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Abstract— We develop a family of constrained detectors for
multiple-input multiple-output (MIMO) channels by relaxing the
maximum likelihood (ML) detection problem. Real constrained
linear detectors and decision feedback detectors are proposed
for real constellations by forcing the relaxed solution to be
real. Generalized minimum mean-square error and constrained
least squares detectors are generalized as MIMO detectors for
both constant and non-constant modulus constellations. Using
our constrained linear detectors, we propose a new ordering
scheme to achieve a tradeoff between interference suppression
and noise enhancement. Moreover, we introduce a combined
constrained linear and decision feedback detector to mitigate the
error propagation in decision feedback. Simulation results show
that the combined detectors achieve significant performance gain
over V-BLAST detection.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communi-
cation systems employing multiple antennas at both the trans-
mitter and the receiver can potentially achieve remarkably high
spectral efficiencies in rich scattering multipath environments.
As a result, the design of high date-rate MIMO wireless
communications systems has generated significant interest. A
prime example is the BLAST (Bell Laboratories layered space
time) architecture [1], which has been proposed to exploit the
potentially enormous MIMO link capacity

In spatial multiplexing systems such as BLAST, a funda-
mental receiver function is the detection of transmitted data
symbols. The optimal maximum likelihood (ML) detector
achieves the minimum error probability for independent and
identically distributed (i.i.d.) random data symbols. However,
the complexity of the ML detector (MLD) grows exponentially
with the number of transmit antennas and the signal con-
stellation size, making it computationally prohibitive in most
cases. Therefore, various computationally efficient suboptimal
detectors such as the zero-forcing (ZF) detector and the min-
imum mean-square error (MMSE) detector are developed. In
[1], the V-BLAST detector with optimal ordering is proposed.
The equivalence between V-BLAST and a zero-forcing (ZF)
decision feedback detector (DFD) is demonstrated [2]. If the
nulling criterion is MMSE, the resulting MMSE-DFD [3]
makes a trade-off between interference suppression and noise
enhancement. However, these suboptimal detectors perform
much worse than the MLD. In [4], sphere decoding (SD),
offering near-optimal performance, is proposed to attain low

complexity in high SNR. But its complexity is still high in low
SNR or for large systems. The large gap in both performance
and complexity between the MLD and suboptimal detectors
has motivated the search for alternative detectors.

In this paper, we consider a relaxation approach to the
MIMO detection problem. In the relaxation approach, the dis-
crete set of all possible transmit vectors is embedded in a larger
multidimensional continuous space and the minimization is
performed over this continuous space. The resulting minimum
solution is mapped back into the original discrete space. As an
example, in code-division multiple-access (CDMA) systems, a
generalized MMSE (GMMSE) detector is proposed [5], where
the binary phase shift keying (BPSK) vectors are relaxed so
that they are inside a hypercube. In [6], a tighter relaxation is
used in orthogonal frequency division multiplexing (OFDM)
/ spatial division multiple access (SDMA) systems employ-
ing constant-modulus constellations by restricting the binary
vectors on a hypersphere rather than within a hypercube,
which is named a constrained least squares (CLS) detector.
We extend the idea of constrained detection into uncoded
MIMO systems. A class of constrained linear detectors and
a class of constrained DFDs are developed. Real constrained
linear and decision feedback detectors are proposed for real
constellations. We generalize the CLS detector by dividing the
signal vector into several subgroups and applying the constant
modulus constraints to these subgroups. A new ordering
scheme is also proposed using the constrained linear detectors,
which maximizes the signal-to-interference and noise ratio
(SINR). In V-BLAST, the constrained linear detector and the
DFD are combined to improve the quality of the first detected
symbol and to mitigate the error propagation inherent in the
DFD.

