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Joint Data Detection and Channel
Estimation for OFDM Systems

Tao Cui, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract—We develop new blind and semi-blind data detec-
tors and channel estimators for orthogonal frequency-division
multiplexing (OFDM) systems. Our data detectors require min-
imizing a complex, integer quadratic form in the data vector.
The semi-blind detector uses both channel correlation and noise
variance. The quadratic for the blind detector suffers from rank
deficiency; for this, we give a low-complexity solution. Avoiding a
computationally prohibitive exhaustive search, we solve our data
detectors using sphere decoding (SD) and V-BLAST and provide
simple adaptations of the SD algorithm. We consider how the
blind detector performs under mismatch, generalize the basic
data detectors to nonunitary constellations, and extend them to
systems with pilots and virtual carriers. Simulations show that
our data detectors perform well.

Index Terms—Channel estimation, orthogonal frequency-divi-
sion multiplexing (OFDM), sphere decoding (SD).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing (OFDM)
is used for high-data-rate wireless local area network

(WLAN) standards, such as the Hiperlan and IEEE 802.11a,
with data rates of up to 54 Mb/s, and it is being considered for
fourth-generation (4G) mobile wireless systems [1]. A cyclic
prefix (CP) and pilot tones for channel estimation [2]–[6]
constitute a significant overhead or bandwidth loss, motivating
the development of blind techniques for OFDM. They use
statistical or deterministic properties of the transmit and receive
signals; properties such as CP and pilot-induced redundancy,
cyclostationarity, finite alphabets, and virtual carriers have been
exploited [7]–[13]. Blind channel estimation for multiple-an-
tenna OFDM is reported in [14].

Joint estimation of channel impuse response (CIR) and data
symbols for OFDM has not been investigated extensively.
A maximum-likelihood (ML) joint blind channel and data
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estimator [15] exploits the finite alphabet property of mod-
ulation symbols and the presence of virtual carriers (VCs).
In [16], an ML joint estimator is derived, which requires
pilot symbols for an initial estimate of the channel. In [17], a
blind channel estimator for block fading channels is proposed
using the super-trellis and the per-survivor algorithms, which
require relatively high complexity. Note that many previous
blind estimators typically use averaging over a large number
of OFDM symbols (up to several thousands in some cases).
These estimators thereby introduce a considerable latency
into the overall system and require that the channel remains
constant. Thus, estimators that require few OFDM symbols are
preferable, as they can operate over nonzero Doppler channels
without introducing an appreciable delay. The initial channel
estimate can also be used for data detection over several OFDM
symbols (provided that the channel variation is slow enough).
Recently, [18] also proposed a deterministic blind joint channel
and data estimator. The branch-and-bound principle is applied
to solve a nonlinear integer problem associated with finding
the curve that fits a subchannel in the least-square (LS) sense.
However, the blind detector is not optimal and needs several
OFDM symbols.

In this paper, we develop new blind and semi-blind data de-
tectors and channel estimators for OFDM systems. Our data de-
tectors require minimizing a complex, integer quadratic
where is a data vector and is a matrix. The blind detector is
derived following the generalized likelihood ratio test (GLRT)
approach [19]. The semi-blind detector uses both channel cor-
relation and noise variance and is ML. The quadratic for the
blind detector suffers from rank deficiency; for this, we give a
low-complexity solution. Both detectors are obtained by posing
the problem of the joint estimation of channel and data as a
mixed discrete and continuous LS optimization problem. By
eliminating the channel from it, we obtain a discrete integer
LS problem (which has the same form for both detectors) for
the data symbols. An exhaustive search of the solution space
yields an optimal solution but has exponential complexity in
the number of subcarriers and is computationally prohibitive.
Avoiding this problem, we solve our data detectors using the
sphere decoder (SD) [20]–[22] and Vertical Bell Laboratories
Layered Space-Time (V-BLAST) [23] and provide simple adap-
tations of the SD. Our approach allows for substantial computa-
tional savings over an exhaustive search; for example, the total
number of flops decreases by seven orders of magnitude com-
pared with an exhaustive search. We also consider how the blind
detector performs under mismatch, generalize the basic data de-
tectors to nonunitary constellations, and extend them to systems
with pilots and virtual carriers.
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Fig. 1. Baseband OFDM system model.

