
IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 10, OCTOBER 2006 713
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Abstract— ABBA codes, a class of quasi-orthogonal space-
time block codes (STBC) proposed by Tirkkonen et al., allow
low complexity pair-wise complex-symbol decoding. A refined
version of ABBA codes with special signal mapping leads to
pair-wise real-symbol decoding, i.e. with minimum decoding
complexity (MDC) achievable by non-orthogonal STBC. Despite
these advantages, a general simple closed-form method to decode
ABBA and MDC-ABBA codes for an arbitrary number of
transmit/receive antennas is not available. We thus derive an
equivalent channel representation to address this issue. The
maximum mutual information of ABBA/MDC-ABBA codes is
also derived. We found that MDC-ABBA codes perform better
than ABBA codes when using two 8QAM constellations.

Index Terms— Quasi-orthogonal space-time block codes.

I. INTRODUCTION

ABBA codes [1], a class of QSTBC, have been proposed
to increase the rate of orthogonal space-time block codes

(OSTBC) [2]. ABBA QSTBC also have low complexity pair-
wise complex-symbol decoding and performs better than OS-
TBC [3]. ABBA codes have been widely studied for coherent
and non-coherent transmissions, beamforming, and others.
Recently, Yuen et al. (see [4] and references therein) have
shown that the ABBA codes enable pair-wise real-symbol
(PWRS) decoding; they call such codes minimum decoding
complexity (MDC) codes. Thus, not only is their code rate
higher than that of OSTBC, but also their decoding complexity
is equal to that of OSTBC. In the following, we reserve the
term "ABBA" for the QSTBC proposed by Tirkkonen et al.
[1] with pair-wise complex-symbol decoding [3] and the term
"MDC-ABBA" for the ABBA codes with PWRS decoding [4].

Despite extensive research on the ABBA QSTBC, a general
decoding method for ABBA codes for arbitrary numbers of
transmit (Tx) and receive (Rx) antennas is not available. One
reason for this gap is that the equivalent channel for ABBA
codes is not known in the most general case. Several decoders
for ABBA codes have been proposed, but only for some
specific cases, for example with 4 or 6 antennas in [5].

In this letter, we propose a general and closed-form method
to decode ABBA/MDC-ABBA codes. We show how the
ABBA space-time (ST) channel can be decoupled into parallel
independent channels, each of which carries a pair of data
symbols. The maximum mutual information (MMI) of QSTBC
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codes was calculated in [6] for 4 Tx antennas only. Thus,
we derive a general MMI expression for ABBA/MDC-ABBA
codes. Although the optimal coding gain of ABBA codes is
higher than that of MDC-ABBA codes [4], we found that
MDC-ABBA codes perform better than ABBA codes for two
well-known 8QAM constellations.

II. DECODERS FOR ABBA AND MDC-ABBA CODES

We consider data transmission over a quasi-static Rayleigh
flat fading channel. The transmitter and receiver are equipped
with M Tx and N Rx antennas. The receiver, but not the
transmitter, completely knows the channel gains.

From matrix representation theory, the mapping of a block
of K data symbols (s1, s2, · · · , sK) into a T ×M code matrix
of a STBC can be represented in a general form [7] as follows:

XM =
K∑

k=1

(skAk + s∗kBk) (1)

where Ak and Bk, (k = 1, 2, · · · ,K) are T × M constant
basis matrices, superscript ∗ denotes conjugate 1. The average
energy of code matrices X ∈ XM is constrained such that
E[‖X‖2

F] = T . The code rate RXM
of a STBC XM , in symbols

per channel use (pcu), is defined by RXM
= K/T .

We now review the main properties of OSTBC OM to be
used later. The basis matrices of OSTBC satisfy [2]:

A†
iAi + B†

i Bi = IM , i = 1, 2, · · · ,K (2a)

A†
iAj + B†

jBi = 0M , 1 ≤ i < j ≤ K (2b)

A†
iBj + A†

jBi = 0M , i, j = 1, 2, · · · ,K. (2c)

Let the data symbols are drawn from a constellation with
unit average power. To guarantee the average power constraint,
the OSTBC matrices are multiplied by a constant κ = 1

MROM
.

A. General Decoder of ABBA Codes

Let Ak and Bk (k = 1, 2, · · · ,K) be the t×m basis matri-
ces of an OSTBC Om. Two blocks of data, each of K symbols,
are mapped into two code matrices A and B of Om as A =∑K

k=1 (skAk + s∗kBk),B =
∑K

k=1

(
sk+KAk + s∗k+KBk

)
.

