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Polynomial-Constrained Detection Using
a Penalty Function and a Differential-Equation

Algorithm for MIMO Systems
Tao Cui, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract—In this letter, we develop a family of approximate
maximum-likelihood (ML) detectors for multiple-input mul-
tiple-output systems by relaxing the ML detection problem using
constellation-specific polynomial constraints. The resulting con-
strained optimization problem is solved using a penalty function
approach. Moreover, to escape from the local minima, which
improves the detection performance, a differential equation algo-
rithm using classical mechanics is proposed. Simulation results
show that the polynomial constrained detector performs better
than least-squares (LS) detector.

Index Terms—Data detection, maximum likelihood (ML), mul-
tiple-input multiple-output (MIMO).

I. INTRODUCTION

THE enormous capacity and remarkably high spectral
efficiencies promised by multiple-input multiple-output

(MIMO) wireless systems in rich scattering multipath envi-
ronments have stimulated notable research endeavors. Along
with the theoretical studies, detection algorithms have been
proposed to exploit the capacity provided by MIMO systems.
The vertical Bell Laboratories layered space time (V-BLAST)
architecture is one of the first to be developed [1].

The V-BLAST detection algorithm or equivalently
zero-forcing (ZF) decision feedback detection (DFD) is
based on nulling and interference cancellation with optimal
ordering. However, the V-BLAST detector performs much
worse than the maximum-likelihood detector (MLD), which
achieves the minimum error probability for independent and
identically distributed (i.i.d.) random data symbols. In [2], the
sphere decoder (SD), offering near-optimal performance, is
proposed, which attains low complexity in high signal-to-noise
ratio (SNR). Its complexity is nevertheless high in low SNR
or for large systems. The large gap in both performance and
complexity between the MLD and the V-BLAST detector has
motivated the search for alternative detectors.

The relaxation approach has previously been applied
to code-division multiple-access (CDMA) and orthogonal
frequency division multiplexing (OFDM)/spatial-division mul-
tiple-access (SDMA) systems. In [3], a generalized minimum
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mean-square error (GMMSE) detector is proposed for CDMA,
where the binary phase-shift keying (BPSK) vectors are relaxed
to lie inside the smallest hypersphere that contains the unit
hypercube. A tighter relaxation for OFDM/SDMA systems is
used in [4] by restricting the binary vectors to be on the hy-
persphere rather than the inside. In [5], semidefinite relaxation
(SDR) has been applied to CDMA systems with BPSK, and
SDR has been extended to general M-PSK constellations in
[6]. These contributions motivate further search for tighter and
universal relaxations applicable for any constellation.

In this letter, we develop a family of approximate MLDs for
MIMO systems by relaxing the ML detection problem using
constellation-specific polynomial constraints. The ML MIMO
detection problem is hence reformulated as an equality-con-
strained minimization problem. It is solved using a penalty func-
tion with the Newton method. Since the Newton method may be
trapped by local minima, a differential-equation (DE) algorithm
using classical mechanics is proposed to improve the detection
performance.

Notation: Bold symbols denote matrices or vectors. ,
, and denote transpose, conjugate transpose, and conju-

gate, respectively. denotes pseudo-inverse. and
denote the real part and imaginary part of , respectively.
is the two-norm of . The set of all complex vectors is
denoted by . A circularly complex Gaussian variable with
mean and variance is denoted by .

II. MIMO SYSTEM MODEL

A MIMO system with transmit antennas and receive an-
tennas is considered. We focus on spatial multiplexing systems,
where the signals are spatially independent rather than jointly
encoded. Source data are mapped into complex symbols from
a finite constellation of size and .
The input data stream is demultiplexed into substreams that
are simultaneously transmitted through the antennas over a
rich scattering channel. We assume that the MIMO channel is
flat fading. Each receive antenna receives signals from all the
transmit antennas. The discrete-time baseband received signals
can thus be written as

(1)

where , is the transmitted signal
vector, , is the received signal
vector, is the channel matrix, and

, is an additive white
Gaussian noise (AWGN) vector. The components of are thus
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i.i.d. complex Gaussian. Likewise, the elements of are i.i.d.
with , , . We assume that the channel is
perfectly known to the receiver and . If , we
can readily transform the rank-deficient system into a full-rank
system using the algorithm in [7]. Note that the linear model (1)
can also be applied to certain spatially coded MIMO systems,
single antenna systems over time and frequency-selective chan-
nels, intersymbol interference (ISI) channels, and multiuser
systems. Consequently, the relaxation approach proposed in
this letter can also be used for such applications as multiuser
detection for CDMA.

