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Abstract— A new class of full-diversity space-time block codes
(STBC) called semi-orthogonal algebraic space-time block codes
(SAST codes) with rate one symbol per channel use is proposed.
The SAST codeword matrix has a generalized Alamouti code
structure where the transmitted symbols are replaced by circu-
lant matrices. Properties of rate-one linear threaded algebraic
space-time (LTAST) codes are exploited to construct SAST codes
with maximal coding gain. SAST codes attain nearly 100% of
the Shannon capacity of open-loop multiple-input single-output
(MISO) channels. Our theoretical analysis and simulation results
show that SAST codes gain several dB over LTAST codes and
also outperform other STBC.

I. INTRODUCTION

Space-time block codes (STBC) have been studied exten-
sively recently. One of the most well-known STBC is the
Alamouti code, first designed for two transmit (tx) antennas
[1] and later generalized as orthogonal STBC (OSTBC) [2].
Orthogonal designs enable minimal complexity maximum
likelihood (ML) detection since the detection of symbols is
decoupled. However, orthogonality results in low code rate [3].
A code rate of one symbol per channel use (pcu) is available
for m = 2 Tx antennas only, and the code rate approaches 1/2
for a large number of Tx antennas [3]. To improve the code
rate, quasi-orthogonal STBC (QSTBC) are proposed (see [4]
and references therein). They achieve full diversity by signal
constellation rotations, but pairs of symbols must be jointly
detected. However, QSTBC also have low code rates because
they are constructed from OSTBC.

On the other hand, full-diversity diagonal space-time (DST)
codes are designed differently [5]–[7]. In this design, orthogo-
nality is not considered and rate-one codes can be constructed
for any number of Tx antennas. Optimal DST codes yield
better coding gain compared to OSTBC for m > 2. Moreover,
higher rate codes, called threaded algebraic space-time (TAST)
codes (up to full-rate) can be derived from DST codes, for
example, in [8]. However, DST and TAST codes exhibit high
peak-to-average-power ratio (PAPR) and high complexity ML
detection because all the data symbols of the transmitted
codeword must be jointly detected. To reduce PAPR, linear
TAST (LTAST) codes are proposed [9]. The rate-one LTAST
codes have a circulant structure [10] and have the same PAPR
with the input symbols. However, LTAST codes incur the same
high complexity ML detection as TAST codes.

In this paper, we present a new class of full-diversity and
rate-one STBC, namely semi-orthogonal algebraic space-time

(SAST) codes. SAST codes reduce ML detection complexity
significantly compared to DST or rate-one LTAST codes
because the left-half columns of the codeword matrices are
orthogonal to the right-half columns. This structure can be
viewed as a generalization of the Alamouti code, in which each
data symbol is replaced by a circulant matrix. To achieve full
diversity, the input symbols are rotated. Optimal rotations for
different constellations are found to be the ones designed for
rate-one LTAST codes [9] based on algebraic number theory.

Table I compares existing space-time code designs (OSTBC,
QSTBC and rate-one TAST/LTAST codes (or DST codes)) and
proposed SAST codes for (m,n) MIMO systems where m,n
are the number of Tx and receive (Rx) antennas. Compared
parameters are diversity gain (Gd), coding gain (Gc), code
rate (R, in symbol pcu), number of symbol to be jointly
ML detected and degree of orthogonality (DO). The DO is
defined as the minimum number of columns of the codeword
matrix that a column is orthogonal with. SAST codes have
higher coding gains compared to other codes that have the
same or smaller code-rate. Simulation results corroborate the
theoretical analysis.

TABLE I

COMPARISONS OF SEVERAL STBC.

Code m Gd Gc R ML decoding DO

OSTBC 4 4n 1
3

d2
min 0.75 1 symbol 3

QSTBC 4 4n 1
4

d2
min 1 2 symbols 2

LTAST 4 4n 1
4

d2
min 1 4 symbols 0

SAST 4 4n 1
2

d2
min 1 2 symbols 2

OSTBC 8 8n 1
5
d2
min 0.625 1 symbol 7

QSTBC 8 8n 1
6
d2
min 0.75 2 symbols 6

LTAST 8 8n 1
8
d2
min 1 8 symbols 0

SAST 8 8n 1
4
d2
min 1 4 symbols 4

II. PRELIMINARIES

A. Notation

Superscripts T , ∗ and † denote matrix transpose, conjugate
and transpose conjugate operations. E[·] denotes statistical
mean. A circularly complex Gaussian random variable with
mean m and variance σ2 is denoted by CN (m,σ2). A signal
constellation S is a finite set of possibly complex numbers.
The minimum Euclidean distance of S is dmin = min{|s −
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ŝ|∀s �= ŝ; s, ŝ ∈ S}. An element of S is called a signal
or a symbol, and all the elements are equally likely to be
transmitted. The order or size of S is the number of elements
of S. The average energy of a constellation is normalized such
that E[|s|2] = 1.

