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Closed-Form BER Analysis for Antenna Selection
Using Orthogonal Space-Time Block Codes
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Abstract— Despite significant research efforts, closed-form bit
error rate (BER) expressions for multiple-input multiple-output
(MIMO) systems employing transmit antenna selection and or-
thogonal space-time block codes (OSTBCs) are not available. We
thus derive exact closed-form expressions for the BER of Gray-
coded M -ary one and two-dimensional amplitude modulations
when an OSTBC is employed and N transmit antennas out of
total Lt antennas are selected for transmission. We also derive
tight closed-form approximate BER for M-PSK constellations.
Our BER expressions are valid for a frequency-flat Rayleigh
fading MIMO channel and can be evaluated without numerical
integration methods.

Index Terms— Bit error rate (BER), antenna selection, diver-
sity, multiple-input multiple-output (MIMO), space-time code.

I. INTRODUCTION

MULTIPLE antennas for transmitting and/or receiving
data effectively mitigates fading. Obtaining the benefits

of multiple transmit antennas requires the use of special space-
time signaling schemes such as orthogonal space-time block
codes (OSTBCs), a class of easily decoded space-time codes
that achieve full diversity order [1], [2]. OSTBCs exist only
for certain number of transmit antennas, and this limits their
potential application. Decoding of OSTBCs is equivalent to
decoding a number of independent single-input single-output
data streams.

Transmit antenna selection (TAS), where OSTBC signal
matrices are transmitted over a selected subset of transmit
antennas, is a practical technique for the realization of full
diversity [3]. Although receive antenna selection is a well
researched topic in which various channel/correlation models
have been comprehensively treated (see [4]–[7] among many
others), analogous comprehensive results are limited for TAS;
e.g. a general, exact closed-form bit error rate (BER) analysis
of TAS is not available to date. Although the symbol error
rate (SER) of TAS is derived in [8], the formulas require
numerical methods. In [9], the SER of single TAS and receive
generalized selection combining (GSC) is derived. Exact BER
for selecting only two transmit antennas with BPSK signals
using the Alamouti code is derived in [10], [11].

In this paper, we provide general, closed-form BER expres-
sions for M -ary Pulse Amplitude Modulation (PAM) and M -
ary Quadrature Amplitude Modulation (QAM) constellations,
and an approximate BER expression for M -ary Phase Shift
Keying (PSK) with arbitrary N ≥ 2 TAS employing OSTBCs.
The MGF of N largest instantaneous signal-to-noise ratios
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(SNRs) for GSC in Nakagami fading is derived in [12]. Since
TAS involves selecting the N columns of the channel matrix
with the largest Frobenius norms, the results of [12] can be
utilized to the problem in hand. Our BER approximations
correctly reveal the full diversity order of the system1.

II. SYSTEM MODEL

We consider a MIMO system in a Rayleigh fading envi-
ronment with Lt transmit and Lr receive antennas. Channel
state information (CSI) is perfectly available at the receiver.
N transmit antennas out of Lt are selected and activated
for the transmission of OSTBC signal matrices, while the
remaining transmit antennas are inactive. Let H̃ ∈ CLr×N

be a submatrix of the channel matrix H ∈ CLr×Lt . H = [hij ]
where hij ∼ CN (0, 1) is the channel gain between the ith
transmit and jth receive antenna. H̃ consists of the channel
gains for the N selected transmit antennas and Lr received
antennas. Suppose that hj (j = 1, 2, ..., Lt) are columns of
the channel matrix H. The columns are sorted according
to their norms; Assume that ‖hi1‖ ≥ ... ≥ ‖hiLt

‖ where
ik ∈ {1, 2, ..., Lt}. Thus, H̃ is defined as

H̃ = [hi1hi2 · · ·hiN
]. (1)

With this selection criterion, we maximize the total received
signal power at the receiver. The received signals are expressed
as

Y =

√
Es

N
H̃X + V (2)

where Y ∈ CLr×T is the complex received signal matrix and
X ∈ CN×T is the complex transmitted signal matrix, which is
a member of an OSTBC [2], [13]. V ∈ CLr×T is the additive
noise matrix with independent and identical distributed entries
of CN (0, N0). The coefficient

√
Es/N ensures that the total

transmitted power in each channel use is Es and independent
of number of transmit antennas.