This paper is organized as follows. Section II describes the
basic baseband OFDM system model. Section III considers
the joint channel estimation and data detection. In Section IV,
we describe both V-BLAST and SD and provide several mod-
ifications for our joint data detectors. Section V generalizes
the semi-blind detector considering mismatch and considers
nonunitary constellations. Section VI gives simulation results,
and Section VII concludes the paper.

Notation: , , and denote transpose, conjugate
transpose, and Moore–Penrose pseudo-inverse, respectively.
The set of all complex vectors is denoted by . A
constellation is unitary if , for all , and the car-
dinality of is denoted by . All vectors of elements of

are denoted by . For -ary phase-shift keying (MPSK),
the constellation .
A circularly complex Gaussian RV (CGRV) with mean
and variance is denoted by . The discrete
Fourier transform (DFT) matrix of size is given
by , (where

).

II. OFDM BASEBAND MODEL

In the OFDM system given in Fig. 1, source data are grouped
and/or mapped into multiphase symbols from , which are
modulated by the inverse DFT (IDFT) on parallel subcarriers.
Note that , are called modulation
symbols or transmit data symbols. The input symbol duration
is , and the OFDM symbol duration is . We assume
that the composite CIR, which includes transmit and receive
pulse shaping and the physical channel response between the
transmitter and receiver, may be modeled as [24, p. 802]

(1)

where , and is the delay of the th tap.
Typically, it is assumed that , resulting in a finite im-
pulse response filter with an effective length . Assuming that
the channel remains constant during each OFDM symbol, but
may vary between OFDM symbols, and that the cyclic prefix

is sufficiently long , the post-DFT received samples
are given by

(2)

where is the complex channel frequency
response at subcarrier , is the Fourier transform of the
CIR, and are independent and iden-
tically distributed (i.i.d) CGRVs, each of which has zero mean
and variance . Assuming , we find , where

,
is the CIR, and is an submatrix of the DFT matrix ,
which corresponds to each channel path. We can vectorize (2)
as

(3)

where is a diagonal
matrix. Note that (3) is the basis of our joint channel and data
estimators.

III. JOINT CHANNEL ESTIMATION AND DATA DETECTION

We next derive blind and semi-blind joint CIR estimators and
data detectors. The semi-blind detector is derived by assuming
the availability of the exact knowledge of the channel correlation
matrix and noise variance.1 We later show how the detector will
behave under imperfect knowledge (i.e., mismatch conditions).

A. Blind Detector

Since the noise vector in (3) is i.i.d Gaussian, the ML
estimators of the CSI and transmitted symbols are
given by

(4)

1We hasten to add that our use of the term semi-blind is somewhat uncon-
ventional. Typically, semi-blind refers to the use of one or more pilots. We use
the term semi-blind to indicate that the detector needs the knowledge of channel
correlation and noise variance.
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The minimization in (4) is a complex LS problem for and an
integer LS problem for . Given (we assume that

), the channel response that minimizes (4) is given by the
LS estimate

(5)

Substituting (5) into (4), we obtain

(6a)

(6b)

(6c)

(6d)

(6e)

where , and
is the vector whose elements are the diagonal elements of matrix

. Equation (6b) is due to the use of the constant modulus
constellation MPSK; (6c) follows from the fact that the matrix

is an orthogonal projection matrix onto
, and the projection matrix has the property

and .
The rank of the matrix is only

. Note that can be QR factorized as , where
and are unitary and upper triangular, respectively. Since the
last rows of are zero, both the standard V-BLAST and SD
fail here. We next modify (6e) so that both SD and V-BLAST
can be applied.

Using the constant modulus property (e.g., for
), is a constant.

