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Abstract— We consider superimposing pilot symbols on to data
symbols for channel estimation for Orthogonal Frequency Divi-
sion Multiplexing (OFDM) systems. We first derive maximum-
likelihood (ML) and minimum-mean square error (MMSE)
iterative channel estimators. Modeling the time domain signal as
Gaussian, we derive an ML channel estimator by averaging the
likelihood function for both data and channel impulse response
(CIR) over the resulting Gaussian vector. Two data detectors
are also proposed by eliminating the CIR from the likelihood
function. The resulting integer least squares problem can be
efficiently solved using a sphere decoder (SD). Furthermore,
the Cramer-Rao bound (CRB) for the superimposed channel
and data estimation is derived. The equispaced pilot placement
is optimal in superimposed training. The ideal performance
benchmarks are reached by our proposed estimators. Their
performance is comparable to that of a separated training
scheme, but they offer a higher data rate.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) pro-
vides high spectral efficiency, but the channel impulse response
(CIR) must be estimated accurately for coherent detection.
Pilot-based channel estimation for OFDM has thus been
widely studied [1], where pilots and data symbols are placed
in separate subcarriers by periodic insertion of pilot symbols.
The receiver estimates the channel at the pilot subcarriers first,
and these estimates are interpolated to estimate the channel
at the data subcarriers. In mobile radio environments, the
time-varying channel requires closely-spaced pilot symbols,
resulting in a significant bandwidth loss. Semi-blind and blind
equalization and channel estimation methods, however, need
several OFDM symbols for channel estimation and exhibit
both high complexity and phase ambiguities.

On the other hand, pilot symbols can be added to data
symbols to enable CIR estimation without sacrificing the data
rate. This idea was first proposed for analog communication in
[2] and was later extended to digital single carrier systems in
[3]. Recently, the idea of superimposed training has received
renewed attention [4]–[6]. In [4], a two-dimensional Wiener
filter is employed to obtain the initial frequency domain
channel estimate using second order statistics. The initial CIR
estimate is then used to recover data symbols. The resulting
data are used to iteratively update the channel estimation with
a new Wiener filter. However, this scheme is sensitive to the
signal-to-pilot power ratio (SPR). In [5], periodic pilots are
added to data symbols in time domain before transmission,

and first order statics are exploited to identify the CIR. As
adding pilots can increase the peak-to-average power ratio
(PAPR), superimposed pilots must be carefully chosen to
mitigate this problem. In [6], the data vector is distorted so that
its discrete fourier transform (DFT) at the pilot frequencies
is zero, which cancels the performance degradation by the
embedded unknown data.

In this paper, we derive channel estimators and data detec-
tors for superimposed training in both the time and frequency
domains. We propose channel estimators based on iterative
maximum likelihood (ML) and minimum-mean square error
(MMSE). ML and MMSE algorithms are used to obtain the
initial estimate of the time domain CIR. The data and CIR
estimates are then updated using a decision-directed algorithm.
The iterative estimators perform well in low SPR. Taking the
time domain OFDM signals as complex Gaussian, we derive
an ML channel estimator by averaging the data-CIR likelihood
function over the resulting Gaussian vector. The resulting ML
channel estimator is solved using gradient based algorithms.
On the other hand, two data detectors are also proposed by
eliminating the CIR from the likelihood function. The resulting
integer least squares problem can be efficiently solved with
a sphere decoder (SD) [7]. We also derive the Cramer-
Rao bound (CRB) for the superimposed channel and data
estimation. Optimal pilot placement is obtained by minimizing
the CRB. We find that the equispace condition still holds in
superimposed training.

Notation: (·)T and (·)H denote transpose and conjugate
transpose. The set of complex K-dimensional vectors is de-
noted by CK . A signal constellation and its cardinality are
denoted by Q and |Q|. The N × N DFT matrix is F =
1/
√
N [ej

2π
N kl], k, l ∈ 0, 1, · · · , N − 1, j =

√−1. A matrix
AD denotes a diagonal matrix whose diagonal entries are the
components of vector A.