Assuming uncorrelated noise and transmitted signals, the
MLD that minimizes the average error probability is given by

(2)

Equation (2) is an NP-hard problem, and the complexity of
brute-force search is exponential in .

III. POLYNOMIAL CONSTRAINT AND

PENALTY FUNCTION METHOD

Due to the finite alphabet nature of , each satisfies
the following equation:

(3)

The ML detection problem (2) can thus be relaxed as

s.t. (4)

Both the objective function and constraints are polynomial in .
For example, for BPSK, . To avoid the complex
operation, equation (4) can be transformed into a real problem
as

s.t. and

(5)

where

(6)

and

(7)

and
, which are also polynomial in and .

Specifically for decouplable constellations, i.e., QAM, (5) can
be simplified as

s.t. (8)

where is the th element of . For example, for 16-QAM,
.

We next show how to apply the penalty function method to
(8). Equation (5) can be solved similarly. The most common
method is the one that associates a penalty that is proportional
to the square of the constraints. So, (8) is replaced by

(9)

where the positive scalar controls the magnitude of the penalty,
and controls the acceleration of penalty. If , it reduces
to the usual penalty function in [8]. In the following, we choose

. Since (9) is a polynomial in , the Hessian matrix of (9)
can be computed in a close form. The well-known Newton or
quasi-Newton method can be used to solve (9). The initial point
for the Newton method can be chosen as the least-squares (LS)
or minimum mean-square error (MMSE) solution.

It seems logical to choose very large to ensure that no con-
straint is violated. However, large may lead to numerical dif-
ficulties or ill-conditioning, and the search would be trapped
by the local minima corresponding to, for example, the LS or
MMSE solution. The minimization thus should be initialized
with a relatively small , and would be increased gradually. A
typical value for is 5 [8]. If is the true transmit
vector, is a sum of squares of noise terms. Conse-
quently, the initial can be set to a value proportional to .

To overcome the ill-conditioning, the penalty function
method can be combined with the Lagrange multipliers. The
so-called augmented Lagrangian function [8] is defined as

(10)
The initial can be set to . After minimizing (10), [8]
suggests updating as

(11)

where is the estimate of in the th iteration.
To avoid the trap of local minima using the Newton method,

we propose a DE algorithm inspired by the classical mechanics
to improve the detection performance. Let the function to be
minimized in (9) be denoted as , where is omitted for
brevity. We associate the following second-order DE with (9)
[9]:

(12)

where is a positive constant, is a function, and
is the gradient of .

Equation (12) represents Newton’s second law for a particle
of mass moving in , subject to the force given by
the potential and the friction , where is
the time-varying friction coefficient.

Let the initial values for (12) be

(13)

Typically, is chosen to be the LS or V-BLAST solution, and
. We numerically integrate the DE (12) with the initial
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conditions (13). Equation (12) can be rewritten as first-order
equations as

(14)

Applying numerical integration to (14), we have

(15)

where is the time integration step at time instant . Note
that the A-stable linearly implicit method [9] can be used. How-
ever, it needs to compute the Jacobian of , which has high
complexity.

At each time , we save the current potential , kinetic
, and the corresponding location . The integration is

stopped when the particle stops moving or the maximum kinetic
of time steps is less than a threshold. The point with the min-
imum potential on the trajectory is output as the solution for
(9). If the maximum of is larger than a threshold, in
(9) is increased gradually, and we search again until the condi-
tion is satisfied. Due to the existence of the inertial term or the
second-order term in (12), local minima of may be over-
passed. However, this algorithm does not guarantee the global
minimum.

Given the initial value and , the friction coeffi-
cient is kept constant for the first ten steps and then is doubled
at each step until . If , is set to , and
it remains constant during the rest of the integration.

Given the initial value , the value of is updated by a
factor of . If the total mechanical energy is increased, we
choose or . In the simulation, we choose from
1.6 or 0.6.

To keep the total complexity of the DE algorithm constant, we
can set the maximum number of time integration steps in
the algorithm. The integration stops after reaching .