B. System Model

We consider data transmission over a quasi-static Rayleigh
flat fading channel. The transmitter and receiver are equipped
with m Tx and n Rx antennas. The channel gain hik(i =
1, 2, ...,m; k = 1, 2, ..., n) between Tx-Rx antenna pair (i, k)
is assumed CN (0, 1). We assume no spatial correlation at
either Tx or Rx array, and the receiver, but not the transmitter,
completely knows the channel gains.

The space-time encoder parses data symbols into space-time
(ST) codewords C = [cli] of size t × m where cli is the
symbol transmitted from antenna i at time l (1 ≤ l ≤ t).
The average energy of a codeword is constrained such that∑m

i=1

∑t
l=1 E[|cli|2] = t.

The received signals ylk of the kth antenna at time l can be
arranged in a matrix Y of size t×n. Thus, one can represent
the Tx-Rx signal relation compactly as

Y =
√

ρCH + Z (1)

where H = [hik], Z = [zik] of size t × n, zik are
independently, identically distributed (i.i.d.) CN (0, 1). The Tx
power is scaled by ρ so that the average signal-to-noise ratio
(SNR) at each Rx antenna is ρ, independent of the number of
Tx antennas.

The upper-bound of pair-wire error probability (PEP) de-
rived by Tarokh et al. [11] is as follows:

P (C → Ĉ) ≤
(

Γ∏
i=1

λi

)−n (ρ

4

)−Γn

(2)

where C and Ĉ are the transmitted and erroneous codewords,
Γ is the minimum rank of a matrix ∆C (∆C = C − Ĉ)
for all C �= Ĉ, and λ1, λ2, , ..., λΓ are non-zero eigenvalues
of a product matrix PC = ∆†

C∆C . The diversity gain or
diversity order Gd and coding gain Gc of ST codes are

defined as Gd = Γn and Gc =
(∏Γ

i=1 λi

)1/Γ

, respectively.
Since the rank∆C = rank PC , if ∆C is of full rank m
for all pairs of distinct codewords, the maximum achievable
diversity order d = mn is obtained and the coding gain is

Gc =
[
det(∆†

C∆C)
]1/m

.
For example, the coding gain of OSTBC [2] is given by

GO
c =

1
mRm

d2
min (3)

where Rm is the code-rate of OSTBC designed for m Tx
antennas [4]1. The maximal rate of OSTBC with the number of
Tx antennas m = 2a or m = 2a−1 is given by R = a+1

2a [3].

1In [4], the authors define a parameter ζ, namely diversity product. The
coding gain can be calculated as Gc = 4ζ2.

The optimal coding gain of QSTBC with even m Tx antennas
can be derived as [4]

GQ
c =

1
mRm/2

d2
min. (4)

C. Circulant Matrices

The circulant matrix [10] structure is proposed for rate-one
LTAST codes in [9]. However, some interesting properties of
circulant matrix are not considered. Therefore, we first review
several necessary properties of a circulant matrix that will be
directly applied to SAST codes. A matrix C = [cik] is called
a circulant matrix of order m

C =




x1 x2 . . . xm

xm x1 . . . xm−1

...
...

...
x2 x3 . . . x1


 . (5)

Therefore, cik = x(k−i+1) mod m. The basic properties of
circulant matrices are given below.

P1 C is a circulant if and only if C† is a circulant.
P2 if A and B are ciculants of order m, and α1 and α2

are two scalars, then the matrices AT , α1A + α2B,
and AB are circulants.

P3 All circulants of the same order commute, i.e. AB =
BA.

P4 Let F be Fourier transform matrix with fi,k =
1√
m

e−j2π(i−1)(k−1), where j2 = −1. If C is a
circulant, it is diagonalized by F : C = F †ΛF , where
Λ = diag[λ1, λ2, . . . , λm], and λi are the eigenvalues
of C.
Thus, any order-m circulant always has m distinct
eigenvectors, which are the column of Fourier trans-
form matrix. However, the number of eigenvalues
may be less than m.

