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Abstract— Quasi-orthogonal space-time block codes (QSTBC)
achieve full diversity by constellation rotations. Several au-
thors have introduced optimal rotation angles, found either by
computer search or by analytical derivation. However, existing
analytical methods do not seem general enough to analyze
optimal rotations for arbitrary constellations, and some previous
results seem to conflict. We present a novel method to exactly
derive the coding gain of QSTBC as a function of the rotation
angle and the minimum Euclidean distance of two-dimensional
constellations such as the ones carved from lattices of squares and
triangles, and phase-shift keying (PSK) constellations. The upper
bound of coding gain for amplitude PSK (APSK) is also obtained.
We find the whole range of optimal rotations for maximizing the
coding gain of QSTBC. Simulation results confirm the theoretical
analysis.

I. INTRODUCTION

Space-time block codes (STBC) have been extensively
studied recently. One of the most well-known STBC is the
Alamouti code [1] and it belongs to a general class of
codes known as orthogonal STBC (OSTBC) [2]. Orthogonality
enables single symbol maximum likelihood (ML) detection but
results in low code rates. To improve the code rate, quasi-
orthogonal STBC (QSTBC) are independently proposed in
[3]–[5]. QSTBC use OSTBC as building blocks and the code
rate of QSTBC with 2m transmit (Tx) antennas equals the
code rate of OSTBC with m Tx antennas. Therefore, QSTBC
have higher code rates than OSTBC. In the codeword matrix
of QSTBC, not all pairs of columns are orthogonal; however,
the transmitted symbols can be ML decoded in pairs.

In order to achieve full diversity, half of the input symbols
have to be rotated before encoding [6], [7]. However, given
a constellation, the optimum rotation angle must be chosen
to minimize the symbol error rate (SER) or BER. Authors
in references [6]–[11] provide some specific optimal rotation
angles for quadrature amplitude modulation (QAM), phase-
shift keying (PSK) and hexagonal constellations (or lattices
of equilateral triangles) [12]. However, some results are not
identical. For example, according to [10], the optimal rotation
angle is π/4 for 4QAM (and also higher order QAM in
general), whereas it can be any value in the range from π/6
to π/3, the best one should be π/6 [13], (or approximately
π/6 [7] due to simulation results) or in the vicinity of 350 [6].
This problem motivates a general approach to derive optimal
rotation angles for an arbitrary constellation.

In this paper, we present a simple method using the basic

Euclidean geometry to derive not only the optimal rotations
for QSTBC but also the coding gain of QSTBC as a function
of rotation angle and the minimum Euclidean distance of
two-dimensional constellations carved from lattices of squares
(such as QAM), lattice of triangles (TRI) and phase-shift
keying (PSK) constellations. An upper bound of coding gain
for amplitude PSK (APSK) constellations is also obtained.
Since the optimal rotation angle is not unique, we propose
an additional criterion to select the rotation angles, in which
the number of signal points with minimum coding gain is
minimized. Simulation results support this idea. To the best
of our knowledge, ours is the first presented method that is
general enough to analyze the coding gain of QSTBC with
arbitrary constellations.

II. SYSTEM MODEL AND PRELIMINARY RESULTS

We first set some notations to be used in the paper. Super-
scripts (·)∗ and (·)† denote conjugate and conjugate transpose
operations, respectively. The m × m identity matrix is Im.
A signal constellation S is a finite set of possibly complex
numbers. The minimum Euclidean distance of S is dmin =
min{|s− ŝ|∀s �= ŝ; s, ŝ ∈ S} and the order or size of S is the
number of elements of S. The set of positive integer numbers
is N. A circularly complex Gaussian random variable x with
mean m and variance σ2 is denoted by x ∼ CN (m,σ2).

