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ABSTRACT

Because of their orthogonality properties, unitary matrices are
an important class of matrices that are used in mathematics,
physics, control, communications and others. In multiple-
input multiple-output (MIMO) communication systems, there
are two main applications that use unitary matrices: differen-
tial space-time modulation (DUSTM) and precoding. DUSTM
is used when the channel state information (CSI) is not avail-
able for both transmitter and receiver, while unitary precoding
is used when complete or partial CSI is available for both sides.
For DUSTM and limited feedback MIMO systems, a codebook
of unitary matrices should be designed. Conventionally, design
parameters are optimized based on a cost function depending
on the application. This optimization is time consuming when
the system dimension and/or codebook size are increased. In
this paper, we propose to relax the design parameters to be real
rather than integer and use a genetic algorithm to find the opti-
mal solution based on the related cost function. This approach
provides better codes than the codes extracted from exhaustive
search over integer parameters. The code extraction is rapid
even when the system dimensions are large.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless channels,
created by deploying multiple antennas at both the transmit-
ter and receiver, promise high capacity and high-quality wire-
less communication links [1], [2]. To realize the benefits of
MIMO channels, space-time codes and receiver algorithms
are required to provide a performance and complexity trade-
off. The structure of a space-time code depends directly on
the available information of the channel at the receiver and/or
transmitter. Popular Space–time codes proposed for MIMO
system are based on a common assumption that the channel
gains are known to the receiver but not to the transmitter.

In some applications, particularly in fast fading environ-
ments, since the channel state information (CSI) is not available
for both transmitter and receiver, differential unitary space-time
modulation (DUSTM) uses a codebook of unitary matrices for
differential modulation and demodulation [3], [4]. The unitary
matrices [4] are constructed from a diagonal matrix and a rect-
angular sub-matrix of the Discrete Fourier Transform (DFT)
matrix. The diagonal terms are some points on the unit circle
in the complex plain where their angles are defined by some
integers that should be optimized. To improve the performance
of DUSTM, another class of unitary matrices has been pro-
posed in [5] by appending a block-diagonal rotation matrix to
the code structure proposed in [4] where the angle of rotation
depends on an integer parameter. In both structures, the opti-

mization process for the design parameters is based on a cost
function related to the pairwise error probability of codewords.

On the other hand, communication systems that experience
a slow fading environment, the transmitter may have complete
or partial CSI. One way to exploit the channel information is
precoding. The optimum precoder can be obtained with full
channel state information at the transmitter since this allows
the transmitted signal to be formed based on the eigen structure
of the channel matrix [6], [7]. Due to the bandwidth limits of
the feedback channel in many applications, however, full CSI is
not available at the transmitter, and limited-feedback precoidng
techniques are of interest [8], [9]. In [9], the authors propose
to use a set of unitary precoders derived from Grassmannian
subspace packing for limited feedback systems. The codebook
of unitary precoders is known to both the transmitter and the
receiver and for each channel realization only the index of the
appropriate matrix (precoder) is sent back to the transmitter.
The precoder structure is the same as the structure proposed in
[3] for DUSTM where the optimization process for diagonal
angles is based on a distance defined for subspace packing.

In summary, the unitary matrices proposed in the literature
contain the design integer parameters to be extracted from an
optimization problem. The cost function for the optimization
depends on DUSTM or precoding. The optimum is obtained by
exhaustive search over all possible integer design parameters,
which is almost impossible even for moderate system dimen-
sion and/or codebook size. In this paper, we relax the design
parameters to be real numbers rather than integers and intro-
duce a genetic algorithm to solve the resulting optimization
problem. Simulation results show that by relaxing the design
parameters, we obtain better codes for DUSTM and precod-
ing. Although there is no proof for the global optimality of
the outputs of the genetic algorithm, it works much faster than
exhaustive search with even better codes than optimal integer
design.

Notation: (·)∗ denotes conjugate transpose. The trace, de-
terminant and the Frobenius norm of matrix A are trace(A),
det(A) and ‖A‖2

F = tr(AAH). A circularly complex Gaus-
sian variable with mean µ and variance σ2 is denoted by
z ∼ CN (µ, σ2). A ⊗ B denotes the Kronecker product of
matrices A and B. We also use IN to represents the N × N
unitary matrix.