II. SYSTEM MODEL

We consider the discrete-time equivalent baseband model
of an OFDM system over frequency-selective channels. Data
are mapped into a finite constellation Q. We consider a
generalized training strategy in which the transmitted symbol
Xk at the k-th subcarrier is a linear combination of a pilot
symbol and a data symbol

Xk =
√
φkpk +

√
ψksk, k = 0, 1, . . . , N − 1 (1)
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where pk ∈ Q is the known pilot, sk ∈ Q is a zero-mean
randomly distributed data symbol, and both pk and sk have
the unity average power. The coefficients φk and ψk specify
the power of the pilot and data symbols, respectively. The
SPR for the k-th subcarrier is defined as SPRk = φk/ψk.
The power Ek = φk + ψk is the total power for the k-th
subcarrier and E =

∑N−1
k=0 Ek is the total power for an OFDM

symbol. If ψk = 0, for k ∈ Ip, (1) reduces to the separated
training scheme in [1], where Ip denotes the index set of Np
pilot subcarriers. Transmit symbols Xk’s are modulated by
an inverse DFT (IDFT), and the resulting time domain signal
samples are

xn =
1√
N

N−1∑
k=0

Xke
2πkn/N , n = 0, · · · , N − 1. (2)

Note after IDFT, pilots and data symbols are superimposed
in both time domain and frequency domain. A guard interval,
inserted to prevent inter-frame interference, includes a cyclic
prefix of {x(Ng−1), · · · , x(N−1)} where Ng is the number
of samples in the guard interval. These samples are appropri-
ately pulse shaped to construct the time domain signal x(t)
for transmission.

The composite response including transmit and receive
pulse shaping and the physical channel response between the
transmitter and receiver may be modeled as

h(t) =
L−1∑
l=0

hl(t)δ(t− τl) (3)

where hl(t) ∼ CN (0, σ2
l ), and τl is the delay of the l-th

tap. Typically, it is assumed that τl = lTs, and this results
in a finite impulse response filter with an effective length L.
We consider that the channel taps hl(t) remain constant in
each block so that inter-carrier-interference (ICI) is negligible.
Assuming perfect synchronization, the received signal after
sampling can be represented as

yn =
L−1∑
l=0

hlxn−l + wn

=
1√
N

L−1∑
l=0

hl

N−1∑
k=0

Xke
2πk(n−l)/N + wn

(4)

where wn is Additive White Gaussian Noise (AWGN). After
removing the guard interval and performing DFT demodula-
tion, we can get

Yk =
1√
N

N−1∑
n=0

yne
−2πkn/N

=XkHk +Wk

(5)

where Hk = 1/N
∑L−1
l=0 hle

−2πkl/N , and Wk =
1/
√
N

∑N−1
n=0 wne

−2πnk/N with mean zero and variance σ2
n.

We find H = [H0, . . . , HN−1]T = FLh, where h =
[h0, . . . , hL−1]T is the CIR and FL is a N × L submatrix
of the DFT matrix F. We can vectorize (5) as

Y = XDFLh + W = (ΦPD + ΨSD)FLh + W (6)

or equivalently

Y = HDX + W = HD (ΦP + ΨS) = HDFx + W (7)

where X = [X0, · · · ,XN−1]T , x = [x0, · · · , xN−1]T ,
Y = [Y0, . . . , YN−1]T , P = [p0, . . . , pN−1]T , S =
[s0, . . . , sN−1]T , Φ = diag{√φ0, · · · ,

√
φN−1} and Ψ =

diag{√ψ0, · · · ,
√
ψN−1}.

III. ITERATIVE CHANNEL ESTIMATORS

A. Iterative ML estimator

Under the assumption of AWGN, and using (6), the proba-
bility density function (pdf) of received signal Y conditioned
on h and S is

f (Y|h,S) =
1

(πσ2
n)N

exp
{
− 1
σ2
n

‖Y − XDFLh‖2

}
. (8)

Its dependence on S can be removed by summing f (Y|h,S)
over all S and obtaining the marginal probability f(Y|h) =∑

S∈QN f (S) f (Y|h,S). The CIR can thus be estimated
maximizing f(Y|h). However, this approach becomes in-
tractable when N is large, and it is difficult to find the global
maximum of f(Y|h). Instead, we use a suboptimal approach
by considering the approximation ex = 1+x when x is small.
We write f(Y|h) as

f (Y|h) ≈
∑

S∈QN

1
(πσ2

n|Q|)N
{

1 − 1
σ2
n

‖Y − XDFLh‖2

}
.