We consider data transmission over a quasi-static Rayleigh
flat fading channel. The transmitter and receiver are equipped
with m Tx and n Rx (receive) antennas. The channel gains
hik(i = 1, 2, ...,m; k = 1, 2, ..., n) between any pair of Tx-
Rx antennas are assumed CN (0, 1). We assume no spatial
correlation at either Tx or Rx array. The receiver, but not the
transmitter, completely knows the channel gains. Modulation
symbols are drawn form a constellation S with zero mean
and unit energy. They are encoded into space-time (ST)
codeword C of size t × m, where the entry cli denotes
the symbol transmitted from antenna i at time l (1 ≤ l ≤
t). The average transmitted power is constrained such that∑m

i=1

∑t
l=1 E[|cli|2] = t.

The received signals ylk of the kth antenna at time l can be
arranged in a matrix Y of size t×n. Thus, one can represent
the Tx-Rx signal relation compactly as Y =

√
ρCH + Z,

where H = [hik] and the t × n matrix Z = [zik] with zik ∼
CN (0, 1). The average receive SNR is ρ, independent of m.
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The upper-bound of pair-wire error probability (PEP) de-
rived by Tarokh et al. [14] is as follows:

P (C → Ĉ) ≤
(

Γ∏
i=1

λi

)−n (ρ

4

)−Γn

(1)

where C and Ĉ are the transmitted and erroneous codewords,
Γ is the minimum rank of a matrix ∆C (∆C = C − Ĉ)
for all C �= Ĉ, and λ1, λ2, , ..., λΓ are non-zero eigenvalues
of a product matrix PC = ∆†

C∆C . The diversity gain or
diversity order d and coding gain G of ST codes are defined as

d = Γn and G =
(∏Γ

i=1 λi

)1/Γ

, respectively. The maximum
achievable diversity order is d = mn, and in this case, the

coding gain is G =
[
det(∆†

C∆C)
]1/m

.
Quasi-orthogonal STBC are constructed from OSTBC. In

particular, a QSTB code for 2m Tx antennas employs OSTBC
for m antennas as a building element. For example, a code
proposed by Tirkkonen et al. [6] is as follows:

Q =
√

λ

[
A B
B A

]
(2)

where A and B are (p × m) OSTBC, A = O(x1, x2, ..., xK)
and B = O(xK+1, xK+2, ..., x2K). The scale factor λ guar-
antees the transmit power constraint.

Xu and Xia [10] show that Q†Q = λ

[
aIm bIm

bIm aIm

]
,

where a =
∑2K

k=1 |xk|2 and b =
∑K

k=1 (xkx∗
K+k + x∗

kxK+k).
With other QSTBC [3], [5], similar results can be obtained.

For two distinct QSTB codewords Q = Q(s1, s2, ...s2K)
and Q̂ = Q(ŝ1, ŝ2, ...ŝ2K), the difference matrix is ∆Q =
Q − Q̂. We have the product matrix PQ as

PQ = ∆†
Q∆Q = λ

[
(∆a)Im (∆b)Im

(∆b)Im (∆a)Im

]
(3)

where ∆a =
∑2K

i=1 |si − ŝi|2 and ∆b =∑K
i=1 [(si − ŝi)(sK+i − ŝK+i)∗ + (si − ŝi)∗(sK+i − ŝK+i)].

To achieve full diversity, symbols sK+i (i = 1, 2, ...,K)
are rotated, i.e., half of the input symbols are drawn from
a constellation S and the other half are drawn from the
rotated constellation R = ejφS (j2 = −1) where φ is the
rotation angle [10]. Then det(PQ) �= 0 and QSTBC achieve
full diversity. The coding gain of QSTBC with constellation
rotation is given by [10]

GQ = min
[
det(PQ)

]1/mQ

= λ min
s,ŝ∈S;r,r̂∈R
(s,r) �=(ŝ,r̂)

∣∣(s − ŝ) − (r − r̂)
∣∣ · ∣∣(s − ŝ) + (r − r̂)

∣∣
= λ min

s,ŝ∈S;r,r̂∈R
(s,r) �=(ŝ,r̂)

∣∣∣(s − ŝ)2 − (r − r̂)2
∣∣∣ . (4)

III. ANALYZING THE CODING GAIN OF QSTBC WITH

TWO-DIMENSIONAL CONSTELLATIONS

In this section, we approach the problem from a new
viewpoint. Different from Su and Xia [10], who work with

constellation S, we operate on the constellation generated by
taking the differences of all signal points of S.

