the average
bit error probability is thus given by

b̂ = arg min
b∈GF(2p)k

‖r − HM(G � b)‖2. (2)

Due to the discrete alphabet nature of b, linear detectors such
as least-squares detectors with HDD generally do not give the
optimal solution. Exhaustive search for (2) has a complexity
exponential in pk.

To proceed, let the QR factorization of G be

H = [Q1,Q2]
[

R
0

]
(3)

where R is an n × n upper-triangular matrix with (i, j)-th
entry ri,j , 0 is an (m − n) × n zero matrix, Q1 is an m × n
unitary matrix and Q2 is an m× (m−n) unitary matrix. Eq.
(2) is equivalent to

b̂ = arg min
b∈GF(2p)k

‖y − RM(G � b)‖2 (4)

where y = QH
1 r. Eq. (4) and the upper triangular form of

R are the basis for the heuristic tree search based detectors
developed in this paper.

For uncoded systems, the ML detector is given by

x̂ = arg min
x∈Qn

‖y − Rx‖2 (5)

where y and R are obtained as in (4). In (5), we assume that
n ≤ m. If n > m, we can transform the original problem
(2) into an equivalent full rank problem using the approach
adopted in [11].

In this paper, we focus on ML detection of coded and
uncoded MIMO systems with BLAST architecture [12], where
n denotes the number of transmit antennas and m denotes the
number of receive antennas. For coded BLAST, we consider
the vertical coding architecture in [13]. Our approach in
this paper can be readily modified to the horizontal coding
architecture in [13]. In the following, we only consider Q
to be real, i.e., pulse amplitude modulation (PAM). If Q is
complex, we can decouple (1) into a real system. The SD or
the modified SD in [14] can be applied to the resulting system.

III. SPHERE DECODING ALGORITHM

We first discuss the ML detection of uncoded MIMO
systems. The SD only searches those points that lie within
a hypersphere of radius d or find all x such that

‖y − Rx‖2 ≤ d2. (6)

Note the set {Rx |x ∈ Qn} is called a lattice generated by R.
The members of the lattice are called lattice points. Thus, an
alternative viewpoint is that (6) specifies all the lattice points
that are within a distance d from the received signal vector.
Eq. (6) can be expanded as

n∑
i=1


yi −

n∑
j=i

ri,jxj




2

≤ d2 (7)

where ri,j denotes the (i, j)-th entry of R. The first term of
(7) depends only on xn, the second term on xn, xn−1 and so
forth. Therefore, a necessary condition for a lattice point to
lie inside the sphere is that d2 ≥ (yn − rn,nxn)2, which is
equivalent to xn belonging to the interval⌈−d + yn

rn,n

⌉
≤ xn ≤

⌊
d + yn

rn,n

⌋
(8)

where �·	 denotes the smallest integer greater than or equal to
its argument and 
·� denotes the largest integer less than or
equal to its argument.

We continue in the same process for xn−1 and so on. The
bounds for xk are

LBk ≤ xk ≤ UBk (9)

where

LBk =

⌈
−dk + yk − ∑n

j=k+1 rk,jxj

rk,k

⌉
, (10)

UBk =

⌊
dk + yk − ∑n

j=k+1 rk,jxj

rk,k

⌋
, (11)

and d2
k = d2

k+1 −
(
yk+1 −

∑n
j=k+1 rk+1,jxj

)2

. If there is no

valid candidate for xk (i.e., [LBk, UBk] ∩ Q = ∅ ), the SD
comes back to xk+1 and chooses another candidate value from
the corresponding region for xk+1. If the SD reaches x1, the
SD finds a candidate vector x′, where the lattice point Rx′ lies
inside the hypersphere of radius d. The SD checks the value of
‖y−Rx′‖2. If this value is less than d, we replace the radius
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d by this value. The search space is now limited by the new
radius. This process continues until no further lattice points is
found within the hypersphere. The candidate vector with the
smallest value of ‖y−Rx‖2 is output as the ML solution. If
no lattice point inside the sphere is found, the sphere is empty
and the search fails. In this case, the initial search radius d
must be increased and the search is restarted with the new
squared radius until a valid point is found.

Apparently, when n or σ2
n is large, (9) contains all the points

in Q in the first k dimensions, and SD cannot prune any nodes.
It searches almost all the |Q|k points. The ratio k/n increases
as increasing n.