The ABBA code matrices for M = 2m Tx antennas are

constructed from Om as QM =
[ A B

B A
]

, or

QM =
K∑

k=1

(Ck ⊗ Ak + C†
k ⊗ Bk) (3)

1From now on, superscripts T and † denote matrix transpose and transpose
conjugate. The n × n identity and all-zero matrices are denoted by In

and 0n, respectively. ‖X‖F denotes Frobenius norm of matrix X and ⊗
denotes Kronecker product. E[·] denotes average. A mean-m and variance-
σ2 circularly complex Gaussian random variable is written by CN (m, σ2).
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where Ck =
[

sk sk+K

sk+K sk

]
. Let Π =

[
0 1
1 0

]
, then

Π = Π−1,Π2 = I2, and

Ck = (skΠ0 + sk+KΠ). (4)

For the sake of simplicity, we consider one Rx antenna in
the following. Generalization for N > 1 is straightforward.

Let h = [h1 h2 · · · hM ]T denote the channel vector with
hi ∼ CN (0, 1). Let Q ∈ QM be a transmitted code matrix,
the Rx signal vector is y =

√
ρκ/2 Qh + n, where n is

noise vector with independently, identically distributed (i.i.d.)
entries ∼ CN (0, 1); ρ is the average Rx signal-to-noise ratio
(SNR).

From (3) and (4), we have

y =
√

ρκ/2
K∑

k=1

2∑
i=1

[(
Πi−1 ⊗ Ak

)
hsk+(i−1)K

+
(
Π1−i ⊗ Bk

)
hs∗k+(i−1)K

]
+ n . (5)

Let eki =
(
Πi−1 ⊗ Ak

)
h, Ek = [ek1 ek2] ,fki =(

Π1−i ⊗ Bk

)
h, Fk = [fk1 fk2], and sk = [sk sk+K ]T,

(5) can be rewritten as

y =
√

ρκ/2 [E1 F1 E2 F2 · · · EK FK ]

×
[
sT
1 s†

1 sT
2 s†

2 · · · sT
K s†

K

]T
+ n . (6)

Using a trick in [8], (6) is written equivalently as[
y
y∗

]
=

√
ρκ/2

[
E1 F1 · · · EK FK

F ∗
1 E∗

1 · · · F ∗
K E∗

K

]
︸ ︷︷ ︸

W

×
[
sT
1 s†

1 · · · sT
K s†

K

]T
+

[
n
n∗

]
. (7)

It can be shown that the columns of matrix W are orthogonal.
Proof: We will show that the following equations hold:[
Ek

F ∗
k

]† [
El

F ∗
l

]
= E†

kEl + F T
k F ∗

l = 02 for k �= l, (8a)

[
Ek

F ∗
k

]† [
Fl

E∗
l

]
= E†

kFl + F T
k E∗

l = 02 ∀k, l. (8b)

We just provide the proof for (8a); (8b) can be shown similarly.
Let Zkl = (E†

kEl + F T
k F ∗

l ), its element can be calculated as

[Zkl]ij = e†
kielj + fT

kif
∗
lj

= h†[(Πj−i) ⊗ (A†
kAl)]h + hT[(Πi−j) ⊗ (BT

kB∗
l )]h∗

= h†[(Πj−i) ⊗ (A†
kAl + B†

kBl)]h

=
{

0, k �= l;
h†(Πj−i ⊗ Im)h, k = l.

(9)

Thus, Zkl = 02 if k �= l.
Since for k = l, the matrices Zkk = Z ∀k, where the entries
of Z are zij = h†(Πj−i ⊗ Im)h. In particular, z1,1 = z2,2 =
‖h‖2

F, z1,2 = z2,1 =
∑K

k=1(hkh∗
k+K + h∗

khk+K). Therefore,
Z is also a circulant real matrix and can be represented as

Z =
m∑

i=1

H†
i Hi (10)

where Hi =
[

hi hi+m

hi+m hi

]
. To separate the transmitted

vector sk (k = 1, 2, . . . K) at the receiver, we can multiply

the two sides of (7) with
[
E†

k F T
k

]
to get

E†
ky + F T

k y∗ =
√

ρκ/2Zsk + (E†
kn + F T

k n∗︸ ︷︷ ︸
n̄k

) . (11)

The vector
[
E†

k F T
k

]
plays the role of the spatial signature of

data vector sk. However, the noise n̄k is color with covariance
matrix V = E[n̄kn̄†

k] = Z �= IM . This color noise can be
whitened by multiplying the two sides of (11) with a whitening
matrix Z− 1

2 . The received signal with whitened noise is

Z− 1
2 (E†

ky + F T
k y∗)︸ ︷︷ ︸

ŷk

=
√

ρκ/2 Z
1
2︸︷︷︸

Ĥ

sk + Z− 1
2 n̄k︸ ︷︷ ︸

n̂k

(12)

Thus, (12) is the general and compact detection equation
for ABBA codes. Since this decoder decouples the ABBA ST
channels into K parallel channels, one needs to apply K times
(12) to decode ABBA codes for any M = 2m Tx antennas.