II. SYSTEM MODEL

We consider an MIMO system with n transmit antennas and
m receive antennas. We focus on spatial multiplexing systems,
where the signals are statistically independent. Source data
are mapped into a finite constellation Q. The data stream is
demultiplexed into n equal length substreams, each of which is
simultaneously sent through n antennas over a rich scattering
channel. We assume narrowband signals so that the MIMO
channel is flat fading. The received signals can be written as

r = Hx + n (1)
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where x = [x1, . . . , xn]T , xi ∈ Q is the transmitted signal
vector, r = [r1, . . . , rm]T , ri ∈ C is the received signal
vector, H = [hi,j ] ∈ Cm×n is the channel matrix, and
n = [n1, . . . , nm]T , ni ∈ C is an additive white Gaussian noise
(AWGN) vector. The elements of H are identically indepen-
dent distributed (i.i.d.) complex Gaussian, hi,j ∼ CN (0, 1).
The components of n are i.i.d. and ni ∼ CN (0, σ2

n). We
assume that the channel is perfectly known to the receiver and
n ≤ m. If n > m, we can readily transform the rank deficient
problem into a full rank problem as shown in [7]. Note (1)
models any linear, synchronous and flat fading channels, i.e.,
it can be directly applied to multiuser detection in CDMA.
Therefore, all of the detectors proposed in this paper can be
readily applied to CDMA systems.

Assuming uncorrelated noise, the MLD is given by

x̂ = arg min
x∈Qn

‖r − Hx‖2. (2)

Due to the discrete nature of Q, (2) is a NP-hard problem and
exhaustive search for x̂ has a complexity exponential in n.

III. CONSTRAINED LINEAR DETECTORS

A. Real constrained detectors

If the constellation Q is real i.e., binary phase shift keying
(BPSK) and pulse amplitude modulation (PAM), the ZF and
MMSE solutions are usually complex vectors. The imaginary
part may cause additional interference since the transmitted
vector is real. To impose a real constraint on ZF and MMSE,
we rewrite (1) as

r̃ =
[

Re{r}
Im{r}

]
=

[
Re{H}
Im{H}

]
x +

[
Re{n}
Im{n}

]
= H̃x + ñ.

(3)
Note that the components of ñ have zero mean and variance
σ2

n/2. The ZF and MMSE detectors for (3) can be obtained
as

x̂R−ZF =
(
H̃HH̃

)−1

H̃H r̃ (4)

and

x̂R−MMSE =
(
H̃HH̃ + σ2

n/2In

)−1

H̃H r̃ (5)

where R-ZF and R-MMSE denote real constrained ZF and
MMSE detectors.

B. Constrained subgroup detectors based on constant-
modulus constellations

When Q is a complex constellation, the constraint on the
constellation modulus is exploited. We first consider a constant
modulus constellation with unity modulus |xi|2 = 1. In [6],
the CLS relaxes the candidate vectors to be on the hypersphere
xHx = n. We partition the vector x into g groups and
each group forms a subvector xi with size si, i = 1, . . . , g,
where

∑g
i=1 si = n. We relax each xi on an si-dimensional

hypersphere xH
i xi = si. The constrained detector is thus given

by
x̂CML = arg min

xH
1 x1=s1,...,xH

g xg=sg

‖r − Hx‖2 (6)

where CML denotes constrained ML detector. The minimiza-
tion problem (6) can be written as

min
x

‖r − Hx‖2

s.t.xH
1 x1 = s1, . . . ,xH

g xg = sg.
(7)

The lagrangian L(x, λ1, . . . , λg) for this minimization prob-
lem is

L(x, λ1, . . . , λg) = ‖r − Hx‖2 +
g∑

i=1

λi

(
xH

i xi − si

)
. (8)

Taking partial derivatives with respect to xi’s, the solution for
x can be derived as

x̂(λ1, . . . , λg) =
(
HHH + Λ

)−1
HHr (9)

where Λ is a diagonal matrix and is given by

Λ = diag{λ1, . . . , λ1︸ ︷︷ ︸
s1

, . . . , λg, . . . , λg︸ ︷︷ ︸
sg

}. (10)

When g = 1, there is only one λ1. Eq. (10) reduces to the
CLS solution in [6]. When λ1 = . . . = λg = σ2

n, the CML
detector becomes the MMSE detector.