IV. HEURISTIC TREE SEARCH

The ML detection problem in (5) can be viewed as a tree
search problem to find the leaf node with the minimum cost.
The conventional SD is a modification of depth-first branch-
and-bound (DFBnB) search [7].

In the SD, the bounding range in (9) for xk is loose
primarily because we have neglected the term

k−1∑
i=1


yi −

n∑
j=i

ri,jxj




2

. (12)

The sum (12) is the cost from the current node to an end
(leaf) nodes. A cost estimate from the current node to the leaf
node is called a heuristic function, which can be used to guide
the search. If the heuristic function is a lower bound to the
sum (12), it can be used in (9) for determining the bounding
range for xk. In this case, any nodes pruned by the algorithm
would not affect its optimality. The A* search algorithm is
an example of a heuristic tree search algorithm. It visits the
nodes in order of the heuristic estimate, and it is an example
of best-first search. A search algorithm that guarantees the
optimal solution is called admissible. A heuristic that makes
the A* search admissible is called an admissible heuristic (i.e.,
the heuristic function must be a true lower bound on the cost
from the current node to a leaf node).

A lower bound on (12) would be an admissible heuristic
function. To proceed, we write (12) into a vector form as

‖yk − Rkxk − rkxk‖2 (13)

where yk = [y1, . . . , yk−1]T , xk = [x1, . . . , xk−1]T , Rk =
R(1 : k−1, 1 : k−1), and rk = R(1 : k−1, k). In [8], several
heuristic functions are proposed by the use of high complexity
relaxations, and (13) needs to be computed for each xk. We
use linear constrained detectors as cheap heuristic functions.

A. Heuristics for unitary constellations

We first consider a unitary constellation with unit modulus
|xi|2 = 1, i.e., M -PSK. Using the approach in [11], a
system using quadrature amplitude modulation (QAM) can be
transformed into an equivalent system with quadrature phase-
shift keying (QPSK) and the constrained detector developed
for unitary constellations can also be applied to QAM. The
CLS detector relaxes the candidate vectors to be on the

hypersphere xH
k xk = k − 1. It is the optimal value of the

following problem It is thus given by

x̂k = arg min
xH

k xk=k−1

‖yk − Rkxk − rkxk‖2. (14)

The lagrangian L(xk, λ) for this minimization problem is

L(x, λ1, . . . , λg) = ‖yk−Rkxk−rkxk‖2+λ
(
xH

k xk − k + 1
)
.

(15)
Taking partial derivatives with respect to xk the solution for
xk can be derived as

x̂k(λ, xk) =
(
RH

k Rk + λIk−1

)−1
RH

k (yk − rkxk) (16)

where x̂k(λ, xk) means that it is a function of λ and xk. The
optimal value for λ has to be computed so that the constant
modulus constraints are fulfilled. Substituting x̂k(λ, xk) into
(14), we need to find the zeros of the equation

‖x̂k(λ, xk)‖2 − k + 1 = 0. (17)

Let the singular value decomposition (SVD) decomposition of
Rk be UT

k VkUk, where Uk is an unitary matrix and Vk is
a diagonal matrix with diagonal entries σk

i , i = 1, . . . , k − 1.
Define ỹk = Ukyk and r̃k = Ukrk. Eq. (17) becomes

k−1∑
i=1

|ỹk
i − r̃k

i xk|2(σk
i )2

((σk
i )2 + λ)2

= k − 1. (18)

Eq. (18) is a polynomial with order 2(k − 1). From [15], it
was shown that the global minimum of (14) is achieved by the
maximal real root, which can be found using one-dimensional
Newton method within the region [min((σk

i )2),+∞).

B. Heuristics for non-unitary constellations

For a non-unitary constellation, we denote ρmax and ρmin

as the largest and smallest modulus of the constellation,
respectively. We first consider using the constraint on ρmax.
We thus relax xk within a k − 1-dimensional hypercube
xH

k xk ≤ ρ2
max(k−1). The constrained detector is given by as

x̂k = arg min
xH

k xk≤ρ2
max(k−1)

‖yk − Rkxk − rkxk‖2 (19)

The Lagrangian dual function for (19) can be expressed as

L(xk, λ) = ‖yk−Rkxk−rkxk‖2+λ
(
xH

k xk − ρ2
max(k − 1)

)
(20)

where λ is the Lagrangian multiplier. The Lagrange dual
function is given by

g(λ) = inf
xk∈Ck−1

L(xk, λ) (21)

Minimizing (20) for x, the solution is the same as (16).
Substituting it back to (20), λ is solved by maximizing g(λ).
g(λ) can be simplified by using the SVD of Rk. Since g(λ) is
an unconstrained one-dimensional optimization problem, the
simple Newton method can be used. The constrained detector
(19) is similar to the GMMSE in [10].