(9)
Therefore, the initial CIR estimate can be obtained by mini-
mizing

g (h) =
∑

S∈QN

‖Y − XDFLh‖2
. (10)

Taking the partial derivative of (10) with respect to h and
setting the result to zero, we find

ĥ0 =
(
FHLΛFL

)−1
FHLPH

DΦY (11)

where Λ = diag{E0, . . . , EN−1}. We use E{sk} = 0 in (11).
Starting from ĥ0, a decision directed (DD) technique can be

used to improve the performance of both channel estimation
and data detection. From (8), the joint CIR and data estimator
is given by

{h,S} = arg min
h∈CL,S∈QN

‖Y − (ΦPD + ΨSD)FLh‖2. (12)

In the i-th iteration, data symbols S can be estimated via

Ŝi = MQ
(
Ψ−1

[(
Hi−1
D

)−1
Y − ΦP

])
(13)

where Hi−1
D = diag{FLĥi−1}, and MQ(·) quantizes (·) to

the nearest element in Q. The CIR estimation follows as

ĥi =
(
FHLXH

DXDFL
)−1

FHLXH
DY (14)

where XD = ΦPD + ΨSiD.
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B. Iterative MMSE estimator

In the initial estimation stage, Ŝ is not available. We
then assume the term V = ΨSDFLh in (6) to be random
interference and obtain

RhY = E{hYH} = RhFHLPH
DΦH (15)

and

RY Y = E{YYH} = ΦPDFLRhFHLPH
DΦH +µΨ2 +σ2

nIN
(16)

where Rh = E{hhH} and µ =
∑L−1
l=0 σ2

l /N . The linear
MMSE channel estimation is therefore given by

ĥ0 = RhYR−1
Y YY. (17)

Simulation results show that the initial channel estimate by
(17) has a smaller error floor than that of (11). The iterative
stage is similar to the ML channel estimator. Given ĥi−1, Ŝi

can be estimated from (13). Instead of using (14), the CIR
estimate can be MMSE updated as

ĥi = RhFHLXH
D

(
XDFLRhFHLXH

D + σ2
nIN

)−1
Y (18)

where XD = ΦPD + ΨSiD. Since both of the iterative de-
tectors depend on the quality of the initial channel estimation,
they perform well in high SPR. Note that both complexity and
performance increase for more iterations, but the performance
improvement rate diminishes.

IV. MAXIMUM LIKELIHOOD CHANNEL ESTIMATOR

Using (6), computing f(Y|h) is intractable by summing
f (Y|h,S) over all S. In this section, we take a different
approach by using (7). The likelihood function conditional on
x and HD is given by

f(Y|x,HD) =
1

(πσ2
n)N

exp
{
− 1
σ2
n

‖Y − HDFx‖2

}
. (19)

The time domain transmitted signal xn can be modelled as
complex Gaussian via the central limit theorem when N is
large. The covariance matrix and mean of x (7) are given by

x̄ = E{x} = FHΦP, Rx = E{(x−x̄)(x−x̄)H} = FHΨ2F.
(20)

The mean depends on the fixed, superimposed pilots. The
average of f(Y|x,HD) with respect to x gives the marginal
likelihood function f(Y|HD), which can be expressed as

f(Y|HD) =
∫
f(Y|x,HD)f(x)dx (21)

where f(x) is the pdf of x. We evaluate (21) as

f(Y|HD) =
1

det(σ2
nIN + HDΨ2HH

D)
× exp

{− [
PHΦH(Ψ2 + σ2

n(H
H
DHD)−1)−1ΦP

+ σ2
nY

H(HH
DHDΨ2 + σ2

nIN )−1Y

+2σ2
nRe(YHHD(Ψ2HH

DHD + σ2
nIN )−1ΦP)

]}
.

(22)

After some manipulations, we find the log likelihood function
Λ(Y|HD) = ln f(Y|HD) as

Λ(Y|HD) = − σ2
n

N−1∑
k=0

( |Yk − φkHkpk|2
ψk|Hk|2 + σ2

n

+ ln
(
ψk|Hk|2 + σ2

n

))
.

(23)

Maximizing (23) is equivalent to minimizing

g(h) = −Λ(Y|HD). (24)

By minimizing each term of (24) individually, we get the
initial estimate of Ĥk. The time-domain CIR estimate ĥ is
FHL Ĥ. Using the resulting initial channel estimate, the CIR h
can be estimated by minimizing (24) via the gradient descent
and related algorithms. However, the gradient based algorithms
cannot guarantee the global minimum. To improve the channel
estimate, the iterative ML and MMSE estimators (14) and
(18) may be applied. Since the local minimum of (24) seems
fairly close the global minimum, just one iteration is enough
to achieve the CRB.

For the separated training scheme in [1] with the index set
of pilot subcarriers Ip, minimizing (24) reduces to

ĥ = arg min
h∈CL

∑
k∈Ip

|Yk −Hkpk|2 (25)

which is identical to the conventional least squares (LS)
channel estimator, a natural conclusion since (24) is derived
in the ML sense.