To achieve full diversity, K data symbols sk+K (k =
1, 2, . . . ,K) must be rotated by an angle α [3]. So the gen-
eral detection equation of ABBA codes with complex symbol
rotation is:

ŷk =
√

ρκ/2Ĥ diag(1, ej α)sk + n̂k, j2 = −1. (13)

B. General Decoder of MDC-ABBA Codes

Since Z is a 2×2 normal circulant matrix, its two eigenval-
ues λ1 and λ2 are non-negative; Z can be diagonalized by a

2 × 2 (real) Fourier transform matrix F2 = 1√
2

[
1 1
1 −1

]
as Z = F †

2 diag(λ1, λ2)F2. If Ĥ2 = Z, then Ĥ =
F †

2 diag(
√

λ1,
√

λ2)F2. Thus Ĥ is real.
We can rewrite (12) by decoupling the real and imaginary

parts of the two sides of (12) as[ 	(ŷk)

(ŷk)

]
=

√
ρκ/2

[
Ĥ 02

02 Ĥ

]
︸ ︷︷ ︸

H̃

[ 	(ŝk)

(ŝk)

]
+

[ 	(n̂k)

(n̂k)

]
.

(14)
The real and imaginary parts of the data vectors (of two
complex symbols) can be separately detected as below:

	(ŷk) =
√

ρκ/2Ĥ	(ŝk) + 	(n̂k), (15a)


(ŷk) =
√

ρκ/2Ĥ
(ŝk) + 
(n̂k). (15b)

There are only two real symbols in (15) to be jointly detected,
thus (15a) and (15b) are the general detection equations for
the MDC-ABBA codes.

To achieve full diversity, a real linear signal transformation
R is required for the real data vector [	(ŝk),
(ŝk)]T. More-
over, R must be designed so that the equivalent channel matrix
(either in the form H̃R or R†H̃R) is still block diagonal. For
example, transformation R in [4] meets this requirement.
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Fig. 1. MMI of ABBA/MDC-ABBA codes and OSTBC over MISO channels.
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Fig. 2. Performance of MDC-ABBA codes for 4 Tx antennas compared
with ABBA codes and OSTBC.

III. MAXIMUM MUTUAL INFORMATION

The MMI of ABBA (and also MDC-ABBA) codes can be
calculated using the equivalent channel in (12) [7]. Omitting
the details for brevity, we can show that

CQ2m
= ROm E

{
log2 det

[
1 +

ρ

mROm

‖H̄‖2
F

]}
= COm

(16)

where the entries of H̄ ∈ C
M×N are CN (m,σ2), CO,m is

the MMI of the underlying OSTBC Om [7], which is used to
construct ABBA codes. Therefore,

1) The MMI of ABBA/MDC-ABBA codes for M = 2m
Tx antennas equals to that of OSTBC for m Tx an-
tennas; i.e., by doubling number of Tx antennas and
replacing OSBTC by ABBA/MDC-ABBA codes, one
can get higher diversity benefit but not the capacity
benefit.

2) Compared with OSTBC, MDC-ABBA codes attain
larger portion of channel capacity.

The MMI of ABBA/MDC-ABBA codes and OSTBC (max-
imal rates [2]), and channel capacity of multiple-input single-
output (MISO) illustrated in Fig. 1 (for M = 2, 4, 8 and
N = 1) agree with the above analysis.

IV. SIMULATION RESULTS

Performances of the ABBA code Q4 [3] and the MDC-
ABBA code D4 (with signal rotation in [4]) using the proposed
decoders are presented in Fig. 2 for a system with M =
4, N = 1. Performances of OSTBC O4 [2] and rate-one linear
TAST code C4 [9] are also presented for comparison.

With 4QAM and 16QAM (2 and 4 bits pcu, respectively),
the performance of D4 closely approaches to that of Q4.
D4 also performs much better than C4 (with higher decoding
complexity, joint decoding of 4 complex symbols).

Using an 8QAM-1 constellation {±1,± j,±1 ± j} (3 bits
pcu), surprisingly, D4 outperforms both Q4 and O4 (with
16QAM), about 0.25 and 0.5 dB, respectively. With another
8QAM-2 {±3 ± j,±1 ± j}, D4 also performs better than Q4

but slightly worse than O4.

V. CONCLUSION

We have presented a general and simple method to decode
ABBA and MDC-ABBA QSTBC by deriving the equivalent
channel representation. It has also been used to derive max-
imum mutual information of these codes. Simulations show
that MDC-ABBA codes closely approach the performance of
ABBA code with 4- and 16QAM, and even perform better with
two 8QAM constellations. Compared with OSTBC, the MDC-
ABBA codes attain higher portion of channel capacity and
perform better. Therefore, MDC-ABBA codes may be a better
choice than OSTBC when there are more than 2 Tx antennas.
The results of our paper can be developed in different aspects.
For example, when a certain form of channel state information
is available at the transmitter, the equivalent channel can be
used to determine the optimal channel parameters to be fed
back to improve the performance of QSTBC.
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