To have tighter relaxation and better performance, the
constraint on ρmin can be taken into account. We can pose
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another g constraints ρ2
min(k−1) ≤ xH

k−1xk−1 on (19). Similar
primal-dual approach can be used.

Both (14) and (19) result in linear detectors given λ∗(xk).
Clearly, both of them provide a lower bound on (15). There-
fore, the heuristic function can be defined as

h(xk) =∥∥∥(
Ik−1 − Rk

(
RH

k Rk + λ∗(xk)Ik−1

)−1
RH

k

)
(yk − rkxk)

∥∥∥2

.

(22)

In the procedure of SD, the bound on xk is modified as

g(xk) + h(xk) < d2
k (23)

where g(xk) = (yk−rk,kxk)2. Instead of deciding the bounds
on xk directly using (14), we must test each xk ∈ Q to obtain
the candidate set in (23). The optimality using the heuristic
search (23) is guaranteed by the following theorem.

Theorem 1: If h(xk) is admissible, the heuristic search
always returns the optimal solution.

Proof: The proof is trivial, and it is omitted for brevity.

C. MMSE Heuristic

If λ∗(xk) is set to σ2
n, (16) returns the MMSE solution and

x̂k is very simple to obtain. We can also obtain

(yk − rk,kxk)2 + h(xk) = (akxk − bk)2 + c2
k (24)

where

ak =√∥∥∥(
Ik−1 − Rk

(
RH

k Rk + σ2
nIk−1

)−1
RH

k

)
rk

∥∥∥2

+ r2
k,k

bk =

yH
k

(
Ik−1 − Rk

(
RH

k Rk + σ2
nIk−1

)−1
RH

k

)2

rk + y∗
krk,k

ak

ck =√∥∥∥(
Ik−1 − Rk

(
RH

k Rk + σ2
nIk−1

)−1
RH

k

)
yk

∥∥∥2

+ y2
k − b2

k.

(25)

Like (14), the bounds for xk are

LBk ≤ xk ≤ UBk (26)

where

LBk =

⌈
−√

d2
k − c2

k + bk

ak

⌉
, UBk =

⌊√
d2

k − c2
k + bk

ak

⌋
.

(27)
However, the heuristic function using MMSE solution is
not admissible, and hence the heuristic tree search does not
guarantee optimal solution. Using the Chernoff bound and the
union bound approach in [16], we find the symbol error rate
(SER) of the heuristic tree search is at most eσ4

n of that of the
SD. Therefore, the performance loss compared to the SD is
negligible and full diversity order can be achieved.

Note that the use of the heuristic function allows more nodes
to be pruned than the standard SD, albeit at the cost of more

computations of the heuristic function. Therefore, the use of
the heuristic tree search does not always guarantee complexity
saving. In particular, as the search proceeds to the bottom of
the tree, the original bound by the SD in (9) becomes tighter.
Thus, it is not worthwhile to compute the heuristic function
values in this case. To get a tradeoff between complexity
saving and cost, we can set a level, say, K, if k < K we do
not evaluate the heuristic function h(xk) to save complexity.
K also depends on the SNR. In high SNR, the bound by SD
is tight and K can be close to n, while K should be close to 1
in low SNR. In a specific SNR, there exists a K that achieves
the minimum complexity.
Remarks:

• For unitary constellations, we can use the quadratic eigen-
value approach in [17] to avoid the SVD decomposition.

• If the channel remains constant over several blocks, the
SVD of Rk only needs to be computed once, which
reduces the average complexity of the heuristic search.
The mean computation complexity comes from solving
(19) for the CLS heuristic function. Similar results also
hold for GMMSE heuristic function.