II. DIFFERENTIAL UNITARY SPACE-TIME MODULATION

Consider a communication system with Nt transmit and Nr

receive antennas operating over a Rayleigh flat fading MIMO
channel that remains constant for 2T signaling intervals. In
addition, the channel coefficients are assumed to be unknown
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to both the transmitter and receiver. In this case, the receive
signal matrix can be modeled as:

Yτ =
√

ρSτHτ + Vτ (1)

where τ denotes the time index of block transmission, Yτ ∈
CT×Nr and Sτ ∈ CT×Nt denote the complex received and
transmitted matrix, respectively. Also, Hτ ∈ CNt×Nr repre-
sents the channel matrix and Vτ ∈ CT×Nr stands for the addi-
tive noise matrix. Entries of Hτ and Vτ are independent and
identically distributed (i.i.d.) CN (0, 1) random variables. The
sum of the average signal powers at each time instant is nor-
malized to unity i.e. E{tr(SτS∗

τ )} = T to guarantee that ρ is
the average signal-to-noise ratio (SNR) per receiver.

Suppose a data sequence of integers d1, d2, . . . with dτ ∈
{0, . . . , L − 1} is to be transmitted. The positive integer L �
2 denotes the constellation size which is equal to L = 2RNt

with R representing the information rate in bits per second per
hertz(b/s/Hz). Each dτ is mapped to a matrix Φdτ

drawn from
the set {Φl|l = 0, . . . , L − 1}. In differential transmission, the
initial signal matrix is S0 = I where I is the identity matrix.
Thereafter, at time τ to send Φdτ

from the constellation set of
unitary matrices, the following matrix is transmitted:

Sτ = Φdτ
Sτ−1 τ = 1, 2, . . . . (2)

Assuming the cannel coefficients are almost constant over
two consecutive blocks i.e. Hτ ≈ Hτ−1, it is shown in [4] that
the maximum-likelihood decoder would be

d̃τ = argmin
0≤l<L

‖Yτ − ΦlYτ−1‖2
F . (3)

The exact pairwise error probability (PEP) has been derived in
[4]. By assuming all messages are equally likely and T = Nt,
the exact PEP is

Pll′ = p(Φl −→ Φl′) =
1
π

∫ π
2

0

Nt∏
i=1

(
1 +

γλi

4 sin2(θ)

)−Nr

dθ

(4)
where γ = ρ2

1+2ρ and λi is the i-th eigenvalue of the matrix

∆ll′ = (Φl − Φl′)(Φl − Φl′)∗.

The Chernoff bound of PEP is derived in [4]

Pll′ ≤ 1
2

Nt∏
m=1

[1 + γσm(Φl − Φl′)]−Nr (5)

where σm(Φl −Φl′) is the m-th singular values of (Φl −Φl′).
It has been shown in [4] and [10] that under high SNR condi-

tions to minimize PEP, the design criterion is to maximize the
diversity product, ζ. The diversity product is expressed as

ζ =
1
2

min
l �=l′

(
Nt∏

m=1

σm(Φl − Φl′)

) 1
Nt

. (6)

In [11], based on the exact PEP, a union bound on the symbol
error probability (SEP) of the DUSTM is derived. It has been

shown [12] that a good approximation of the upper bound on
SEP for any constellation sets (including both group or non-
group DUSTM) is

PUB ≈

1
18L

L−1∑
l=0

L−1∑
l �=l′

9∑
i=1

1
det[I + γ

4x2
i
∆ll′ ]Nr

, (7)

where xi = cos(2i − 1)π/18. Note from (7) that unlike (6),
PUB basically depends on the type of constellation sets {Φl}
and number of receive and transmit antennas as well as the
SNR. Therefore, for DUSTM, a set of unitary matrices {Φl}
should be designed by maximizing (6) or minimizing (7).