Assume that Q symbols {s1, ..., sQ} with average energy
equal to one, chosen from an M -PAM or M -QAM constel-
lations, are transmitted by the transmission matrix X. Since
T symbol periods are necessary to transmit Q symbols, the
symbol rate Rs of the STBC is defined as Rs = Q/T . When
an OSTBC is used, the MIMO system is equivalent to Q
independent single input single output (SISO) systems defined
as [2], [13]

s̃q =

√
Es

N

(
1

Rs
‖H̃‖2

F

)
sq + νq, q = 1, ..., Q (3)

1Notation: The Frobenius norm of matrix A is denoted by ‖A‖F and the
Euclidean norm for vector h is ‖h‖ = (h2

1 + · · · + h2
Lr

)1/2. A circularly
symmetric complex Gaussian variable with mean µ and variance σ2 is denoted
by z ∼ CN (µ, σ2).
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where νq ∼ CN
(
0, 1

Rs
‖H̃‖2

F N0

)
. We conclude that the

achievable SNR per bit in M -ary constellation is

γb(ρ) =
Es

N0

1
RsN log2 M

‖H̃‖2
F = cρ‖H̃‖2

F (4)

where ρ = Es

N0
is the SNR per channel and c =

1/(RsN log2 M). Therefore, the antenna selection criterion
in (1), which selects N transmit antennas, maximizes the
instantaneous SNR and thereupon minimizes the error rate.

Let γk = cρ‖hk‖2, k = 1, 2, ..., Lt be the scaled norms of
the columns of H. Therefore, γk is a chi-squared i.i.d. random
variable with the pdf given by

pγk
(γk) =

γLr−1
k

(cρ)Lr (Lr − 1)!
e−γk/cρ. (5)

In transmit antenna selection (1), the best N antennas with
the largest γk are selected. Thus, the received SNR per bit (4)
can be written as

γb =
N∑

k=1

γ(k) (6)

where γ(k) = cρ‖hik
‖2. The MGF of γb is given by [12]

Φγb
(s) =N

(
Lt

N

)
(cρ)−LrN

Γ(Lr)
N

∑
i1,...,iN−1

a(Lr; i1, ..., iN−1)

N−1∏
k=1

ik!
kik

Lt−N∑
j=0

(
Lt − N

j

)
(−1)j

×
{∑

n∈B

(
j

n0, ..., nLr−1

)
(cnj +Lr− 1)!

(cρ)cnj Anj

1
( 1

cρ + s)r+N−1
· 1
( 1

cρ (N+j) + Ns)cnj+Lr

}
(7)

where a(Lr; i1, ..., iN−1) is the coefficient of xi1
1 . . . x

iN−1
N−1 in

expression

(x1 + x2 + · · · + xN )Lr−1(x2 + · · · + xN )Lr−1 · · ·xLr−1
N−1

and B is the set of all combinations of nonnegative inte-
gers of n0, n1, ..., nLr−1 such that

∑Lr−1
k=0 nk = j, cnj =∑Lr−1

k=1 knk, Anj =
∏Lr−1

k=2 (k!)nk and r =
∑N−1

k=1 ik.

III. BER ANALYSIS OF M -ARY CONSTELLATIONS

A. Exact BER for M -ary PAM

We first derive the BER for M -ary PAM with antenna
selection and OSTBCs using Gray mapping. In an AWGN
channel, the exact BER of the n-th bit is given by [14]

P AWGN
M (n; ρ) =

2
M

kn∑
i=0

BiQ
(
Di

√
γb(ρ)

)
(8)

where

kn = (1 − 1
2n

)M − 1 (9)

Bi = (−1)
⌊

i.2n−1
M

⌋ (
2n−1 −

⌊
i.2n−1

M
+

1
2

⌋)
(10)

Di = (2i + 1)

√
6 log2 M

M2 − 1
. (11)

Thus, to obtain the average BER, we take the expectation with
respect to the channel statistics:

PM (n; ρ) =
2
M

kn∑
i=0

BiEH̃

[
Q
(
Di

√
γb(ρ)

)]

=
2
M

kn∑
i=0

Bi
1
π

∫ ∞

0

Φγb

(
D2

i (1+t2)
2

)
1 + t2

dt (12)

where Q(x) = 1
π

∫∞
0

e−x2(1+t2)/2/(1 + t2)dt.
The exact average BER of an OSTBC with M -PAM is given

by

PM (ρ) =
1

log2 M

log2 M∑
n=1

PM (n; ρ). (13)

In order to obtain the exact BER using (7), for the antenna
selection scheme, we must compute the integral form of

W (a, b;α, β)=
∫ ∞

0

1
1+x2

· 1
(a2+x2)α

· 1
(b2+x2)β︸ ︷︷ ︸

f(x)

dx. (14)

We consider complex function f(z) and use the residue
theorem to solve (14). This integral can be thought of as
an integral over a part of a contour CR consisting of a line
segment along the real axis between −R and R. We close the
contour by using the upper semi-circle with radius R centered
at the origin. We can show that the integral over the added part
of CR asymptotically vanishes as R → ∞. Thus, the resulting
integral would be∫ ∞