Therefore, the optimization problem (6e)2 is equivalent to

(7)

Since is a positive semi-definite matrix with nonzero
eigenvalue 1, is a positive definite matrix
if . For simplicity, we let .

The detector (7) can be solved via an exhaustive search over
all possible data sequences, a search whose complexity is
exponential in and is prohibitive for all but small . There-
fore, we develop two efficient algorithms: the first one uses

2In [15], an approximate iterative LS projection algorithm is developed to
solve optimization problems similar to (6e). However, the convergence of that
algorithm is not guaranteed.

V-BLAST (suboptimal), and the second one uses the SD [20]
(optimal). Both algorithms exploit the Cholesky factorization
of a positive definite matrix, which can be used for the blind
detector (7) and the semi-blind detectors developed next. The
algorithms are hence developed in detail in Section IV.

Remarks:
• The blind detector (6) is known as the GLRT detector [19].

A similar approach has been used for joint ML channel
estimation and signal detection for single-input and mul-
tiple-output systems in [25], where the SD is also used for
signal detection. In [18], blind and semi-blind detectors are
obtained by using GLRT and a regression model. However,
GLRT-based detectors are not ML. The ML joint detector
will be given in the next subsection.

• After is estimated from (7), the LS estimate can
be obtained by substituting into (5). Assuming that
the channel remains constant over OFDM symbols, the
joint estimator is only performed every symbols, which
reduces the total complexity of the receiver.

• Both and , where , satisfies (7), which
shows that the blind detector (7) exhibits a phase ambi-
guity. This can be solved by using a pilot tone (see Sec-
tion V-D).

• The blind detector needs knowledge of the channel length
, which can be obtained using the cyclic prefix-based al-

gorithm [26]. If is overestimated, we find from simu-
lation that the performance degradation is negligible (see
Section VI-D for a detailed discussion).

B. Semi-Blind Detector

This requires knowledge of the autocorrelation matrix
of the CIR and the noise variance . We classify it as a
semi-blind detector. From (3), and are zero-mean com-
plex Gaussian random vectors. The received samples can
be modeled as i.i.d. zero-mean CGRVs that are conditional on
the data vector. The autocorrelation matrix of the received signal
is thus given by

(8)

The determinant of can be expressed as

(9)

Note that the determinant of is independent of . Ignoring
terms that are independent of , the log-likelihood function
is given by

(10)

As with (6e), maximizing the log-likelihood function is equiv-
alent to solving

(11)
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As the matrix is positive definite, we
propose the use of V-BLAST [23] and the SD algorithm [20] to
solve (11). This is developed in detail next.

IV. DATA DETECTION ALGORITHMS

In this section, we review the SD and V-BLAST algorithm,
which efficiently solve our blind and semi-blind detectors. We
also give a new efficient variant of SD that can handle any con-
stellations.

A. V-BLAST Detection

The blind detector (7) and the semi-blind detector (11) can be
solved via the V-BLAST algorithm [23]. These detectors can be
written in a general form as

(12)

where is a positive definite matrix, which can be Cholesky
factored as . The V-BLAST ordering finds a per-
mutation matrix such that the QR decomposition

, where is unitary and is upper tri-
angular, has the property that is maximized over
all column permutations. For , the algo-
rithm chooses such that

(13)

where is the th row of , is the pseudo inverse of
, and denotes the matrix obtained by zeroing columns

of . Equation (12) can be expressed as

(14)

Since is upper triangular, the th element of (14) is given
by

(15)

where is the th entry of matrix , and the estimate is
free of interference from subcarriers . Thus,
can be estimated by minimizing (15). Proceeding in the order

and assuming correct previous decisions, we
can cancel the interference between subcarriers in each step and
estimate . This sequential detection suffers from error prop-
agation, even with optimal ordering. Note that the V-BLAST
solution may be used as a starting point for the SD.