Since there are only m independent entries in a circulant,
which are the elements of vector x = [x1, x2, ..., xm], we can
write C(x) to emphasize that the first row of the circulant C
is exactly the row vector x. The ith row (i = 2, 3, ...,m) is
obtained by circular shifts to the right (i− 1) times vector x.

Another type of circulant matrix is left circulant. We can
denote these by CL(x) where the ith row is obtained by
circular shifts (i − 1) times to the left vector x.

CL(x) =




x1 x2 . . . xm

x2 x3 . . . x1

...
...

...
xm x1 . . . xm−1


 . (6)

Let a permutation Π on an arbitrary matrix X be such
that the (m − i + 2)th row is permuted with the ith row for
i = 2, 3, ...,

⌈
m
2

⌉
, where �(·)� is the ceiling function. One can

verify that
Π(CL(x)) = C(x) . (7)

This useful operator will be used for our derivations.
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D. Linear Threaded Algebraic Space-Time Constellations

We briefly review the idea, code construction and properties
of rate-one LTAST codes. For a full treatment of TAST and
LTAST codes, the reader is referred to [8], [9] and references
therein. For brevity, we use the term LTAST codes to denote
the rate-one LTAST codes when there is no ambiguity.

Modulation symbols are drawn from a constellation S with
the minimum Euclidean distance dmin and arranged in a vector
s = [s1, s2, . . . , sm]T . The transmitted vector u is given by

u = Rs (8)

where R = diag[ 1, φ1/m, · · · , φ(m−1)/m ] and φ is called
a Diophantine number [9]. LTAST codewords are circulants
given by

D = C(uT ) . (9)

The upper bound of coding gain is as follows.
Proposition 1 [9, eq. (7)]: The coding gain of the rate-one

LTAST codes is upper-bounded by GL
c ≤ 1

md2
min.

To ensure the codes achieve full diversity, the Diophantine
number is chosen as φ = ejα. Thus the ith symbol si is rotated
by an angle i−1

m α. The optimal values of φ that maximize the
coding gain are specified in [9, Theorem 2].

Proposition 2: For m = 2r, r ≥ 1, the optimal coding gain
of rate-one LTAST codes, i.e. G = 1

md2
min, can be obtained

by choosing the Diophantine number φ = j (j2 = −1) and
constellations S carved from the ring of Gaussian integers,
and for m = 2r03r1 , r0, r1 ≥ 0 by choosing φ = e2jπ/6 and
constellations S carved from the ring of Einstein integers.

Note that the constellations carved from the ring of Gaussian
integers include QAM constellations, while the constellations
carved from the ring of Einstein integers include hexagonal
constellations [12]. [9, Theorem 1] also suggests how to select
φ for PSK constellations; however, computer search is required
to find the φ that maximizes the coding gain. Additionally, for
m �= 2r or m = 2r03r1 , only local maxima of the coding gain
are guaranteed by computer search.

To achieve full diversity, the decoding of LTAST codes
requires ML joint detection of m transmitted symbols by a
sphere decoder with complexity roughly cubic in m [13].
Therefore, the decoding complexity of the LTAST codes is
much higher than that of OSTBC for m > 1. Additionally,
Proposition 1 shows that the coding gain reduces when m
increases. In the next section, we will present our new SAST
codes using a circulant structure and rotations of TAST
codes (but not limited to). SAST codes exploit efficiently the
commutativity of circulant matrices and hence yield significant
improvements over LTAST codes.

III. SAST CODE CONSTRUCTION AND PROPERTIES

A. Encoder

We consider the number of Tx antennas to be M = 2m.
Two input data vectors s1 and s2, both consisting of m
information symbols, are first rotated such that u1 = Rs1 and
u2 = Rs2. Then the rotated vectors are used to generate two

LTAST codewords of size m, A = C(uT
1 ) and B = C(uT

2 ).
The SAST codeword is formulated as follows:

W =
[

A B
−B† A†

]
. (10)

At the moment, we do not restrict ourself to the optimal
rotations of LTAST codes given in Proposition 2. The only
requirement is that LTAST codes of size m have full diversity.

The structure of SAST codes is fundamentally different
from QSTBC proposed by Jafarkhani [14], where A and B
are OSTBC codewords of the same size, and A and B are
conjugate, but not conjugate transpose as our SAST codes.

B. Properties of SAST Codes

As the primary important design criterion, we first analyze
the diversity gain of SAST codes.