0

f(x)dx = πi

[
Res
z=ia

f(z) + Res
z=ib

f(z) + Res
z=i

f(z)
]

(15)

where Resz=z0f(z) is the residue of function f(z) evaluated
at z = z0. For brevity, we omit the details. Therefore, the
BER can be obtained as

PM (ρ) =
2N

M log2 M

(
Lt

N

)
(cρ)−LrN

[(Lr − 1)!]N

log2 M∑
n=1

kn∑
i=0

Bi

∑
i1,...,iN−1

a(Lr; i1, ..., iN−1)
N−1∏
k=1

ik!
kik

Lt−N∑
j=0

(
Lt−N

j

)
(−1)j

×
{∑

n∈B

(
j

n0, ..., nLr−1

)
(cnj + Lr − 1)!

(cρ)cnj Anj

×W

(√
2

cD2
i ρ

+ 1,

√
2(N+ j)
NcD2

i ρ
+ 1; r+N−1, cnj +Lr

)}
.

(16)

B. Exact BER for M -ary QAM

Note that a rectangular or square QAM constellations can be
composed to two independent PAM constellations: I-ary PAM
for the in-phase component and J-ary PAM for the quadrature
component, where M = I × J . Thus, the exact average BER
of M -QAM is given by

PM (ρ)=
1

log2(I.J)

⎛
⎝log2 I∑

n=1

PI(n; ρ) +
log2 J∑
m=1

PJ(m; ρ)

⎞
⎠. (17)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 18:02 from IEEE Xplore.  Restrictions apply. 



706 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 10, OCTOBER 2006

The result for transmit diversity and one receiver antenna
(Lr = 1) can be simplified as

Φγb
(s)=

Lt!
(N− 1)!

1
(1 + cρs)N−1

Lt−N∏
j=0

1
N(1 + cρs) +j

(18)

where we have used
∑n

j=0

(
n
j

) (−1)j

p+j = n!
p(p+1)···(p+n) to

convert the sum to the product (18). Considering the limit
for high SNR, we can show that the approximate BER is

PM (ρ) ≈ 2
M log2 M

⎛
⎝log2 M∑

n=1

kn∑
i=0

Bi

D2Lt
i

⎞
⎠ 1

NLt−N+1cLt

× (2Lt − 1)!
2Lt−1(Lt − 1)!(N − 1)!

(
1
ρ

)Lt

, ρ � 1 (19)

which clearly indicates a full diversity order of Lt at high
SNRs for N transmit antenna selection of an Lt × 1 system.

Fig. 1 compares the exact expression (16), the approxima-
tion (19), and the simulation results for N = 3 TAS out of
3 ≤ Lt ≤ 6 and Lr = 1 using the OSTBC with rate 3

4 as
defined in [2], [13] for 16-QAM. Note that (16) asymptotically
approaches (19), which is a tight bound of (16) at high SNRs.

C. Approximate BER for M-ary PSK

A tight approximation for the BER of the coherent M -ary
PSK in AWGN channels is given by [15, eq. (12)]. Again,
using the expression for Q-function and same derivation steps
from (12) to (16), an approximate expression for the average
BER of OSTBC can be found similarly as

PM (ρ) =
N
(
Lt

N

)
max(log2M, 2)

(cρ)−LrN

[(Lr − 1)!]N

max(M/4,1)∑
i=1∑

i1,...,iN−1

a(Lr; i1, ..., iN−1)
N−1∏
k=1

ik!
kik

Lt−N∑
j=0

(
Lt−N

j

)
(−1)j

×
{∑

n∈B

(
j

n0, ..., nLr−1

)
(cnj + Lr − 1)!

(cρ)cnj Anj

× W

(√
1

cδ2
i ρ

+ 1,

√
(N+ j)
Ncδ2

i ρ
+ 1; r+N−1, cnj +Lr

)}
.

(20)

where δi = sin (2i−1)π
M .

IV. CONCLUSION

In this paper, we have investigated the performance of TAS
and OSTBCs. The exact BER for M-PAM and M-QAM and
an approximate BER for M-PSK were derived. Our results
are sufficiently general to handle an arbitrary number of
antennas, unlike the previous results. Moreover, we directly
derived the BER, not via the symbol error probability. As
expected, we find that this scheme achieves full diversity order
asymptotically (i.e., Lt not N ), as if all the transmit antennas
were used.
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Fig. 1. Comparison between the exact expression, approximation and
simulation for N = 3 TAS out of 3 ≤ Lt ≤ 6 with Lr = 1, 16-QAM.
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