B. SD Algorithm

1) Algorithm: The original Fincke and Phost [20] SD (FPSD)
has been used for ML detection of lattice codes [21], for detec-
tion in multiple-antenna wireless communication systems [27].
The SD is an efficient method to find the optimal solution to
an integer LS problem [20], [21], [28]. This is the problem of

finding the closest lattice point in dimensions to a given point
. In our case, the search space has lattice points, so

the exhaustive search is only possible for small only. To the
best of the authors’ knowledge, the SD has not been applied for
joint channel estimation and data detection in OFDM systems.

While the FPSD can only handle real systems, complex sys-
tems can readily be decoupled to formulate real systems. The
complex problem (12) can be transformed into the real matrix
equation

(16)

where

(17)

and . Thus, (16) can be solved via the SD.
For example, if belongs to 4QAM, each entry of belongs to
BPSK. Therefore, the 4QAM complex system becomes a BPSK
real system. Any -QAM can be decoupled similarly. Thus,
(12) can be reduced to a real system (16).

Since the matrix is positive definite, Cholesky factor-
ization of it yields , where is an upper trian-
gular matrix with real and positive. We then have

(18)

where . The SD searches the lattice
inside a hypersphere of radius instead of searching the whole
lattice. We will discuss the choice of later. Substituting

for and for ,
we can get

(19)

The key idea of the SD is to generate so that the
bound in (19) is progressively satisfied, i.e., a range for is
determined by ignoring terms in (19). Once this
range is established, it is used to find the range for by
ignoring terms in (19). This process continues
until all of the candidate vectors are generated; starting from

and working backward, for , we have

(20)
If and are real, the bound of can be obtained as (21),
which is shown at the bottom of the following page, where
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denotes the smallest integer greater than or equal to its argu-
ment. denotes the largest integer less than or equal to its ar-
gument. Therefore, is selected from

(22)

Let be the list of all candidates generated at the end of this
process. If is empty, is increased, and the process repeats.
Note that . Now we can compute for all

, and the resulting minimum yields the ML estimate. This
basically sums up the original SD idea. One can immediately
try to improve this. For example, when going through the list

, say, at , if is less than , then the radius
is updated to . In [27], if , the bounds of all ’s

(21) are updated. Although this accelerates the original SD, its
complexity still depends on the initial radius. To further reduce
the complexity, one can use [28] and [29]. In the FPSD, the
search is started at the surface of the sphere, which is inefficient.
This improved algorithm [28], [29] begins its search near the
center of the sphere. As above, the radius can be reduced more
rapidly compared with the FPSD. Furthermore, the complexity
of the improved algorithm is not highly sensitive to the initial
radius [28]. Adapting their idea to the current problem, we need
to arrange the search order according to the value of

. We search the lattice point with smaller first.
This is the modified SD algorithm for OFDM systems.

However, not all -PSK constellations can be decoupled into
real systems (e.g., 8-PSK). Hochwald and Brink [30] show a
modified sphere decoder that handles complex constellations,
but it involves the computationally inefficient operation,
slowing down the SD. We show here that the decouple algorithm
can still be used to handle -PSK, when is not an integer set.
However, each element of is constrained depending on the
constellation. For a given , the candidates for are
hence constrained. Let . Let

. Therefore, is selected from

(23)
Since can be precomputed for each from and
be stored in memory, additional computational complexity is
avoided. This simple idea can be used to handle any constella-
tions. The decoupling for -QAM can be viewed as a special
case of our generalization because ’s are the same for
any from , and .

2) Initial Radius: An important problem is how to choose
the initial radius. If it is too small, no candidate point would be
found inside the sphere. However, if it is too large, too many can-
didates would be found, and the overall complexity would be-
come exponential. In [22], an initial radius is chosen according
to the variance of the additive noise. In contrast, we use a relax-
ation approach to choose the initial radius. For OFDM symbols
with MPSK, we relax (7) and (11) as , ,
where the vector . The Lagrangian for this min-
imization problem is . The
optimal here is the maximum eigenvalue of matrix , and

is the eigenvector corresponding to . We quantize into a
point in as . By substituting into (12), the initial radius
is given by .