Lemma 1: SAST block codes achieve full diversity for quasi-
static channels.

Proof: Let W and Ŵ be two distinct codewords. The
product matrix PW = ∆†

W ∆W is given by

PW = ∆†
W ∆W =

[
PA + PB 0m

0m PA + PB

]
(11)

where PA = ∆†
A∆A, PB = ∆†

B∆B , ∆A = A − Â, ∆B =
B−B̂, and 0m denotes the m×m all-zero matrix. The second
line of (11) comes from the property P3 of circulant matrices.

For two distinct codewords, at least either A �= Â or B �= B̂.
Thus, at least one of the matrices PA and PB is of full rank
or they both are full rank because A and B are the LTAST
codewords. Equivalently, at least one of PA or PB or both
are positive definite matrices. Therefore, PA + PB is positive
definite, and consequently, det(PW ) = [det(PA + PB)]2 ≥
[det(PA)]2 > 0.

Thus, the matrix PW is always full rank for all input
symbols, and SAST codes achieve full diversity.

Now we consider the coding gain of SAST block codes.
In the worst case, min det(PW ) = min [det(PA)]2. With
reference to Proposition 1, we have the following Lemma on
the coding gain of SAST codes.

Lemma 2: The coding gain of SAST block codes for M =
2m transmit antennas equals the coding gain of rate-one
LTAST codes for m transmit antennas and is upper-bounded
by GW

c ≤ 2
M d2

min.
Lemma 2 shows that one can use optimal rotations of

LTAST codes as optimal rotations for SAST codes. Moreover,
the optimal coding gain of SAST codes is larger than that of
optimal LTAST codes, an important improvement of SAST
codes over LTAST codes. The next section shows that this
improvement comes at no extra decoding complexity, and,
better still, decoding complexity reduces significantly.

C. Decoder

We consider the number of Rx antennas N = 1. If N > 1,
one can perform maximal ratio combining (MRC) for received
signals of each Rx antenna, and the decoder for 1 Rx antenna
can be employed.
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Let Y = [Y T
1 Y T

2 ]T , Y1 = [y1, y2, ..., ym]T ,
Y2 = [ym+1, ym+2, ..., yM ]T , H = [hT

1 hT
2 ]T ,

h1 = [h1, h2, ..., hm]T ; h2 = [hm+1, hm+2, ..., h2m]T ,
Z = [ZT

1 ZT
2 ]T , Z1 = [z1, z2, ..., zm]T ; Z2 =

[zm+1, zm+2, ..., z2m]T , we obtain[
Y1

Y2

]
=
[

A B
−B† A†

] [
h1

h2

]
+
[

Z1

Z2

]
(12)

An equivalent form of (12) is[
Y1

Y ∗
2

]
=
[

X1 X2

X3 X4

] [
u1

u2

]
+
[

Z1

Z∗
2

]
(13)

where X1 = CL(hT
1 ),X2 = CL(hT

2 ),X3 = C†(hT
2 ), and

X4 = −C†(hT
1 ).

At this point, using (13), two vectors u1 and u2 can be
jointly decoded, for example, by a sphere decoder. However,
the joint detectors result in the same complexity of LTAST
code decoders. We will show how to reduce the decoding
complexity in sequence.

Applying permutation Π (defined in Section II-B) for the
column matrix Y1, we obtain[

Ȳ1

Ȳ2

]
=
[

Π(Y1)
Y ∗

2

]
=
[

H1 H2

H†
2 −H†

1

]
︸ ︷︷ ︸

H

[
u1

u2

]
+
[

Z̄1

Z̄2

]

(14)

where Ȳ1 = Π(Y1), Ȳ2 = Y ∗
2 , H1 = C(hT

1 ), H2 = C(hT
2 ),

Z̄1 = Π(Z1), and Z̄2 = Z∗
2 . The elements of Z̄1 and Z̄2 have

the same statistics, CN (0, 1), as elements of Z1 and Z2.
We now perform MRC by left multiplying H† to both sides

of equation (14) [15]. Let Ĥ = H†
1H1 + H†

2H2, we get[
Ŷ1

Ŷ2

]
= H†

[
Ȳ1

Ȳ2

]
=
[

Ĥ 0m

0m Ĥ

] [
u1

u2

]
+ H†

[
Z̄1

Z̄2

]

=
[

Ĥ 0m

0m Ĥ

] [
u1

u2

]
+
[

Ẑ1

Ẑ2

]
︸ ︷︷ ︸

Ẑ

. (15)

The covariance matrix of the additive noise vector Ẑ is

E[ZZ†] =
[

Ĥ 0m

0m Ĥ

]
(16)

Therefore, noise vectors Ẑ1 and Ẑs are uncorrelated and have
the same covariance matrix Ĥ . Thus, u1 and u2 can be
decoded separately using Ŷi = Ĥui + Ẑi, i = 1, 2.