To ensure a tight relaxation, we utilize the maximum and min-
imum absolute values of the constellation elements and

, resulting in additional constraints

(16)

Hence, we can further add two penalty terms to (9)

(17)

This may give tighter relaxation and result in better perfor-
mance.

IV. SIMULATION RESULTS

The error rates of our proposed constrained detector is simu-
lated for an MIMO system over a flat Rayleigh fading channel.
We assume the receiver has perfect channel state information
(CSI), and the initial value of is chosen proportional to the
noise variance. Our polynomial constrained detector is denoted
as PCD. The detector without the maximum number of time
steps constraint is denoted as PCD-Op , or it is denoted as
PCD-X, where X is . The LS detector and the SD are
used as benchmark detectors. In PCD, we set , ,

, and .

Fig. 1. Trajectory of a particle for a 2 � 2 MIMO system with BPSK and 5
dB.

Fig. 2. Energy of a particle as a function of time steps for a 2 � 2 MIMO
system with BPSK and 5 dB.

We first show a simple example of 2 2 BPSK system at
an SNR of 5 dB. Fig. 1 shows the trajectory of the particle
(dash line) on a contour graph. The initial point is set to

. Clearly, we can see the particle is not trapped by the
local minimum around [1,1], and it stops at the global minimum
around . Fig. 2 shows the kinetic, potential, and the total
mechanical energies as a function of the time steps. From the po-
tential curve, we find the particle overpasses a local minimum
at time step 20. The kinetic energy decreases toward zero as the
particle reaches the global minimum.

Fig. 3 shows the BER performance of different detectors in a
BPSK modulated system with eight transmit and eight receive
antennas. The initial values for are chosen as the LS so-
lution. Our PCD has a significant performance gain over both
V-BLAST and LS. At BER , PCD-Op has a 4-dB gain
over V-BLAST, and the performance loss over ML is only 2.2
dB. When PCD-40 is used to achieve constant complexity, the
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Fig. 3. Performance comparison of different detectors in an 8 � 8 MIMO
system with BPSK.

Fig. 4. Performance comparison of different detectors in an 4 � 4 MIMO
system with 16QAM.

performance loss over PCD-Op is less than 0.1 dB at BER
. However, the complexity of PCD-40 is roughly 15% of

that of ML search.
The symbol error rate (SER) of different detectors for a 4 4

system with 16QAM is shown in Fig. 4. PCD-Op (LS) denotes
our PCD-Op with chosen as the LS solution. PCD-Op
(V-B) denotes our PCD-Op with chosen as the V-BLAST
solution. Our PCD-Op (LS) has a 5.8-dB gain over LS at SER

. The gain reduces to 0.5 dB when V-BLAST is used
for initialization at SER . However, the performance
improvement is reduced compared to that of BPSK. In high
SNR, the performance gap between the PCD-Op and the MLD
is large. However, the complexity of our PCD is only 1% of
that of ML search. The average number of flops of V-BLAST is
12 158, while it is , where is the com-

plexity of finding the initial point in PCD, i.e.,
for V-BLAST and for LS. Therefore, the com-
plexity of PCD in each iteration is much less than for
V-BLAST. Even though PCD performance is not as good as the
MLD in high SNR, it is computationally efficient in low SNR
and can be readily parallelized, which is appealing for practical
application. The diversity order (i.e., the negative slope of the
BER curve in high SNR) of the PCD-Op appears to be one.
When the constellation size is large, the performance gain by
using our PCD decreases since the DE algorithm may also be
trapped by local minima (but not the initial one).

V. CONCLUSION

In this letter, we have proposed an approximate relaxation
approach for the maximum likelihood detection problem for
uncoded MIMO systems. Using constellation-specific polyno-
mial constraints, the detection problem was reformulated as an
equality-constrained optimization problem. It was solved using
a generalized penalty function method, along with the classical
Newton method. Since the Newton method may be trapped
by local minima, a DE algorithm inspired by the classical
mechanics has been proposed. Simulation results show that
our proposed relaxation detector always outperforms the LS
detector, but its performance relative to that of the V-BLAST
detector depends on the constellation size. Of course, the
complexity of the proposed detector is significantly less than
that of exact ML via exhaustive search. The proposed detector
may also work for spatially coded MIMO systems, single an-
tenna systems over time and frequency-selective channels, ISI
channels, multiuser systems, and others. It would be interesting
to study how it performs in those applications.
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