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Abstract— In this paper, we present a unified detection frame-
work for spatial multiplexing multiple-input multiple-output
(MIMO) systems. We propose a generalized feedback detector
(GFD) by modifying the classical feedback decoding algorithm for
convolutional codes. When the three controlling parameters of the
GFD vary, the diversity order of the GFD varies between 1 and
N and the SNR gain also varies. Many previous MIMO detectors
are special cases of our GFD. The connection between MIMO
detectors and tree search algorithms is also established. To reduce
redundant computations in the GFD, a shared computation
technique is proposed using a tree data structure. The complexity
of the GFD varies between those of maximum-likelihood (ML)
detection and zero-forcing decision feedback detector (ZF-DFD).
Our proposed GFD provides a flexible performance-complexity
tradeoff.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems over a rich
scattering wireless channel are capable of providing enormous
capacity improvements without increasing the bandwidth or
transmitted power. Because of that promise, MIMO techniques
have attracted considerable interest in the wireless research
community and are under consideration for future high-speed
wireless applications including wireless LAN and wireless
cellular systems. The Bell-Labs layered space-time (BLAST)
architecture is such a MIMO system [1].

In uncoded MIMO systems, the complexity of the
maximum-likelihood detector (MLD) increases exponentially
with the number of transmit antennas, making the MLD
infeasible. Several reduced-complexity suboptimal detectors
have thus been proposed in the literature. The zero-forcing
(ZF) decision feedback detector (DFD) with optimal ordering
or the V-BLAST detector is proposed in [1] using nulling
and interference cancellation (also known as the VBLAST
detector). Using nulling based on the minimum mean square
error (MMSE) principle, the ZF-DFD is extended to the
MMSE-DFD [2], and this detector makes a trade-off between
interference suppression and noise enhancement. The perfor-
mance of these simple detectors is significantly inferior to
that of the MLD. The large gap in both performance and
complexity between the MLD and suboptimal detectors has
motivated alternative detectors. In [3], a combined detector
(ML-DFD) is proposed to detect the first few symbols using
a MLD and the remaining symbols using a ZF-DFD, which
prevents the error propagation resulting in a higher diversity
order. In [4], sphere decoding (SD) is proposed as a near-
optimal detection method, which has low complexity in high

SNR. However, in low SNR or for systems with a large
number of transmit antennas, the complexity of SD is also
high. The Chase decoding algorithm for linear block codes
has been adopted for MIMO detection in [5]. The Chase
detector generates a list for the first detected symbol. For each
element from the list, a subdetector is applied to the remaining
symbols. The vector with the minimum mean square error is
chosen as the output. Depending on the type of subdetector,
the performance of the Chase detector varies between those
of ML and ZF-BLAST. Different SNR gains can be achieved
with different list sizes. But the Chase detector achieves a
diversity order of 1 or N in an N ×N system, but nothing in
between.

In this paper, we develop a unified framework for detecting
spatial multiplexing systems such as V-BLAST. We generalize
the feedback decoder of Heller [6] for convolutional codes
as a new generalized feedback detector (GFD) with three
characteristic parameters: window size, step size and branch
factor. With different values for these parameters, the GFD
achieves different diversity orders between 1 and N and differ-
ent SNR gains, as well as a performance-complexity tradeoff.
Choosing different parameter values also yields many well-
known algorithms such as ZF-BLAST [1], SD [4], combined
ML and ZF-DFD [3] and the B-Chase detector [5] as special
cases of our GFD. Moreover, all such detection algorithms can
be explained as tree search problems. A reduced-complexity
shared computation technique is proposed, making the com-
plexity of the GFD varies between those of ZF-DFD and MLD.
Using the union bound (UB) approach for the symbol error
probability of the GFD, we obtain the diversity order and SNR
gain achievable by modifying the three parameters.

This paper is organized as follows. Section II describes the
system model and review feedback decoding for convolutional
codes. In Section III, we propose the new GFD and present
the computation sharing technique. The diversity order and
SNR gain of the GFD are also analyzed. Simulation results
and conclusions are given in Section IV and in Section V.

Notation: Bold symbols denote matrices or vectors.
(·)T ,(·)H and (·)∗ denote transpose, conjugate transpose and
conjugate, respectively. (·)† denotes pseudo-inverse. ‖(·)‖2 is
2-norm of (·). E{(·)} is the expectation of (·). P [(·)] is the
probability of (·). The set of all complex K × 1 vectors
is CK . A circularly complex Gaussian random variable with
mean µ and variance σ2 is denoted by z ∼ CN (µ, σ2). The
complement of event A is Ac. The N × N identity matrix is
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denoted by IN .