Let us introduce some basic notations on two-dimensional
Euclidean vector space. Let us denote the vector connecting
two arbitrary points U and V as

−−→
UV , the modulus of vector−−→

UV as |−−→UV |. If U overlaps the origin O and the location of V
in the two-dimensional complex plane is v = Vx + jVy where
j2 = −1, then |v| = |−−→OV |.

We can use the vector notation to represent signal points in
the two-dimensional plane. Let s and ŝ be two elements of
S, which can be labelled as two signal points S and Ŝ in the
complex plane accordingly. Consider a constellation E , which
contains the set of differences (s − ŝ) defined as:

E = {e | e = s − ŝ , ∀ s, ŝ ∈ S}. (5)

We define another constellation F such that

F = {f | f = r − r̂ , ∀ r , r̂ ∈ R,R = ejφS}. (6)

Sets S, E and F may be called generating constellation,
differential constellation and rotated differential constellation,
respectively, where no confusion may arise. From (5) and (6),
one has min

e∈E, e �=0
{|e|} = min

f∈F, f �=0
{|f |} = dmin. Furthermore,

we obtain F = ejφE . In words, constellation F is a rotated
version of the constellation E with rotation angle φ. The coding
gain of QSTBC in (4) is rewritten as

GQ = min
E∈E,F∈F ;(E,F ) �=(O,O)

[(|e − f | · |e + f |)] . (7)

At this point, we have made no assumption on the structure
of constellations E and F . Let E and F be two arbitrary signal
points in the complex plane. Then |−−→OE| = |e|, |−−→OF | = |f |.
Using vector addition and subtraction, we have

−−→
EF =

−−→
OF −−−→

OE and
−→
OZ =

−−→
OF +

−−→
OE.

We define a quantity ωEF as ωEF �
(
|−−→EF ||−→OZ|

)1/2

; then

ωEF =
[(|e|2 + |f |2)2 − 4|e|2|f |2 cos2 ϕ

]1/4

(8)

where ϕ is the angle between vectors
−−→
OE and

−−→
OF ; (8) follows

from basic trigonometry. We call ωEF the product distance
because of its geometrical meaning. We further define the
minimum product distance 1 (MPD) ΩS of constellation E
and F as 2 ΩS � min

E∈E,F∈F ;(E,F ) �=(O,O)
ωEF . The subscript

S emphasizes the association of MPD with the generating
constellation S. The upper bound for minimum ζ-distance is
given in [10] and [13] as dmin,ζ ≤ dmin. Equivalently, we
can prove the upper bound of MPD. However, the proofs are
omitted due to the lack of space. The reader is referred to [16]
for full details.

Lemma 1: The MPD of QSTBC is bounded by ΩS ≤ dmin.

1The term minimum product distance is also defined for full modulation
diversity signals and DAST codes (see [15] and references therein).

2This parameter is called as minimum ζ-distance in [10]. In our geometric
approach, the name minimum product distance is more meaningful.
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The coding gain of QSTBC is now proportional to the MPD
Ω of two constellations E and F . GQ = λΩ2

S . Furthermore,
it is bounded as GQ ≤ λ d2

min.
We distinguish two cases: constellation S has either lattice

or non-lattice structure.

A. QSTBC with Lattice-Based Constellations

In general, any point S belonging to a two-dimensional
lattice S can be represented in the complex plane as s =
s0 + k1ν1 + k2ν2, where k1 and k2 are integers, and ν1 and
ν2 are complex numbers that form a basis for the lattice [17].

Proposition 1: If S has lattice structure, the constellation
E defined in (5) has the following properties:

• Lattices S and E have the same basis.
• Lattice E includes the origin and is symmetric via the

origin.
• If lattice S is finite, so is the lattice E .

The proof is straightforward and is not given here. Propo-
sition 1 shows the advantages of using the differential lattice
instead of the original one. First, the lattice structure is pre-
served. Second, although some signal constellations may not
be symmetric around the origin, their differential constellations
are always include the origin and are symmetric about the
origin.