V. MAXIMUM LIKELIHOOD DATA DETECTORS

In this section, we derive two data detectors. If the trans-
mitted data XD were known, the channel response h would
be estimated using

ĥ = arg min
h∈CL

∥∥X−1
D Y − FLh

∥∥2
. (26)

The LS solution to (26) is

ĥ = FHLX−1
D Y. (27)

Using this CIR estimate (27), the data detector is given by

Ŝ =arg min
S∈QN

∥∥X−1
D Y − FLFHLX−1

D Y
∥∥2

=arg min
S∈QN

X̌HYH
D

(
IN − FLFHL

)
YDX̌

=arg min
S∈QN

‖U1YDX̌‖2

(28)

where X̌ = [X−1
0 , . . . , X−1

N−1]
T , and U1 is the Cholesky

decomposition of IN − FLFHL . Using (1), and assuming a
unitary constellation, we find

X−1
k =

√
φkpk −

√
ψksk

φk − ψk
, k = 0, 1, . . . , N − 1. (29)

Define Φ̌ = diag{
√
φ0

φ0−ψ0
, . . . ,

√
φN−1

φN−1−ψN−1
} and Ψ̌ =

diag{
√
ψ0

φ0−ψ0
, . . . ,

√
φN−1

ψN−1−ψN−1
}. ¿From (29), we have X̌ =
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Φ̌P − Ψ̆S. Substituting this equation into (28), it reduces to

Ŝ = arg min
S∈QN

‖R1 − G1S‖2 (30)

where R1 = U1YDΦ̌P, and G1 = U1YDΨ̆. We refer to
the detector (30) as MLDD1.

If the CIR h is complex Gaussian, the received signal (6)
is also complex Gaussian with zero mean, and the covariance
matrix is given by

RY = XDFLRhFHLXH
D + σ2

nIN . (31)

The pdf of Y conditioned on S is thus

f(Y|S) =
1

det(RY )
exp

{−YHR−1
Y Y

}
. (32)

log det(RY ) = log det(FLRhFHLXH
DXD + σ2

nIN ) is inde-
pendent of XD. Therefore, maximizing (32) is equivalent to
solving

Ŝ = arg min
S∈QN

YH `
X−1

D

´H
“
FLRhF

H
L + σ2

n(XH
DXD)−1

”−1

X−1
D Y

(33)

Eq. (33) can be solved exactly using branch and bound as the
blind estimator for both unitary and non-unitary constellations.
Following the same approach in (28) and using the same
definition, (33) can be simplified as

Ŝ = arg min
S∈QN

‖R2 − G2S‖2 (34)

where R2 = U2YDΦ̌P, G2 = U2YDΨ̆ and U2 is
the Cholesky decomposition of (FLRhFHL + σ2

nΛ
−1)−1 =

UH
2 U2. We refer to the detector (34) as MLDD2.
Since S is from a discrete set Q, (30) and (34) are well-

known as integer least squares problems. SD [7] solves (30)
and (34) with moderate complexity.

VI. CRAMER-RAO BOUND AND OPTIMAL PILOTS

PLACEMENT

Though several channel estimation algorithms have been
proposed for a superimposed training scheme [3]–[5], no
optimal pilots placement scheme has been given. We thus
optimize pilots by minimizing the CRB on the mean square
error (MSE) of channel estimation with superimposed training.

The CRB for the MSE of channel estimation can be derived
as

CRBh =
(

1
σ2
n

FHL (Φ2 + Ψ2)FL + R−1
h

)−1

. (35)

Optimal pilots are designed by minimizing the CRB with
respect to the placement and power constraint of the pilots
and data symbols. Assuming that the subcarrier index set for
non-zero φk is Ip with Np elements, and the index set for
the rest of the subcarriers is Id with Nd elements, the power
constraint

∑
k ψk = D and

∑
k∈Ip

φk = P , where D and P

are the total power on pilots and data symbols respectively,
the problem becomes

(Ip, φk, Id, ψk) =

arg min
P

k ψk=D,Pk∈Ip
φk=P

tr

{(
1
σ2
n

FHL (Φ2 + Ψ2)FL + R−1
h

)−1
}
.

(36)

The lower bound on the MSE is attained if and only if C =
FHL (Φ2 + Ψ2)FL is diagonal. The (i, j)th (0 ≤ i, j ≤ L− 1)
entry of C can be written as

[C]i,j =

 D + P i = jP
k∈Ip

φke
−2πk(j−i)/N +

P
k ψke

−2πk(j−i)/N i �= j
.

(37)
Therefore, we requireX

k∈Ip

φke
−2πk(j−i)/N +

X
k

ψke
−2πk(j−i)/N = (D + P)δ(i− j).