III. UNITARY PRECODING

For unitary precoding, it is more convenient to use the follow-
ing the linear transformation between the transmit and receive
antennas

X =
√

ρ

M
HFS + V (8)

where the matrix X ∈ CNr×T is the complex received matrix,
S ∈ CM×T (M � min (Nt, Nr, T )) is the transmitted matrix,
F ∈ UNt×M is the unitary precoder matrix, V ∈ CNr×T is the
additive noise matrix, H ∈ CNr×Nt is the channel matrix and
ρ is the total transmit power at each signaling interval. Entries
of H and V have the same characteristics as (1).

For each transmission, according to the put data, Q signals,
{s1, . . . , sQ}, are chosen from a signal constellation (for ex-
ample QAM) with unit average energy. Then according to a
space-time coding structure, the transmit matrix S with rate
Q/T symbol per channel use is constructed to be sent over M
virtual transmit antennas. S is precoded by F and sent over Nt

transmit antennas.
By singular value decomposition (svd) of the channel matrix,

H = VLΣV∗
R, where VL and VR are unitary matrices and

Σ is an ordered diagonal matrix (σi > σi+1), it is shown [6]
that the optimum precoder is V̄R=VR(: , 1:M ), i.e. a matrix
constructed by the first M columns of VR. Since for limited
feedback systems, it is impossible to send back V̄R, in [8] and
[9], a set (W) of suboptimum unitary matrices, derived from
Grassmannian subspace packing, has been proposed.

For a given H, the only feedback parameter is I which is the
index of FI ∈ W , obtained from one the following optimiza-
tion problems:

• If S is an orthogonal space-time code, FI is the member
of W that maximizes ‖HF‖. For this case, the members
of W are designed such that the minimum chordal dis-
tance between each pair is maximized [8]. The chordal
distance is defined as

dchord(Fi,Fj) =
1√
2
‖FiF∗

i − FjF∗
j‖ , 0 � i �= j < L

(9)
where L is the size of the codebook W .

• If S is a VBLAST code i.e. all elements of S are indepen-
dently chosen (multiplexing), and the decoding is maxi-
mum likelihood (ML), then FI is the member of W that
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maximizes λmin(HF). For this case, the members of W
are designed such that the minimum projection two-norm
distance between any pair is maximized [9]. The projec-
tion two-norm distance is defined as

dproj(Fi,Fj) = ‖FiF∗
i − FjF∗

j‖2

=
√

1 − λ2
min(F∗

i Fj). (10)

• If S is a VBLAST code and the aim is to maximize the
system capacity, then FI is the member of W that maxi-
mizes log2 det(I+ ρ

M F∗H∗HF). For this case, the mem-
bers of W are designed such that the minimum Fubini-
study distance between any pair is maximized [9]. The
Fubini-study distance is defined as

dFS(Fi,Fj) = arccos |det(F∗
i Fj)| (11)

In summary, similar to unitary codebook design for DUSTM,
several criteria apply for codebook design in unitary precoding.
The common problem in DUSTM and precoding is to present
a structured unitary matrix and optimize the related parameters
for a given criterion.

IV. UNITARY MATRIX DESIGN

Although different unitary constellations have been proposed
in the literature in particular for DUSTM [4], [5] and [10], we
introduce two of the most common ones in this paper: cyclic
group design and cyclic-rotated design.

The cyclic group design is proposed in [4] where a diago-
nal unitary matrix is used for DUSTM. The cyclic matrix is
expressed as

Φl = diag [ejθLµ1l, ejθLµ2l, . . . , ejθLµNt l] (12)

where θL = 2π/L and l = 0, 1, . . . , L−1. The cyclic codes in
(12) are determined by Nt parameters µ = {µ1, µ2, . . . , µNt

|
0 � µi < L}. The design goal is to find a set of parameters
µ that are optimum given the different criteria mentioned in
Sections II. and III..

The cyclic-rotated design proposed in [5] yields better per-
formance than cyclic codes. The cyclic-rotated matrix is con-
structed of a cyclic matrix multiplied by a block diagonal rota-
tion matrix RF given by [5]

RF(kθL) = INt
⊗ R2(kθL) (13)

where

R2(kθL) =
[

cos(kθL) sin(kθL)
− sin(kθL) cos(kθL)

]

and 0 � k < L is called rotation factor which should be opti-
mized along with µ. Note that Nt should be an even number.
The associated unitary matrix is expressed as

Φl =




ejθLµ1 . . . 0
...