We now examine two important lattices: Lattices of squares
(including square and rectangular QAM) and lattices of equi-
lateral triangles (TRI) (including hexagonal constellations)
[12]. The optimal rotation angles for these constellations are
discussed in [10]. However, we will show that the results of
[10] are just special cases of our results.
1. Square Lattices

For square lattices, ν1 = dmin and ν2 = ejπ/2dmin. We first
study the basic 4-point square lattices, in particular, 4QAM
plotted in Fig. 1. Note that there is no restriction on the
locations of the square lattices on the two-dimensional plane.

We have |−→OA| = |−−→OB| = dmin and |−−→OC| =
√

2dmin, and
because of the symmetry of E , we first examine the case φ ∈
(0, π/2). One obtains

Ω4 QAM = min{ωBA, ωBC , ωBO}
= min{(2 sin φ)1/2dmin, (2 cos φ)1/2dmin, dmin}.

Therefore, the maximal value of Ω4 QAM is dmin, and is
achieved if and only if the rotation angle satisfies π/6 ≤ φ ≤
π/3. Because of the symmetry of constellation R, any rotation
angle φ such that π

6 + nπ
2 ≤ φ ≤ π

3 + nπ
2 , n = 0, 1, 2, 3 also

maximizes the MPD and hence maximizes the coding gain.
For higher order constellations, the lattices E and F are

expanded outward. We have the following facts about their
MPD.

Proposition 2: Let E and F be the signal points, each
drawn from lattices E and F , where E and F are generated
from a square lattice S by rules (5) and (6).

• If |e| �= |f |, the product distance of E and F is lower
bounded by dmin.

Fig. 1. 4QAM, its differential and rotated differential constellations.

• Otherwise, their MPD is given by ωEF = (2 sin α)1/2|e|,
where α is the angle between two vectors

−−→
OE and

−−→
OF .

Thus, for square lattices, MPD is the product distance of
the two signal points lying on the innermost circle, where |e|
is minimum. Thus the MPD of any square lattices is upper-
bounded by the MPD of 4QAM. For 4QAM, we state the
result as follows.

Lemma 2: For 4-point square lattices with minimum Eu-
clidean distance dmin, the coding gain of QSTBC with rotation
angle φ ∈ [kπ

2 , (k+1)π
2 ], k = 0, 1, 2, 3, is given by GQ =

λ min{2| sin(φ − kπ
2 )| d2

min, 2| cos(φ − kπ
2 )| d2

min, d2
min}. The

coding gain is maximized, Gmax
Q = λd2

min, if and only if the
rotation angle φ satisfies (3k+1)π

6 ≤ φ ≤ (3k+2)π
6 .

This result agrees with that found in [13]. For a higher
order of QAM, we need to solve an additional constraint,
which is more difficult for 32QAM or higher order. We
can show analytically that the rotation φ = π/4 meets this
additional constraint [16]. We have not shown analytically that
φ = π/3, π/6 meet the constraint. Nevertheless, we can easily
verify numerically that φ = π/3, π/6 are also optimal for
square QAM constellations with at least up to 220 points.
2. Lattices of Equilateral Triangles

For the TRI lattice, ν1 = dmin and ν2 = ejπ/3dmin. We
present the main results for TRI lattices for brevity; however
the derivations are similar to the case of square lattices.

Theorem 1: For lattices of equilateral triangles with min-
imum Euclidean distance dmin, the coding gain of QSTBC
with rotation angle φ ∈ [kπ

3 , (k+1)π
3 ], k = 0, 1, ..., 5, is

given by GQ = λ min{2| sin(φ − kπ
3 )| d2

min, 2| sin[ (k+1)π
3 −

φ]|d2
min, d2

min}. The coding gain is maximized, Gmax
Q = λd2

min,
if and only if the rotation angle φ takes one of the values
φ = (2k+1)π

6 .
Note that our Theorem 1 subsumes [10, Theorem 2], where

only rotation angle φ = π/6 is provided. Using the same
approach, with minimal effort, one can show that for PAM
(one-dimensional lattice), the optimum rotation is π/2. This
simple case is also briefly mentioned in [10].