V. GENERALIZATIONS

A. Semi-Blind Detector Under Mismatch

The detector (11) needs knowledge of the channel covariance
matrix and the noise variance . In [31], it is shown that

remains constant during 300 OFDM symbols for a given
OFDM system. In [26], we give a cyclic prefix-based algorithm
to estimate and without pilots. If and are not
available or there exists a residual estimation error, we design
the estimators for and , while the true values are and

. In [3] and [5], an estimator that is suficiently robust to the
mismatch is designed for the worst case, which is taken to be the
uniform power delay profile (UPDP). We follow their approach
and consider a suboptimal criterion as follows:

(24)

The second equality comes from (3). If the first term of (24) is
independent of , then the bit error rate (BER) may be less
dependent on the mismatch. Ignoring the noise variance and
letting , the first term of (24) can be written as

(25)

(21)
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Since is a circulant matrix, let the first row be
. Equation (25) becomes

(26)

If is UPDP or , (26) is equal to
, which is independent of . Hence, the

detector is robust to mismatch with this choice of .

B. Nonunitary Constellations

The blind and semi-blind detectors can be extended to
nonunitary constellations. Instead of solving the optimal de-
tector (4), the suboptimal blind detector solves

(27)

where denotes the nonunitary constellation. The LS estimate
of is given by

(28)

Substituting (28) into (27), we obtain

(29)

where . Equation (29) can also be solved
using V-BLAST and SD, but there is a performance loss due to
the suboptimal nature of (27).

To adapt the semi-blind detector to the nonunitary case, we
note that (8) is

(30)

Maximizing the log-likelihood function is equivalent to solving

(31)

As in [3], we derive a suboptimal detector by replacing the term
in (31) with its expectation . As-

suming the same constellation on all of the subcarriers, we have
, where . Therefore,

the suboptimal semi-blind detector is given by

(32)

However, for an optimal solution of (31), we note that
is positive semi-definite. It can be readily verified

that is positive definite. We use
the following definition from [32, p. 469].

Definition: Let and be Hermitian matrices. We write
if the matrix is positive semi-definite. Similarly,
means that is positive definite.

Let
, where . It can be readily verified

that . Using Corollary 7.7.4 of [32, p. 471], we can obtain
. Therefore, for any , we have

(33)

When applying sphere decoding for (31), one finds the min-
imum point among all of the points satisfying

(34)

Using (33), we find the point minimizing (31) among all of the
points satisfying

(35)

Hence, the SD should be modified when the search goes to the
bottom of the search tree; the radius is updated according to

instead of . This gives the
optimal solution.

C. Iterative Improvement of Channel Estimates Via Decision
Feedback

Our proposed detectors may also be used for channel tracking
if the channel remains constant for OFDM symbols. For

(the first symbol), the initial channel estimate is given
by (5). For the remaining OFDM symbols ,
channel estimation may not be necessary. Instead, is used to
detect OFDM symbols. Decision-feedback-type
iterations can also be used to track a slowly varying channel.
From (3), the channel estimate in the th iteration of
the decision feedback loop is given by

(36)

where and denote the estimated and received symbols
in the th iteration. is obtained by blind or semiblind de-
tectors.

D. Extension to OFDM Systems With Pilot Symbols and
Virtual Carriers

Existing OFDM standards such as IEEE802.11a incorporate
pilot symbols [33]. These pilots can be used to reduce the search
space and to solve the phase ambiguity.

With the presence of pilots, some elements of the sequence
are known a priori. Let
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, denote the pilot symbols, and is the index set
of pilot symbols with . Let denote
the pilot symbols vector, and denote the data symbols vector.
We rearrange so that the last symbols are and form a new
vector . Since the last symbols are known a
priori, the search space is limited to . The ambiguity of
the detectors is automatically eliminated by the pilot symbols.

We consider an OFDM system with subcarriers, of which
are modulated by the data symbols, and the remaining

are unmodulated virtual carriers. For simplicity, we
assume that the subcarriers 1 to are used for data. The blind
detector (7) can be rewritten as

(37)
The semi-blind detector (1) can be rewritten as

(38)
The SD can also be applied to the virtual carrier cases.