II. SYSTEM MODEL AND FEEDBACK DECODING

A. Problem formulation

We consider a spatial multiplexing MIMO system with n
transmit antennas and m receive antennas. At the transmitter,
source data are mapped into complex symbols from a finite
constellation Q. The resulting data stream is partitioned into
n parallel substreams, each of which is sent though a different
transmit antenna over a rich scattering memoryless (flat fading)
channel. What each receive antenna receives is a mix of signals
from all the n transmit antennas. The discrete-time baseband
received signals at time t can be written as

r = Hx + n (1)

where x = [x1, . . . , xn]T , xi ∈ Q is the transmitted signal
vector, r = [r1, . . . , rm]T , ri ∈ C is the received signal
vector, H = [hi,j ] ∈ Cm×n is the channel matrix, and
n = [n1, . . . , nm]T , ni ∈ C is an additive white Gaussian
noise (AWGN) vector. The elements of H are identically
independently distributed (i.i.d.) complex Gaussian, hi,j ∼
CN (0, 1). The components of n are i.i.d. and ni ∼ CN (0, σ2

n).
Throughout this paper, we assume that the channel is perfectly
known to the receiver, and n ≤ m. If n > m, we can
readily convert the rank deficient system into a full rank system
with n = m using the method in [7], and our proposed
GFD can also be applied to the resulting system. Note this
model (1) is not restricted to MIMO systems. It models any
linear, synchronous and memoryless channels with crosstalk
and can be directly applied to multiuser detection in code-
division multiple-access (CDMA). For brevity, we restrict our
considerations to MIMO.

For an AWGN channel and i.i.d. source data, the MLD that
minimizes the average error probability is given by

x̂ = arg min
x∈Qn

‖r − Hx‖2. (2)

Due to the discrete alphabet Q, linear detectors such as least-
squares detectors generally do not give the optimal solution. If
Q is a subset of the integer set Z , (2) is known as the closest
vector problem (CVP) in lattice theory, known to be NP-hard.
Exhaustive search for (2) has a complexity exponential in n.

We first transform (2). Column reordering can be applied
to H by using V-BLAST or other ordering schemes, and
the resulting matrix is G = HΠ, where Π is the column
permutation matrix. Let the QR factorization of G be

G = [Q1,Q2]
[

R
0

]
(3)

where R is an n×n upper-triangular matrix, 0 is an (m−n)×n
zero matrix, Q1 is an m × n unitary matrix, and Q2 is an
m × (m − n) unitary matrix. Eq. (2) is equivalent to

x̂ = arg min
x∈Qn

‖y − Rx‖2 (4)

where y = QH
1 r. Eq. (4) is the basis for our GFD.

B. Feedback decoding

There are three classical methods for decoding convolu-
tional codes [8]: Viterbi decoding, sequential decoding and
feedback decoding. Although the Viterbi algorithm achieves
optimal maximum-likelihood decoding, its complexity grows
exponentially with the number of trellis states. Sequential
decoding however is able to perform near ML decoding
with significantly reduced complexity. Feedback decoding due
to Heller [6], on the other hand, sacrifices performance in
exchange for complexity. SD can be interpreted as a chain of
sequential decoders [4]. However, Heller’s feedback decoding
has not been applied to MIMO detection to the best of our
knowledge, but it may have been rediscovered in various
forms. Therefore, we generalize it to detecting MIMO systems.

In binary feedback decoding, the decoder decides upon the
(j+1)-th bit based on the partial metric from the (j+1)-th bit
to the (j + w)-th bit, where w is a positive integer. Once the
decision on the (j + 1)-th bit is made, the decoder proceeds
to the (j + 2)-th bit, and the metric from the (j + 2)-th bit
to (j + 1 + w)-th bit is used to decide the (j + 1)-th bit. The
same procedure is repeated for each bit. Smaller w requires
less complexity but results in a larger performance loss.