In order to obtain the CML solution in (9), x̂(λ1, . . . , λg)
is substituted into (7). We need to find the zeros of the set of
equations

F1(λ1, . . . , λg) = ‖x̂1(λ1, . . . , λg)‖2 − s1 = 0
...

Fg(λ1, . . . , λg) = ‖x̂g(λ1, . . . , λg)‖2 − sg = 0.

(11)

Note that (11) are nonlinear equations, but (9) has the form of
LS or MMSE. Therefore, we also consider the CML detector
as a linear detector.

The multidimensional Newton-Raphson root finding method
can be used to solve (11). It needs to compute the partial
derivative of Fi with respect to λj , ∂Fi/∂λj , 1 ≤ i, j ≤ g;
the partial derivatives may be computed by finite differences.
There are several sets of roots for (11) and an initial estimate
is needed to guarantee the convergence to the desired root.
Since the MMSE detector provides a good solution, the initial
values for λi are chosen as λ1 = . . . = λg = σ2

n. If the
Newton method does not converge after a specified number of
iterations, we simply set λ1 = . . . = λg = σ2

n or the CML
detector outputs the MMSE solution.

For a non-constant modulus constellation such as quadrature
amplitude modulation (QAM), we assume ρ to be the largest
modulus of the constellation. Similarly, we also partition the
vector x into g groups. We thus relax each xi within an si-
dimensional hypercube xH

i xi ≤ ρ2si. The CML detector is
modified as

x̂CML = arg min
xH

1 x1≤ρ2s1,...,xH
g xg≤ρ2sg

‖r − Hx‖2 (12)

The minimization problem (12) can be written as

min
x

‖r − Hx‖2

s.t.xH
1 x1 ≤ ρ2s1, . . . ,xH

g xg ≤ ρ2sg.
(13)
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Using the convex duality theorem, the Lagrangian dual func-
tion for (13) can be expressed as

L(x, λ1, . . . , λg) = ‖r−Hx‖2+
g∑

i=1

λi

(
xH

i xi − ρ2si

)
. (14)

Solving (14) for x, the solution is the same as (9). Substituting
it back into (14), we obtain

max
λ1≥0,...,λg≥0

−rHH
(
HHH + Λ

)−1
HHr−ρ2

g∑
i=1

λisi (15)

where (15) is a g-dimensional optimization problem. The sim-
ple unconstrained multidimensional gradient descent algorithm
can be used to solve (15). The partial derivatives are computed
by finite differences. If g = 1, the CML detector (12) reduces
to the GMMSE in [5].

The constrained detectors using constellation modulus can
be combined with the real constraint. We denote the combined
receiver as R-CML.

C. Iterative improvement

An iterative detector can be used to improve the per-
formance of our constrained linear detectors by correcting
unreliable decisions of the detector. As before, we partition
x into g groups each with si symbols. In each iteration, for
i = 1, . . . , g, we fix the other g − 1 groups and solve

x̂ = arg min
xi∈Qsj

‖r − Hx‖2 (16)

where xi is the i-th group in x. xi is updated to x̂i. The
iteration starts with any solution from a constrained detector
and terminates when x ceases to change during an iteration.
Typically, we choose g = n and si = 1. It resembles the chase
decoder [8] for soft decoding of linear block codes.