VI. SIMULATION RESULTS

We consider a frequency-selective slow Rayleigh fading
channel with Gaussian complex taps with

for , and the six-tap COST 207 TU
channel model [34], which has the delay profile {0.0, 0.2,
0.5, 1.6, 2.3, 5.0} s and power profile {0.189,0.379,0.239,
0.095,0.061,0.037}. The channel output SNR is . An
OFDM system with 32 subcarriers and BPSK is simulated
(The carrier frequency of the OFDM system is 5 GHz and the
data rate is 3 MHz. The guard interval is ). A training
symbol is transmitted at the th subcarrier to solve the scaling
ambiguity. The performance of one-tap equalization with per-
fect knowledge of the CIR—perfect channel state information
(CSI)—provides the benchmark.

A. Estimators’ BER, Mean Square Error, and Complexity
Dependence on SNR

Proposed detectors are tested on OFDM systems with the
above simulation parameters under different SNR over a 6-ary
exponential PDP channel. Fig. 2 shows the mean square error
(MSE) of channel estimation, which is defined as

MSE (39)

The semi-blind detector (11) with the SD has MSE performance
identical to that of the blind detector (7) with the SD. In high
SNR, the semi-blind detector with V-BLAST performs close to
that with the SD, while the blind detector with V-BLAST still
has a 1.2-dB gap over that with the SD at MSE .

In Fig. 3, the BER performance of the OFDM system is com-
pared with that of the benchmark. Both detectors with the SD are
within 0.5 dB of the benchmark in high SNR. The performance

Fig. 2. MSE of the joint ML estimation of the channel response versus SNR for
an OFDM system withN = 32 and BPSK in a 6-ray exponential PDP channel.

Fig. 3. BER of the joint ML estimation algorithm versus SNR for an OFDM
system with N = 32 and BPSK in a 6-ray exponential PDP channel.

of V-BLAST detection for the semi-blind detector is compa-
rable with that of SD in high SNR. In low SNR, the gap between
SD and V-BLAST can be as large as 5 dB. The average compu-
tational complexity as a function of the SNR is given in Fig. 4.
Note that the complexity of the exhaustive search is
flops while, even for an SNR of 10 dB, all detectors’ complex-
ities are within flops by using SD. The computational time
can be saved significantly. The complexity of both detectors in-
creases with the increase of SNR. At 0 dB, the semi-blind de-
tector is 32 times faster than the blind detector. The blind de-
tector has higher complexity than the semi-blind detector in low
SNR. This is possibly due to the inherent rank deficiency in (6e)
while the complexity is greatly reduced compared with the ex-
haustive search in the first variables [27] in the blind de-
tector. When the SNR is larger than 25 dB, both the semi-blind
detector and the blind detector have identical complexity. The
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Fig. 4. Computational complexity versus SNR for an OFDM system withN =

32 and BPSK in a 6-ray exponential PDP channel.

Fig. 5. BER of the joint ML estimation algorithm versus SNR for an OFDM
system with N = 32 and BPSK in a TU channel.

semi-blind detector is preferable in low SNR when the channel
statistics are known at the receiver.

We also compare the different algorithms over the COST
207 TU channel model, described above. The channel is as-
sumed to be constant for 100 OFDM symbols. The channel
is estimated using the first OFDM symbol, and the remaining
99 OFDM symbols are detected using the channel estimate.
Fig. 5 shows the BER of V-BLAST and SD detection for the
semi-blind detector and SD detection for the blind detector. The
blind and semi-blind detectors almost achieve the bound given
by one-tap equalization with perfect CIR. As shown in Fig. 3,
the V-BLAST detection for the semi-blind detector is compa-
rable to that of SD. This result seems to contradict the results
given in [35], where great performance improvement is achieved
by using the SD. The reason may be that the order of the con-
stellation is not very high.

Fig. 6. Effects of semi-blind detector design mismatch in an OFDM system
with N = 32 and BPSK. The channel is simulated using an exponential PDP.
However, in the semi-blind detector, the uniform PDP is assumed.