(38)
Eq. (38) is satisfied if the following conditions are satisfied

C1) Ek = C1, ∀k ∈ Ip and Ek = C2, ∀k ∈ Id.
C2) d = N/Np ∈ Z and Ip = {d0 + kd, k =
0, 1, . . . , Np − 1}, d0 ∈ {0, 1, . . . , d− 1}.

C1) means that the total power at both each subcarrier in Ip
and each subcarrier in Id must be equipowered. C2) means that
the superimposed pilots must be equispaced. In the separated
training scheme, C1) and C2 agree with the equispace and
equipower conditions. A remarkable property of C1) and C2
is that the CRB does not depend on the power allocated to
the pilots and the location of pilots but depends only on the
total power allocated to each subcarrier. However, the training
power determines the SNR required to achieve the CRB. The
more training power, the lower SNR is needed.

VII. SIMULATION RESULTS

We test uncoded OFDM with N = 32 subcar-
riers and binary phase-shift keying (BPSK). A COST
207 6-ray channel model with the power delay profile
[0.189, 0.379, 0.239, 0.095, 0.061, 0.037] is considered. Each
path is an independently generated complex Gaussian random
process. We compare the performance of 8 equispaced su-
perimposed pilots with that of 4 equispaced separated pilots,
and denote them as SU and SE respectively; they allocated
the same total training power. In SU, the total power at each
subcarrier is 1, and superimposed pilot subcarriers have φk =
φ. Since SU and SE have different bandwidth efficiencies, we
compare them in terms of the effective SNR defined by E

NdN0
,

where Nd is the number of information symbols in an OFDM
symbol. IML and IMMSE are used to denote the iterative
estimators in Section III, and the notation i = n denotes the
performance in the n-th iteration. Ideal detectors, assuming the
availability of perfect CIR knowledge, are used as benchmarks.

Fig. 1 shows the MSE of channel estimation with φ = 0.2.
The iterative estimators cannot converge since the initial CIR
estimates are bad. MLCE shows an error floor at high SNR
because the gradient based algorithm cannot guarantee the
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Fig. 1. MSE comparison with different estimators in a BPSK OFDM system
with N = 32 and φ = 0.2 for superimposed training.

global minimum. However, with only one iteration, MLCE
achieves the MSE CRB in high SNR. Since the initial data
detection in MLDDs at superimposed pilot subcarriers is not
reliable, we first use the detected data at non-superimposed
subcarriers to estimate the CIR and perform one iteration to
update both data and CIR estimators. They also achieve the
CRB in high SNR.

Figs. 2, 3 compare the MSE of channel estimation and the
resulting BER for φ = 0.7. The performance of the frequency
domain channel estimator in [4] after 4 iterations is denoted
as HFC. After 4 iterations, both IML and IMMSE converge
to the CRB in high SNR (Fig. 2). However, they both exhibit
error floors. IMMSE has a smaller error floor than IML in
each iteration. Their MSE and BER performance are much
better than those of HFC with the same number of iterations.
Similarly, MLCE and MLDDs achieve the MSE CRB in high
SNR (Fig. 2). In Fig. 3, SU with perfect CIR performs 1 dB
worse than SE with perfect CIR at BER = 10−3. MLCE
and MLDDs have the same performance in high SNR. They
perform close to SE with MMSE channel estimation but have
a 0.5-dB loss over SU with perfect CIR.
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Fig. 2. MSE for different estimators in a BPSK OFDM system with N = 32
and φ = 0.7 for superimposed training.

Comparing Fig. 1 with Fig. 2, we find that MLCE and

MLDDs achieve the CRB at 20 dB with φ = 0.2 and at 15
dB with φ = 0.7. But the CRBs are identical. This verifies
that the training power only determines the SNR threshold to
achieve the CRB. However, the analysis of the dependence of
threshold on φ seems to be intractable.

VIII. CONCLUSION

We have investigated superimposed training for OFDM
and derived iterative ML and MMSE channel estimators. We
derived the ML channel estimator by averaging the likelihood
function over the distribution of the transmitted signal. Two
ML data detectors have also derived by eliminating the CIR
first. The resulting integer quadratic optimization problems
are efficiently solved using an SD. Moreover, we show that
equispaced superimposed pilot symbols are optimal for min-
imizing the CRB. Our proposed channel estimators and data
detectors achieve the CRB in high SNR. They perform close to
separated training with perfect CIR but with a higher data rate.
The training scheme in this paper can be readily generalized
to two dimensional training sequences and extended to coded
systems where iterative detection strategies are employed.
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Fig. 3. BER for different estimators in a BPSK OFDM system with N = 32
and φ = 0.7 for superimposed training.
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