III. GENERALIZED FEEDBACK DETECTOR

A. Basic algorithm

We now extend the feedback decoding algorithm to MIMO
detection in (4). We start by considering only one parameter:
window size (w). The cost metric to be minimized in (4) can
be written in scalar form as

n∑
i=1




∣∣∣∣∣∣yi −
n∑

j=i

ri,jxj

∣∣∣∣∣∣
2

 (5)

where ri,j is the (i, j)-th entry of matrix R. Since R is upper-
triangular, the i-th term in (5) only depends on xi, . . . , xn,
1 ≤ i ≤ n. The feedback detector can be considered as a
sliding window algorithm. The detector starts from xn. When
it detects xi and hard decisions have been made on xi′ as x̂i′ ,
1 ≤ i′ ≤ n, the detector makes a decision on xi based on the
metric computed from xk to xk−w+1, where w is a preselected
positive integer, and we call it window size in this paper. We
first determine the subvector x(k) = [xk−w+1, . . . , xk]T using

x̂(k) = arg min
x(k)∈Qw

k∑
i=k−w+1




∣∣∣∣∣∣yi′ −
n∑

j=i

ri,j x̂j

∣∣∣∣∣∣
2

 . (6)

Exhaustive search is performed to solve (6), and xk is chosen
to be x̂k = x̂(k)(w), where x̂(k)(w) denotes the w-th element
in x̂(k). The same procedure is performed for xk+1 based on
the metric computed from xk+1 to xk−w. When the window
size is unity (w = 1), the feedback detector reduces to ZF-
DFD since V-BLAST detection is equivalent to DFD [9].
When the window size w = n, the GFD reduces to the MLD.
When w varies between 1 and n, the performance of the GFD
is between those of MLD and ZF-DFD. Our basic algorithm
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can be considered as a sliding window detector of size w,
making a decision on each xi based on the minimum metric
within the window.

To allow for more performance flexibility, we introduce
another parameter, step size, and allow the window size to
change in each stage. As well, starting from xn, instead of
making decision on only one symbol in each stage, we detect
xlk−sk+1, . . . , xlk at the k-th stage, where lk = n−∑k−1

k′=1 sk′

and sk′ is the step size at the k′-th stage. The subvector
x(k) = [xlk−wk+1, . . . , xlk ]T is detected using

x̂(k) = arg min
x(k)∈Qwk

lk∑
i=lk−wk+1




∣∣∣∣∣∣yi −
n∑

j=i

ri,j x̂j

∣∣∣∣∣∣
2

 (7)

where wk is the window size in the k-th stage. We choose
[x̂lk−sk+1, . . . , x̂lk ]T = x̂(k)(wk − sk + 1 : wk). When it
proceeds to the (k +1)-th stage, the sliding window is shifted
by sk (this is why we call sk step size) and the window
size is changed to wk+1. xlk+1−sk+1+1, . . . , xlk+1 is decided
within the new window. If the detector has K stages, we have∑K

k=1 sk = n.
In (7), a hard decision is made on x(k). To improve the

performance, we generate a list with bk elements for x(k) that
makes (7) minimum, where bk is named branch factor. The
corresponding different x(k)(wk − sk + 1 : wk) is stored in
another list Lk with qk elements. Similarly, bk may vary in
different stages. We can thus obtain x by using

x̂ = arg min
[xn−s1+1,...,xn]T ∈L1,...,[x1,...,xsK

]T ∈LK

‖y − Rx‖2. (8)

If bk = 1 for k = 1, . . . ,K, it reduces to the detector in the
second case. If bk = 1, sk = 1 and wk = w, it reduces to the
original feedback detection algorithm. Note in the K-th stage,
we have bK = 1 and sK = wK imposed by the end state.

Both (7) and (8) entail an exhaustive search in a reduced
space. The SD algorithm [4] efficiently solves (7) and (8). The
Schnorr and Euchner variant of SD (SESD) [10] removes the
dependence on the initial radius and hence may be preferred.
When bk �= 0, the list sphere decoder (LSD) [11] can be used
to create the candidate list. If not enough candidates have been
found, the radius is increased and LSD searches again until a
bk element list has been formed.

Clearly, if wk = 1, sk = 1 and bk = 1, the GFD reduces to
ZF-DFD [1] and if wk = n, sk = n and bk = 1, it becomes SD
[4]. When w1 = p, wk = 1 (k > 1), s1 = p, sk = 1 (k > 1)
and bk = 1, the GFD reduces to a combination of MLD and
ZF-DFD [3]. When wk = 1, sk = 1, b1 = q and bk = 1
(k > 1), the GFD becomes the B-Chase detector in [5] using
a different column permutation matrix. Table I summarizes the
relationship between these detectors and the GFD for different
parameter values.