IV. CONSTRAINED DECISION FEEDBACK DETECTORS

A. V-BLAST detection

The V-BLAST detection algorithm [1] uses nulling and
interference cancellation and consists of n iterations. In the
k-th iteration, the signal with maximum post-detection SNR
among the remaining n−k+1 symbols is detected. The whole
algorithm is described as follows

• Initialization:

r1 = r (17a)

G1 = H† (17b)

k1 = arg min
j

‖(G1)j‖2 (17c)

• Recursion: for i = 1 to n

wki
= (Gi)ki

(17d)

x̂ki
= arg min

x∈Q

∣∣x − wH
ki

ri

∣∣2 (17e)

ri+1 = ri − x̂ki
(H)ki

(17f)

Gi+1 = H†
k̄i

(17g)

ki+1 = arg min
j /∈{k1,...,ki}

‖(Gi+1)j‖2 (17h)

where (A)i is the i-th column of matrix A and Hk̄i
is obtained

by zeroing the k1, . . . , ki-th columns of H.
As suggested in [2], given an optimum order k1, . . . , kn, V-

BLAST detection is equivalent to the ZF-DFD. Assuming Π
is the column permutation matrix obtained from the optimum
order, we apply Π to H. Let the QR factorization of G = HΠ
be

G = [Q1,Q2]
[

R
0

]
(18)

where R is an n×n upper-triangular matrix, 0 is an (m−n)×n
zero matrix, Q1 is an m × n unitary matrix and Q2 is an
m × (m − n) unitary matrix. Eq. (1) is equivalent to

y = Rx + v (19)

where y = QH
1 r and v = QH

1 n is also an i.i.d. complex
Gaussian vector with mean zero and variance σ2

n. The second
description of the V-BLAST algorithm is given by

• for i = n to 1

x̂i = arg min
x∈Q

|yi − Ri,ix|2 (20a)

y = y − (R)ix̂i (20b)

where Ri,i is the (i, i)-th entry of R.

B. Real decision feedback detectors

For real valued constellations, using the same arguments
in Section III.B, V-BLAST detection of (3) performs better
than that of (1) directly, and we denote V-BLAST for (3)
as R-V-BLAST. If n = m and no permutations are used,
the squared-norm of the entries of R are known to be χ2

distributed. Specifically, |Ri,i|2 ∼ χ2(2i), for i = 1, . . . , n
and |Ri,j |2 ∼ χ2(2), for j > i, where χ2(k) denotes the
chi-squared distribution with k degrees of freedom. Since
the performance of V-BLAST is limited by the first detected
symbol [9], the diversity order of V-BLAST detection is only
one. However, if QR decomposition is performed on the real
matrix H̃ in (3), the squared-norm of the entries of R̃ are also
χ2 distributed, but |Ri,i|2 ∼ χ2(i + n), for i = 1, . . . , n and
|Ri,j |2 ∼ χ2(1), for j > i. Therefore, it can be readily verified
that the diversity order of R-V-BLAST increases to (n+1)/2.

For decoupleable complex constellations, i.e., QAM, (1) can
be rewritten as»

Re{r}
Im{r}

–
=

»
Re{H} −Im{H}
Im{H} Re{H}

– »
Re{x}
Im{x}

–
+

»
Re{n}
Im{n}

–

(21)
or

r̃ = H̃x̃ + ñ. (22)

In [10], it has been shown that applying V-BLAST to the
equivalent real system (21) yields an additional performance
gain. We can quantify the improvement. In the original system,
the diversity order for xn is 1. In (21), after QR decomposition
on H̃, we find |Ri,i|2 ∼ χ2(i), for i = 1, . . . , 2n. Therefore,
the diversity order for Re{xn} is (n + 1)/2 and for Im{xn}
is 1/2, which may improve the total performance on xn.
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C. Constrained ordering decision feedback detectors

The ZF nulling vector wki
(17d) in V-BLAST completely

removes the interferences from the other antennas but also
amplifies the additive noise. To get a better tradeoff between
noise enhancement and interference suppression, we use our
proposed constrained linear detectors in Section III instead of
the ZF detector in V-BLAST. We replace (17b) and (17g) with

G1 =
(
HHH + Λ

)−1
HH (23)

and

Gi+1 =
(
HH

k̄i
Hk̄i

+ Λi

)−1

HH
k̄i

(24)

where Λ and Λi can be calculated using (11) and (15) for
constant modulus and non-constant modulus constellations,
respectively.