B. QSTBC with Non-Lattice Constellations

1. MPSK Constellations
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The coding gain and optimal rotations for MPSK constel-
lations are stated in the following theorems.

Theorem 2: For any MPSK constellation (M is an even
integer larger than 4) with minimum Euclidean distance
dmin = 2 sin π

M , the coding gain of QSTBC with rotation
angle φ ∈ [2kπ

M , 2(k+1)π
M ], k = 0, 1, ...,M − 1 is given by

GQ = λ min{2| sin(φ− 2kπ
M )| dmin, 2| sin(2(k+1)π

M −φ)|dmin}.
The coding gain is maximized, Gmax

Q = 2λ sin π
M d2

min, if and
only if the rotation angle φ satisfies φ = (2k+1)π

M .
Theorem 3: For any MPSK constellation (M is an odd

integer greater than 1) with minimum Euclidean distance
dmin = 2 sin π

M , the coding gain of QSTBC with rotation
angle φ ∈ [kπ

M , (k+1)π
M ], k = 0, 1, ..., 2M − 1, is given by

GQ = λ min{2| sin(φ − kπ
M )| dmin, 2| sin( (k+1)π

M − φ)|dmin}.
The coding gain is maximized, Gmax

Q = 2λ sin π
2M d2

min, if and
only if the rotation angle φ satisfies φ = (2k+1)π

M .
Theorem 2 agrees with the results of [13] and Theorem

3 subsumes the results of [11]. The MPD’s of MPSK con-
stellations for M = 3, 4, ..., 16 are provided in Table I. Note
that for M = 3, 6, signal points of S belong to TRI lattices,
and for M = 4, S is actually 4QAM. Hence the coding gain
of MPSK with these values of M achieves the upper bound
d2
min. For other values of M , the coding gain cannot achieve

the upper bound.
Optimal rotation angles and MPD of M -point constellations

for M = 4, 8, 16 belonging to QAM, TRI and PSK are
summarized in Table II (see Fig. 2 for illustrations of 8-point
constellations).
2. Amplitude Phase-Shift Key Constellations

An amplitude phase-shift key (APSK) constellation con-
sists of signal points lying on several rings. The notation
(p1, p2, p3, ...) can be used to denote an APSK constellation,
where pi represents the number of points on the ith ring,
counting from the origin outward. Since APSK is the union
of several PSK constellations, its MPD is bounded by the
smallest MPD of the PSK subconstellations. Although the
upper bound is rather loose, it is useful because analyzing
the MPD of an APSK constellation with arbitrary geometric
shape is complicated.

Considering (1, p) constellations (p ∈ N), which consists of
the origin as a signal point and the other p points lie equally-
spaced on the circle of radius R = 1. We found that Ω(1,3) =
1, whereas Ω4 PSK = 1.4142, and Ω(1,7) < Ω7 PSK = 0.5789
is well below Ω8 PSK. Therefore, further calculation of the
exact MPD for (1, p) constellations is not fruitful for practical
applications.

We found that with constellation (4, 4) [18], [19] its exact
MPD Ω(4, 4) = (2 sin π

12 )1/2dmin ≈ 0.6615 is even worse
than that of 8PSK. We examine four 16PSK constellations
including the best (8, 8) constellation [18] and the other three
constellations investigated in [20]. Their MPD upper bounds
(summarized in Table III) are well below the exact MPD
of 16QAM in Table II. Further investigation on the MPD
upper bounds of different 32APSK and 64APSK constellations
presented in [19], [20] also shows that no examined APSK