B. Tree interpretation

All MIMO detection algorithms can be interpreted as per-
forming a search through a tree. The detectors traverse through
a |Q|-ary tree of n levels, where |Q| is the cardinality of con-
stellation Q. Except for the leaf nodes, there are |Q| branches

TABLE I

RELATIONSHIP TO THE GENERALIZED FEEDBACK DETECTOR.
Detector Window size wk Step size sk Branch factor bk

ZF-DFD wk = 1 sk = 1 bk = 1
SD wk = n sk = n bk = 1

ML-DFD
w1 = p,

wk = 1, k > 1
s1 = p,

sk = 1, k > 1
bk = 1

B-Chase wk = 1 sk = 1
b1 = q,

bk = 1, k > 1

stemming from each node, and each branch is labelled by an
element from Q. A node at the k-th level is assigned a metric

mk(xk) =

∣∣∣∣∣∣yn+1−k −
n∑

j=n+1−k

rn+1−k,jxj

∣∣∣∣∣∣
2

(9)

where xk = [xn+1−k, . . . , xn]T are the symbols labelling the
path from the root to this node. The accumulated path metric
associated with path xk is thus defined as

c(xk) =
n∑

i=n+1−k

mi(xi) =
n∑

i=n+1−k

∣∣∣∣∣∣yi −
n∑

j=i

ri,jxj

∣∣∣∣∣∣
2

(10)

The MLD performs an exhaustive tree search by computing
the accumulated path metric (10) for all possible tree paths
from the root to leaf nodes. At the leaf node of the tree, the
path with minimum accumulated metric is selected as the ML
solution.

Instead of exhaustive search, SD applies branch-and-bound
(BnB) to the tree search. A global bound is set in SD. Instead
of visiting all of the nodes, SD explores only those nodes
whose accumulated path metric is less than the global bound
and prunes many nodes. When a leaf node is reached, the
global bound may be updated to the accumulated path metric
of the leaf node. In the SESD, the order of the processing
of the child nodes of a node depends on their accumulated
metric. Thus, the child node with minimum accumulated
metric is expanded by the SESD first. This ordering ensures
that whenever the SESD reaches a leaf node, its path cost is as
small as possible and thus the global bound is reduced rapidly.

DFDs are greedy tree search algorithms. The DFD only
expands the child node with minimum accumulated path
metric. Therefore, it only visits one path of the search tree,
which has complexity linear in n but also a large performance
loss.

Our proposed GFD only expands a partial tree instead
of the full tree in the MLD. At the k-th stage, xlk , . . . , xn

are assigned values. The GFD searches through a wk level
tree stemming from xlk−1. bk best partial paths from the
root to the leaf nodes of the partial tree with minimum
accumulated metric are chosen. xlk−1, . . . , xlk−sk

symbols are
chosen corresponding to each partial path. The window shifts
sk symbols and a partial tree is searched again. In fact, our
GFD forms a reduced tree with K levels. At the k-th level,
there are qk branches from a node, which is assigned a metric

m̃k(xk) =
lk−1∑

i=lk−sk

∣∣∣∣∣∣yi −
n∑

j=i

ri,jxj

∣∣∣∣∣∣
2

(11)
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Fig. 1. Tree representation of the GFD for n = 4 and BPSK.

where xk = [xlk−sk
, . . . , xn]T are the symbols labelling the

path from the root to this node. SD and DFDs can be applied
to the reduced tree. If bk = 1, the GFD reduces to ZF-DFD,
or SD can be used to search through the new tree. The branch
factor bk relates to the number of branches in the new tree.

Fig. 1 illustrates GFD on a tree with 4 levels (i.e., n =
4) and binary phase shift keying (BPSK). The left side is
the full tree expanded by exhaustive search. In the GFD,
we choose w1 = 3, s1 = 2 and b1 = 2. Exhaustive
search or LSD is used to traverse the first partial tree;
[x4, x3, x2]T = {[+1,+1,−1]T , [−1,+1,+1]T } are the b1

subvectors that make the partial accumulated metric from x4

to x2 a minimum. For each subvector, [x4, x3]T is stored in
a list L1 = {[+1,+1]T , [−1,+1]T }. The b1 elements form b1

branches in the new tree in the right side of Fig. 1. In the
second stage, the window is shifted by s1 = 2 to the second
rectangle, and window size, step size and branch factor are
changed to s2 = w2 = 2 and b2 = 1. Therefore, the original
4-level tree with 16 leaf nodes reduces to a 2-level tree with
2 leaf nodes using GFD. SD or SESD can be used to find the
path with minimum accumulated metric in the reduced tree.
The corresponding path of the new tree is the output sequence.

The B-Chase detector [5] with list size q and with a ZF-DFD
subdetector forms a 2-level tree with q leaf nodes; exhaustive
search finds the minimum path metric in the tree.