. . .
...

0 . . . ejθLµNt




l

.[RF(kθL)]l. (14)

In [12], it has been shown that the parameter k should not nec-
essarily be the same for each rotation block ( i.e. R2(kiθL),i =
1 . . . Nt/2 instead of R2(kθL)). Although this assumption in-
creases the search space in code design, resulting codes per-
form better than the codes with single rotation parameter.

The design parameters µ and k are obtained based on the cri-
teria mentioned in Sections (II.) and (III.) depending on the ap-
plication. Without loss of generality, we assume that a set of pa-
rameters should be optimized by minimization of a cost func-
tion. In previous works, the design parameters are restricted to
integers. Exhaustive computer search or random search for op-
timum parameters is employed since analytical determination
of the optimum appears intractable. Moreover, due to the fact
that the computational complexity increases exponentially with
Nt and L, it is difficult to find the optimum parameters for large
L and Nt with exhaustive search. With random search, there is
no guarantee that it converges to even an acceptable neighbor-
hood of the optimum parameters.

To handle these problems, we propose to employ a genetic
algorithm to extract the optimal parameters. Although a genetic
algorithm does not guarantee the global optimality of its an-
swers, the cost of genetic solutions are better than the optimum
values from exhaustive search. This seemingly contradictory
result is obtained by relaxing the design parameters to be real
rather than integer numbers in the genetic algorithm. This ex-
tension increases the set of search parameters, which allow us
to improve the chance to obtain better codes. In the following
sections, we explain how the genetic algorithm operates and
provide experimental results.

V. GENETIC ALGORITHMS

The genetic algorithm [13] is an exceptional search technique
for finding approximate solutions to optimization and search
problems based on natural selection, the process that drives bi-
ological evolution. To use a genetic algorithm, we must find
a method of representing a solution (encoding the solution) in
such a form that it can be manipulated by the algorithm. Usu-
ally, solutions are represented in binary as strings of 0s and 1s
but different encodings are also possible. Additionally, we re-
quire the fitness function (cost function) to measure the quality
of any solution.

The algorithm begins by creating a random initial population
and then making a sequence of new populations/generations.
In each generation, the fitness of the whole population is eval-
uated and a score is assigned to each member of the current
population. Each member with higher associated fitness value,
gets higher score. A selection mechanism based on the given
scores is applied to the population and the individuals strive for
survival. The fitter individuals have more chance to be selected
to produce the child generation by means of genetic transfor-
mations such as crossover and mutation. Because the entire
population participates in the search, the genetic algorithm is
less likely than many search procedures to get stuck at a local
minimum. As the algorithm continues and newer and newer
generations evolve, the quality of solutions improves.

In general, the next generation is composed of three types of
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Table 1: Diversity products of DUSTM obtained by genetic
algorithm and exhaustive search.

Nt L ζ (genetic) ζ(exhaustive) cyclic
16 0.6602 0.6083 0.5066

6 32 0.5678 0.5069 0.448
16 0.6601 0.6153 0.5623

8 32 0.5827 0.5453 0.5221

children as follows:
Elite Children: Children in the current generation are se-

lected for the next generation based on their fitness values.
Since the selection rule here is probabilistic not deterministic,
fitter solutions (measured by a fitness function) are typically
more likely to be selected. Non determined rule helps to keep
the diversity of the population large and also avoids conver-
gence to a poor solution as well. Crossover Children: This
type of children is created by combining pairs of parents in the
current population. Generally, the crossover operation recom-
bines selected solutions (parents) by swapping parts of them
for producing divergent solutions to explore the search space.
Many crossover techniques exist to produce a child of a pair
parents. However, all of them are surprisingly simple to imple-
ment, involving random number generation and some partial
string exchange. Scattered crossover is a technique that is usu-
ally used in crossover generation. This method first creates a
random binary vector with the same size of parents. Then if the
ith bit is 0, corresponding gene is selected from the first parent,
otherwise it is selected from the second parent. Ultimately the
all selected genes are combined to form the child.