TABLE I

MINIMUM PRODUCT DISTANCE OF MPSK CONSTELLATIONS

M 3 5 7 9 11 13 15

ΩM PSK 1.732 0.924 0.579 0.403 0.300 0.235 0.190

M 4 6 8 10 12 14 16

ΩM PSK 1.414 1 0.670 0.486 0.372 0.297 0.244

TABLE II

SUMMARY OF OPTIMAL ROTATION ANGLES

Constellation Optimal φ ΩS dmin

4QAM
h

π
6

+ kπ
2

, π
3

+ kπ
2

i
, k = 0, 1, 2, 3 1.414 1.414

4TRI π
6

+ kπ
3

, k = 0, 1, ..., 5 1.414 1.414
(4, 4) π

12
+ kπ

6
, k = 0, 1, ..., 11 0.662 0.919

8PSK π
8

+ kπ
4

, k = 0, 1, ..., 7 0.670 0.765
8QAM square (π

3
, π

4
, π

6
) + kπ

2
, k = 0, 1, 2, 3 0.817 0.817

8QAM rect. as 8QAM square 0.817 0.817
8QAM rotated as 8QAM square 0.906 0.906

8TRI-a as 4TRI 0.943 0.943
8TRI-b as 4TRI 0.963 0.963
16PSK π

16
+ kπ

8
, k = 0, 1, ..., 15 0.244 0.390

16QAM square as 8QAM square 0.633 0.633
16TRI as 4TRI 0.676 0.676

32QAM square as 8QAM square 0.447 0.447
32TRI as 4TRI 0.477 0.477

64QAM square as 8QAM square 0.309 0.309
64TRI as 4TRI 0.337 0.337

TABLE III

UPPER BOUND OF MPD OF APSK CONSTELLATIONS

Constellations (1, 5, 10) (5, 11) (4, 12) (8, 8)

Upper bound of MPD 0.5336 0.3438 0.4207 0.5049

constellation has an MPD upper bound better than QAM
square with the same spectral efficiency.While we do not
comprehensively analyze optimal APSK constellations for
QSTBC, the available results show that the most well-known
APSK constellations are inferior to square QAM.

Before concluding this section, we note that two optimal
rotations for TRI lattices are φ = ±π/2 (k = 1, 4), and they
do not require explicit multiplications; hence the encoding
complexity is minimized without any loss of performance.

IV. SIMULATION RESULTS

This section verifies theoretical analysis by the simulations
performed for a MIMO system with 4 Tx and 1 Rx antennas.

We verify the performance of different constellations with
the same spectrum efficiency. Seven 8-point constellations
with MPDs given in Table II are compared. Fig. 3 shows that
the constellation with higher MPD has better SER performance
at high SNR. Let NS denote the average number of neighbors
at distance dmin of constellations S. The performance of
8TRI-a and -b is only slightly better than that of the 8QAM
rotated square. The reason is that N8 TRI−a = 3.25 and
N8 TRI−b = 3.5 are higher than N8 QAM rotated square = 2.5.
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Fig. 2. 8-point constellations

20 21 22 23 24 25 26

10
−5

10
−4

10
−3

S
E

R

Symbol SNR [dB]

8PSK
(4, 4) rotated 
8QAM square
8QAM rectangular
8TRI−a
8QAM rotated square
8TRI−b
16QAM OSTBC

Fig. 3. SER of QSTBC with different types of 8-point modulations, 4 Tx
and 1 Rx antennas.

This side effect also causes the performance of 8QAM square
to be worse than that of 8QAM rectangular (N8 QAM square =
2.5, N8 QAM rect. = 2). Note that the constellation (4, 4) has the
smallest MPD among the 8-point constellations (Table II); its
SER should therefore be the worst. However, this prediction is
not corroborated in Fig. 3 because the SNR is not high enough

V. CONCLUSION

We have introduced a general method to analyze the coding
gain and optimal rotation angles for QSTBC with arbitrary
two-dimensional signal constellations. Our new framework is
general, unifies the existing results and delivers some new re-
sults. For lattices of equilateral triangles, we proposed optimal

rotations of φ = ±π/2 to minimize the encoding complexity
by eliminating the multiplications. Optimal rotations for PSK
and various constellations are also presented. More important,
the coding gain (or its upper bound) of QSTBC can be derived
for any constellation. Thus, the performance of the codes can
be accurately predicted.
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