The noise vectors Ẑ1 and Ẑ2 can be whitened by the same
whitening matrix (Ĥ)−1/2. Finally, we obtain

Y̌i = Ĥ−1/2Ŷi = Ĥ1/2R︸ ︷︷ ︸
Ȟ

si + Ĥ−1/2Ẑi︸ ︷︷ ︸
Ži

, i = 1, 2. (17)

Any decoders for LTAST codes can also be used to decode
SAST codes. However, two data vectors s1 and s2 can be
decoded in parallel. The complexity of ML detection by a
sphere decoder for SAST codes is roughly O(m3), instead of

O(8m3) as with LTAST codes. Hence, on average, the decod-
ing complexity of SAST codes reduce significantly compared
with that of LTAST codes with the same rate of one symbol
pcu.

D. Maximum Mutual Information

We now study the maximum mutual information of SAST
codes over (M, 1) MISO channels. The equivalent channel H
given in (14) can be used to calculate the maximum mutual
information [16], [17] of SAST codes as

CS =
1
M

E
[
log2 det

(
IM +

ρ

M
HH†

)]
. (18)

The normalizing factor 1
M indicates that only M symbols are

repeatedly sent over M channel uses.
Let h = [hT

1 hT
2 ]T and HL = CL(hT ). The maximum

mutual capacity of LTAST codes can be shown to be

CL =
1
M

E
[
log2 det

(
IM +

ρ

M
HLH†

L

)]
. (19)

Fig. 1 plots the maximum mutual information of SAST and
LTAST codes together with the capacity of MISO channels for
M = 2, 4, 8, 16. The maximum mutual information of SAST
codes is constant with respect to the number of Tx antennas.
While this behavior is similar to LTAST codes [9], [15], the
maximum mutual information of SAST codes is higher than
that of LTAST codes. Note that for M = 2, the SAST code
reverts to the Alamouti code. The numerical results show that
for M = 4, SAST codes attain more than 95% (and up to 98%)
of channel capacity. QSTBC (with M = 4 only) also attain
the same capacity [18] because SAST codes and QSTBC for
M = 4 are equivalent [19]. For a specific SNR, the channel
capacity actually does not increase when the number of Tx
antennas keeps growing but the number of Rx antennas is
fixed [17]. Fig. 1 also shows that the capacity increment of a
MISO channel is negligible when the number of Tx antennas
increases from 8 to 16.

IV. SIMULATION RESULTS

We present simulations results for SAST codes and DST
and LTAST codes, all with rate-one. Fig. 2 plots the BER of
SAST and LTAST codes with spectral efficiencies 2, 4 and 6
bits pcu. The SNR gain of SAST codes over LTAST codes is
quite large. For example, for a (4, 1) system, the SNR gain is
about 1.3, 2, and 2.5 dB for 2, 4, and 6 bits pcu, respectively.
The gain increases with spectral efficiency. For M = 8, similar
results can be obtained but are omitted for brevity.

Fig. 3 illustrates the performance of SAST codes and space-
time linear constellation precoding (ST-LCP) codes [7] with
the same 2 bits pcu. ST-LCP codes in fact are equivalent
to the DAST codes proposed in [5], and by using the Fast
fourier transform (FFT), one can convert LTAST codes to the
DAST codes (see [9] and Property 4 of circulant matrices in
Section II-C). The slopes of the BER curves of SAST and ST-
LCP codes are almost parallel. This indicates that SAST codes
achieve full diversity. Furthermore, notable gains of 1 and 1.5
dB over ST-LCP codes are obtained for M = 3 and M = 5,
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Fig. 2. BER of SAST and LTAST codes with M = 4 and N = 1.

respectively. Thus SAST codes perform better compared to
LTAST codes for any number of Tx antennas.