Fig. 7. BER of the joint ML estimation algorithm versus SNR for an OFDM
system with N = 32 and 4PAM in a 3-ray exponential PDP channel.

B. Mismatch

The effect of semi-blind design mismatch is shown in Fig. 6.
The semi-blind detector is designed for UPDP and SNR

dB and evaluated for a 6-ary exponentially decaying power-
delay profile. The BER of the robust design is compared with
perfect and . From the figure, the BER performance of
the two detectors are almost the same. This figure confirms the
robust design criteria.

C. Nonunitary Constellation

The performance of the blind suboptimal detector with SD
and V-BLAST, the semi-blind suboptimal detector with SD and
V-BLAST, and the semi-blind optimal detector with modified
SD are compared with that of the benchmark in Fig. 7 for an
OFDM system with and the 4PAM constellation. The
suboptimal detectors are denoted by “Approx” in the figure.
The suboptimal blind and semi-blind detectors with SD and
V-BLAST perform close in high SNR. However, all of them
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Fig. 8. BER versus SNR for a BPSK OFDM system with N = 32 and as-
suming different channel length L.

have a 4-dB performance loss at BER . The
optimal semi-blind detector performs close to the benchmark
in high SNR. At BER , it has only a 0.5-dB
loss. In the figure, we only plot the optimal semi-blind BER
curve above 25 dB. This is due to the fact that the bound for

given by becomes weak
in low SNR, and the complexity becomes exponential in .

D. Impact of Channel-Length Overestimation

The blind detector needs knowledge of the channel length .
If is overestimated, the effect of channel-length overestima-
tion is presented in Fig. 8. The simulation is performed over a
6-ary exponential PDP channel. The blind detector is evaluated
at , 8, 10. The overestimation of causes a performance
loss in low SNR. However, in high SNR, the performance loss
is negligible. At BER , the detector with has
less than 0.1 dB loss over that with perfect . When increases
to 10, the gap is still less than 0.5 dB. Therefore, our blind de-
tector is insensitive to the overestimation of .

E. Impact of Virtual Carriers

The dependence of the proposed detectors’ performance on
the number of virtual carriers (VCs) is highlighted in Figs. 9
and 10. The number of VCs is varied from 2 to 8 (correspond-
ingly, the number of the data subcarriers goes from 30 to
24). Fig. 9 shows that both the semi-blind and blind detectors
are insensitive to the number of VCs. However, the MSE per-
formance is degraded by increasing the number of VCs, since
the number of information symbols for channel estimation is
reduced. In Fig. 10, due to the use of VCs, the complexity of
our semi-blind and blind detectors is greatly reduced. Figs. 9
and 10 are plotted assuming that no transmit power normaliza-
tion is employed (i.e., a transmitted OFDM symbol has constant
energy regardless of the number of VCs). For power normal-
ization, the increase in the number of VCs will result in more
power allocation to each of the data subcarriers, thus improving
performance.

Fig. 9. BER versus SNR for an BPSK OFDM system with N = 32 and dif-
ferent number of VCs.

Fig. 10. MSE versus SNR for an BPSK OFDM system with N = 32 and
different number of VCs.

VII. CONCLUSION

We have developed new blind and semi-blind data detectors
and channel estimators for OFDM systems. Our data detectors
are ML and require minimizing a complex, integer quadratic
function. The semi-blind detector uses both channel correlation
and noise level. The quadratic for the blind detector suffers from
rank deficiency, to which we gave an efficient solution. We have
also provided simple adaptations of the SD algorithm to handle

-PSK constellations and to achieve reduced complexity. We
considered how the blind detector performs under mismatch,
generalized the basic data detectors to nonunitary constellations,
and extended them to systems with pilots and VCs. Simulation
results show that the proposed detectors perform close to the
ideal case. They may also be extended to MIMO-OFDM sys-
tems and OFDM over fast fading channels. These applications
are currently being investigated.
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