• The main difficulty with the CLS and GMMSE heuristic
functions is λ∗(xk) depends on xk. For each xk ∈ Q, we
must compute h(xk) and test whether (23) holds. When
the constellation size is large, this approach is inefficient.
However, if the MMSE heuristic function is used, we can
obtained the bounds from (26) directly without resorting
to test all the elements in Q.

• The Schnorr and Euchner strategy [18] can also be
applied to all the heuristic tree search algorithms by
ordering the candidate set according to g(xk) + h(xk).

• We can also apply A* to MIMO detection using our
heuristic functions. It visits fewer nodes than any other
heuristic tree search algorithm with the same heuristic
function. However, this approach has a exponential mem-
ory requirement.

• The function h(xk) = 0 is also a heuristic function. The
heuristic tree search reduces to the DFBnB.

V. DECODING FOR LINEAR BLOCK CODED SYSTEMS

The brute-force search of (4) has complexity proportional
to 2kp. On the other hand, search through the trellis of
the code with the Viterbi algorithm has complexity n ×
min(2kp, 2(n−k)p) [3]. In the worst-case complexity sense, if
2kp < n2(n−k)p (e.g. low rate codes), we decode the code
using the tree structure; otherwise, we decode the code using
the trellis structure (high rate codes).

High rate codes: The minimum state trellis (MST) is first
constructed by generating the minimum-span generator matrix
(MSGM) via a greedy-type algorithm. The heuristic tree search
algorithm uses the MST and starts from cn. When the search
goes to cl, we first use the heuristic function to determine the
candidate set on xl using (23) or (26). For each candidate xl

from the set, we do a demapping cl = M−1(xl) to obtain the
candidate set for cl. The Viterbi algorithm for the MST does

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

394

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 18:14 from IEEE Xplore.  Restrictions apply. 



not search over those branches in MST corresponding to the
symbols not in the candidate set.

Low rate codes: In [19], A* algorithm is applied to the
code tree generated by the systematic generator matrix over
AWGN channels. However, this code tree is not optimal in
terms of complexity. We introduce a minimum complexity tree
(MCT). We transform the generator matrix into a block upper-
triangular matrix

G =




a1,1 a1,2 · · · a1,k

a2,2 · · · a2,k

. . . ak−1,k

ak,k


 (28)

where ai,j is a di × 1 vector and
∑k

i=1 di = n. It is
clear that the systematic form is a special case of (3) with
d2 =, . . . ,= dk = 1 and d1 = n − k + 1. The MCT is
generated by maximizing dk, . . . , d2 consecutively. Since the
generator matrix for a linear block code is unique regardless of
the row reordering, we can order the rows of G dk, . . . , d2. For
example, for (7, 4) Hamming code, we obtain d4 = d3 = 1,
d2 = 2 and d1 = 3 after reordering, and it results in


0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1


 →




1 1 1 0 0 0 0
0 1 0 1 1 0 0
1 1 0 1 0 1 0
1 0 0 1 0 0 1


 = GT (29)

To explain the idea, we first construct a k-level tree. The cost
for bl is given by

g(bl) =
n−el∑

i=n−el−dl+1

n∑
j=i

|yi − ri,jxj |2 (30)

where el =
∑k

i=k−l+1 di. Due to the upper triangular form
of R and the block upper triangular form of G, xj for
j >

∑l−1
i=1 di are completely determined by bk, . . . , bl. In

the heuristic tree search, we decide whether bl is feasible by
checking

g(bl) + h(bl) < d2
l (31)

where d2
l = d2

l+1 − g(bl+1), and g(bl) is the lower bound for
x1, . . . , xn−el−dl

with the form (22). Unlike the SD in [5], the
heuristic tree search algorithm does not need an initial radius
by applying the Schnorr and Euchner strategy [18], where at
each node, searches the node with minimum g(bl)+h(bl) first.
When it first reaches the bottom of the tree, the cost from the
root to the leaf node is recorded as the minimum cost Cmin

found so far. Cmin is updated whenever a better leaf node is
reached. With larger dl, the average g(bl) is larger and more
nodes prunes. The average complexity is thus reduced. For
long codes, the complexity saving by using MCT is significant.