V. CONCLUSION

We presented a new class of space-time block codes called
SAST codes. They are of rate one symbol pcu and are
derived from rate-one LTAST codes. Compared with rate-one
LTAST codes, SAST codes reduce the decoding complexity
significantly and achieve SNR gains up to 3 dBs. In terms
of maximum mutual capacity, the use of SAST codes is
nearly optimal for MISO channels. These improvements come
from the orthogonality embedded into the codeword structure,
where the left-half columns are orthogonal with the right-half
columns.

REFERENCES

[1] S. M. Alamouti, “A simple transmitter diversity scheme for wireless
communication,” IEEE J. Select. Areas. Commun., vol. 16, pp. 1451–
1458, Oct. 1998.

10 11 12 13 14 15 16 17 18 19 20
10

−5

10
−4

10
−3

10
−2

2 bits/channel use, odd M

B
E

R

SNR [dB]

M = 3, ST−LCP
M = 3, SAST
M = 5, ST−LCP
M = 5, SAST

Fig. 3. BER of SAST and ST-LCP codes with 4-QAM, M = 3, 5, N = 1.

[2] V. Tarokh, H. Jafarkhani, and A. R.Calderbank, “Space-time block codes
from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp.
1456–1466, July 1999.

[3] X. -B. Liang, “Orthogonal designs with maximal rates,” IEEE Trans.
Inform. Theory, vol. 49, pp. 2468 – 2503, Oct. 2003.

[4] W. Su and X.-G. Xia, “Signal constellations for quasi-orthogonal space-
time block codes with full diversity,” IEEE Trans. Inform. Theory,
vol. 50, pp. 2331 – 2347, Oct. 2004.

[5] M. O. Damen, K. Abed-Meraim and J. -C. Belfiore, “Diagonal algebraic
space-time block codes,” IEEE Trans. Inform. Theory, vol. 48, pp. 628
– 636, March 2002.

[6] M. O. Damen, H. E. Gamal, and N. C. Beaulieu, “Systematic con-
struction of full diversity algebraic constellations,” IEEE Trans. Inform.
Theory, vol. 49, pp. 3344 – 3349, Dec. 2003.

[7] Y. Xin, Z. Wang, and G. B. Giannakis, “Space-time diversity systems
based on linear constellation precoding,” IEEE Trans. Wirel. Commun.,
vol. 2, pp. 294 – 309, March 2003.

[8] H. El Gamal and M. O. Damen, “Universal space-time coding,” IEEE
Trans. Inform. Theory, vol. 49, pp. 1097 – 1119, May 2003.

[9] M. O. Damen, H. E. Gamal and N. C. Beaulieu, “Linear threaded alge-
braic space-time constellations,” IEEE Trans. Inform. Theory, vol. 49,
pp. 2372 – 2388, Oct. 2003.

[10] P. J. Davis, Circulant Matrices, 1st ed. Newyork: Wiley, 1979.
[11] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for

high data rate wireless communication: Performance analysis and code
construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.
1998.

[12] G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-
dimensional signal constellations in the presence of Gaussian noise,”
IEEE Trans. Commun., vol. 22, pp. 28–38, Jan. 1974.

[13] B. Hassibi and H. Vikalo, “On the expected complexity of sphere
decoding,” in Proc. of Thirty-Fifth Asilomar Conf. on Signals, Systems
and Computers, Nov. 2001, pp. 1051 – 1055.

[14] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans.
Commun., vol. 49, pp. 1–4, Jan. 2001.

[15] M. O. Damen and N. C. Beaulieu, “On diagonal algebraic space-time
block codes,” IEEE Trans. Commun., vol. 51, pp. 911 – 919, June 2003.

[16] I. E. Telatar, “Capacity of multiantenna gaussian channel,” Eur. Trans.
Telecommun., vol. 10, pp. 585 – 595, Nov./Dec. 1999.

[17] G. J. Foschini and M. J.Gans, “On limits of wireless communication
a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, Mar. 1998.

[18] C. B. Papadias and G. J. Foschini, “Capacity-approaching space-time
codes for systems employing four transmitter antennas,” IEEE Trans.
Inform. Theory, vol. 49, pp. 726–732, Mar. 2003.

[19] M.-Y. Chen, H.-C. Li, and S.-C. Pei, “Algebraic Identification for
Optimal Nonorthogonality 4 × 4 Complex Space Time Block Codes
Using Tensor Product on Quaternions,” IEEE Trans. Inform. Theory,
vol. 51, pp. 324 – 330, Jan. 2005.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 3309 0-7803-9415-1/05/$20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:38 from IEEE Xplore.  Restrictions apply. 