C. Shared computation technique

The GFD bridges the gap between ZF-DFD and MLD. To
reduce the complexity gap between GFD and SD, we introduce
a shared computation technique by reducing redundant com-
putations in the basic GFD. In the k-th stage, if wk �= sk, there
will be wk − sk symbols’ overlap between the k-th window
and the (k + 1)-th window. The basic GFD uses two sphere
decoders in the two windows. However, due to the overlap,
some branches of the partial tree in the (k+1)-th window have
been visited by the sphere decoder in the k-th window. We thus
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Fig. 2. BER comparision of different detectors in 8 × 8 BPSK MIMO.

propose to store all of the metrics for the visited nodes in the
k-th sphere decoder to avoid repeated computation. The tree
is a suitable data structure for visited nodes storage since SD
forms a tree during the search. When using SD for the (k+1)-
th partial tree, SD traverses the search tree and the storage
tree at the same time. Only the subtree corresponding to the
selected [xlk−sk+1, . . . , xlk ]T is kept and the other subtrees
are pruned. If the node has not been visited as indicated in
the storage tree, the branch metric is computed and the node
is added into the storage tree.

When bk �= 1, LSDs must be used. Given an initial radius,
if less than bk candidates have been found within the radius,
LSD needs to enlarge the radius and search again until bk

points are found. Similarly, repeating the search revisits several
nodes. The storage tree can also be created for LSD to reduce
repeated computation. However, shared computation needs
more memory, which is exponential in wk in the worst case.

D. Performance analysis

Using the union bound approach, we find that the GFD
has diversity order w, and different s and w provide different
SNR gains. When bk �= 1, dmin increases. The branch factor
provides additional SNR gain (details omitted for brevity).

IV. SIMULATION RESULTS

We now simulate our GFD for an uncoded MIMO system
with 8 transmit and 8 receive antennas over a flat Rayleigh
fading channel. The MATLAB V5.3 command “flops” is used
to count the number of flops. Only the flops of the search
algorithm are counted by ignoring the preprocessing stage. At
each stage, we use the SESD [10], and the initial radius is
chosen to be infinite. The GFD is compared with V-BLAST
and SD in terms of both performance and complexity.

Figs. 2 and 3 show the BER and flops for different detectors
in a BPSK modulated system. In the GFD, we set wk = w,
sk = s and bk = 1. We investigate the effect of w and s.
Clearly, with different w, different diversity order is achieved
(Fig. 2). The GFD with w = 2 and s = 1 has a 3-dB gain
over GFD with w = 2 and s = 2 at BER=10−4. For w = 4,
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Fig. 3. Complexity of different detectors in an 8× 8 BPSK MIMO system.
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Fig. 4. BER of different detectors in an 8 × 8 QPSK MIMO system.

GFD with s = 1 performs 0.5 dB better than GFD with s = 2
and 1.5 dB better than the GFD with s = 4 at BER=10−5.
With increasing w, the SNR gain achieved by decreasing s
diminishes. With different parameter settings, the GFD also
has different complexity levels (Fig. 3). The complexity of the
GFD varies between those of V-BLAST and SD. In high SNR,
all the detectors achieve almost the same complexity; marginal
complexity differences may arise because of the counting of
intermediate operations and SESD expanding additional nodes.

Figs. 4 and 5 compare different detectors in a quadrature
PSK (QPSK) system. We fix w and s and change b to observe
the effect on performance. The performance of the B-Chase
detector [5] is also evaluated for different list sizes. Fixing
w = 2 and s = 2, GFD with b = 2 has a 4-dB gain over GFD
with b = 2 at BER=10−3. For w = 3 and s = 3, GFD with
b = 2 has a 3-dB gain over GFD with b = 2 at BER=2×10−4.
The gain reduces to 2 dB with w = 3 and s = 3 at BER=10−4.
But all the performance gaps become constant in high SNR.
For the GFD with w = 4, s = 4 and b = 4, it performs close
to SD. The B-Chase detector performs better than V-BLAST
but much worse than the other detectors.
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Fig. 5. Complexity of different detectors in an 8× 8 QPSK MIMO system.

V. CONCLUSION

We have proposed a unified framework for MIMO detection.
Our GFD generalizes the classical feedback decoding for
convolutional codes. The GFD varies between SD and V-
BLAST in terms of both complexity and performance. By
deriving the union bound for the symbol error probability of
the GFD, we showed that it achieves an arbitrary diversity
order between 1 and N and different SNR gains. We also
established the connection between MIMO detectors and tree
search algorithms. Moreover, a shared computation technique
was proposed to further reduce the complexity.
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