For SDD of systems with linear block codes, We give
different heuristic functions h(bl) for different channel models.
(1) AWGN: a tight heuristic function is introduced in [4] by
using the constraint on Hamming weights. A simpler function
can use hard-decision symbols without affecting the average
complexity. (2) Flat fading channels and OFDM: For each xk,
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Fig. 1. Performance comparison of heuristic tree search detectors with
different heuristic functions in an 8×8 uncoded MIMO system with 16QAM.

we make hard decision x̂i = arg minxi∈Q |yi − ri,ixi|2. The
h(bl) is hence given by h(bl) =

∑n−el−dl

i=1 |yi − ri,ix̂i|2. (3)
Frequency selective channels: We relax x ∈ Qn, which is not
constrained by the code. The Viterbi algorithm with branch and
bound (BnB) is used to find the minimum cost from xn−el−dl

to x1, yielding a worst-case complexity O((n + L− 1)2L−1)
(L is the channel length). The cost of each visited node is
stored and reused for the heuristic tree search algorithm. (4)
MIMO channels: the heuristic functions are given in Section
IV. Tighter heuristic function can be found by exploiting more
properties of a specific linear block code.

In [4], the bits with higher reliability are expanded first.
The search complexity depends critically on preprocessing.
The reliability is defined as |yi| in [4]. In MIMO systems, the
columns of H can be permuted according to the Euclidean
norm of each column, ZF V-BLAST and MMSE V-BLAST
orderings. The ZF V-BLAST ordering is optimal for post-
detection SNR. For flat fading channels, ZF V-BLAST reduces
to detecting larger |ri,i| first.

VI. SIMULATION RESULTS

We consider an n × n MIMO system over a flat Rayleigh
fading channel. Our simulation is performed on a workstation
with an Intel Xeon processor operating at 3.2GHz. The average
CPU computation time is used as the measure of complexity.
The SNR is defined to be E{|yk|2}/σ2

n. The SD with heuristic
function is denoted as HSD. The initial radius is set to infinity
in all the cases.

First, we compare HSD with the SD in an 8 × 8 uncoded
MIMO system with 16QAM. Fig. 1 shows the BER per-
formance of HSD using MMSE heuristic function (24) with
different K. We find that even though the MMSE heuristic
function is not admissible, the performance loss compared
to the SD is negligible. Interestingly, the HSD achieves a
full diversity order. From the simulation, we find that the
complexity of HSD is almost a constant in all SNRs. HSD has
about 3 orders of magnitude of complexity saving over the SD
in low SNR. The complexity of HSD with K = 4 achieves the
minimum complexity even though their difference is small.
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Fig. 2. Performance comparison of heuristic tree search detectors with
different heuristic functions in an 23 × 23 Golay (23, 12) coded MIMO
system.
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Fig. 3. Complexity comparison of heuristic tree search detectors with
different heuristic functions in an 23 × 23 Golay (23, 12) coded MIMO
system.

Fig. 2 compares the performance of HSD with different
heuristic functions in an 23×23 Golay (23, 12) coded MIMO
system. BPSK is used. SDD performs much better than that
of HDD. We do not observe performance loss in HSD with
MMSE. At SNR= 1dB, HSD with MMSE and CLS is 5
and 2 times faster than the SD with code tree generated by
systematic generator matrix (Fig. 3). For BCH(63, 36) code,
at SNR=2dB, the average nodes for SD is 65439 and time
24.33s, the average number of nodes for HSD with CLS is
12782 and time 10.44s, the average of number of nodes for
HSD with MMSE is 9148 and time 4.18s. The number of
nodes generated is not proportional to the computational time
costed. In MIMO systems, the worst-case complexity for SDD
O(2k) is less than that of HDD O(2n). SDD betters HDD in
both performance and complexity.

VII. CONCLUSION

We have proposed using the heuristic tree search algorithm
to solve the maximum likelihood detection and decoding
problem in general communication systems. Several “cheap”
heuristic functions were proposed using constrained linear
detectors and minimum mean square errors (MMSE) detector.
Even though the MMSE heuristic function does not guarantee

the optimal solution, it has a negligible performance loss and
provides a good complexity-performance tradeoff. For linear
block coded systems, heuristic tree search was modified for
soft decision decoding. High rate codes were decoded using
the minimum state trellis, while low rate codes uses the
minimum complexity tree. We show that the complexity of
our new SDD algorithms are significantly less than that of the
SD based algorithms. The complexity of the SD in low SNR,
a major drawback, is alleviated by our new algorithms. The
heuristic tree search algorithm can also be used for decoding
problems with a priori information.
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