Mutation Children: The algorithm generates mutation chil-
dren by randomly changing the bits (genes) of individual par-
ent in the current system. This process can be done by adding a
random vector from a Gaussian distribution to the parent. The
aim of mutation in genetic algorithm is to allow the algorithm
to avoid local optima by preventing the population from be-
coming too similar to each other, thus slowing or even stopping
evolution.

As a result, new mutated members along with new crossed
over members and the rest of those selected from the previous
population form the new generation. The genetic algorithm
uses the following conditions to terminate:

• A solution is found that satisfies the criteria(Fitness limit).

• Allocated time is reached (Time limit).

• The specified number of generations is reached.

• There is no improvement in the objective function for a
specific number of successive iterations.

Table 1 shows the parameter search results and their cor-
responding diversity product for signal constellation (14) for
L = 16 and 32 and Nt = 6 and 8, obtained from genetic al-
gorithm. For comparison, the diversity product of the obtained
codes in [5] and [4], obtained from exhaustive integer search,

Table 2: Chordal distance of unitary precoders obtained by ge-
netic algorithm and exhaustive search.

Nt L dchord(genetic) dchord(exhaustive)
8 1.0606 1.000

4 16 1.000 1.000
32 0.8101 0.7947
8 1.1520 1.0105

5 16 1.0708 1.0208
32 1.0082 .9962
8 1.2237 1.0431

6 16 1.1685 1.0459
32 1.0939 1.0398

are included in Table 1. Table 2 shows the parameter results
and their corresponding chordal distance for cyclic design (12)
for L = 8, 16 and 32 and Nt = 4, 5 and 6, obtained from
genetic algorithm. For comparison, the chordal distances ob-
tained from exhaustive integer search, are also included. Both
tables show that by parameter relaxation and genetic search,
almost all result are better than exhaustive search.

Remark: In some cases, the extracted parameters from ex-
haustive search seem to be the global optimum answer. How-
ever, there is no proof for this in the literature to our knowledge.

VI. SIMULATION RESULTS AND COMPARISONS

For comparison, we include performance results for DUSTM
codes and precoders from genetic algorithms and exhaustive
integer search.

Fig. 1 displays the SEP for the proposed constellations in
[4] and [5] with integer parameters obtained from exhaustive
search and with real parameters obtained from genetic search.
In our simulations, we use the Rayleigh fading channel Jakes’
model with a normalized fade rate of fdTs = 2.5×10−3, where
fd is the Doppler frequency and Ts is the symbol duration. The
performance is for a MIMO system with Nt = 6 and Nr = 1
for L = 16 and 32. Fig. 1 clearly shows that codes extracted by
genetic search outperform the previous results in the literature
obtained by exhaustive search. The performance improvement
is about 0.4 dB for cyclic group design and 0.6 dB for cyclic-
rotated design, at 10−5 error rate.

Fig. 2 shows the symbol error rate for a MIMO system with
Nt = 6 and Nr = 1, where a 6 × 2 unitary precoder is used
to transmit the Alamouti’s code over the channel. We used
three and four bits of information for feedback, corresponding
to L = 8 and 16 codebook size. This figure clearly shows
that the precoders extracted by genetic search outperform the
previous results in [8] obtained by exhaustive search. The per-
formance improvement is about 0.5 dB at 10−5 error rate. The
interesting point is that the performance of the 4 bit precoder
with exhaustive search is almost the same as the performance
of the 3 bit precoder with genetic search. Thus by using the ge-
netic based precoder, we can save on the number of feedback
bits.
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Figure 1: Symbol Error Rate performance of cyclic and cyclic
rotated design when L = 16, Nt = 6 and Nr = 1. The dashed
line curves are for exhaustive search and solid lines are for ge-
netic search.

VII. CONCLUSION

In this paper, we improved the efficiency of the rotation and
diagonal matrix designs for DUST modulation and unitary pre-
coding by using a genetic algorithm. It allows us to relax the
design parameters to be real numbers rather than integers. Con-
sequently, the extracted DUSTM codes and precoders outper-
form the previous published codes in the literature where the
design parameters are found by exhaustive search. Our sim-
ulation results confirmed this statement. Exhaustive search
is almost impossible when the dimension of the MIMO sys-
tem and/or codebook size is high, but genetic algorithm based
search is easy and yields good codebooks.
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