When nulling is performed using CML, interference cannot
be removed completely. We thus propose to determine the
detection order at each iteration by maximizing the SINR
defined as

SINRj =
|(Gi+1Hk̄i

)j,j |2E{|xj |2}∑n
k=1,k �=j |(Gi+1Hk̄i

)j,k|2E{|xk|2} + σ2
n‖(Gi+1)j‖2

(25)
where (A)i,j is the (i, j)-th entry of matrix A and (Gi+1)k

denotes the k-th row of matrix Gi+1. In V-BLAST, (17h) is
replaced by

ki+1 = arg min
j /∈{k1,...,ki}

SINRj . (26)

This modified V-BLAST detection is denoted as constrained
DFD (CDFD). Note that if Λ = σ2

nIn, CDFD reduces to
MMSE-DFD in [3].

D. Combined constrained linear and decision feedback detec-
tors

The performance of ZF-DFD is limited by the error propa-
gation of decision feedback. The diversity order of V-BLAST
detection is only one since the V-BLAST detection is a greedy
algorithm. It makes a hard decision only on the “local” metric
(20a) without taking into account its effect on the detection
for subsequent symbols. We thus propose to combine the
constrained linear detectors in Section III and ZF-DFD to
let the detector make hard decisions less greedily. At each
iteration, a “global” metric is used to make the decision on
each symbol, which is obtained by the constrained linear
detectors.

In the i-th iteration, we define Ri = R(1 : i− 1, 1 : i− 1),
ri = R(1 : i−1, i) and yi = y(1 : i−1). For detecting the i-
th symbols, after cancelling x ∈ Q from y, the soft decisions
for the remaining n − i symbols can be obtained using the
constrained linear detectors as

x̂i =
(
RH

i Ri + Λi

)−1
RH

i (yi − rix) (27)

where xi = [x1, . . . , xi−1]T and Λi can be obtained similarly
to (11) and (15). Since the solutions to (7) or (13) give a
low bound on ‖r − Hx‖2, the effect of x on the decision
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Fig. 1. Performance comparison of constrained linear detectors in an 8× 8
MIMO system with BPSK.

metric for the remaining n− i symbols can be measured using
‖yi − rix − Rix̂i‖2. The global metric for x is defined as

Mi(x) =
∥∥(In−i − Ri(RH

i Ri + Λi)−1RH
i )(yi − rix)

∥∥2

+ |yi − Ri,ix|2
.

(28)

In ZF-DFD, (20a) is simply replaced by

x̂i = arg min
x∈Q

Mi(x). (29)

The resulting detector is denoted by CL-DFD. Though it does
not give a low bound on ‖yi − rix − Rix̂i‖2, the metric
(28) also measures the effect of x on the overall metric.
Combined MMSE and DFD (CMMSE-DFD) also improves
the performance.

V. SIMULATION RESULTS

Our proposed constrained detectors are simulated for a
MIMO system with 8 transmit and 8 receive antennas. We
assume the receiver has perfect channel state information (CSI)
and noise variance. We use the notation Chase-X to denote the
combination of the detector X and the iterative correction in
Section III.D.

Fig. 1 shows the BER performance of different constrained
linear detectors in a BPSK modulated system. We compare our
detectors with sphere decoding [4] and the CLS detector [6].
When all of the linear detectors are applied to the complex
system (1), the CLS and CML perform close to MMSE. In
high SNR, CML with g = 8 performs better than MMSE.
But the performance of all of them is inferior to the ML
performance achieved by SD. When the detectors are applied
to the real system (3), the performance of all the detectors
improves. At BER=10−3, R-MMSE has a 0.5-dB gain over R-
CLS. Both R-CML with g = 4 and g = 8 perform better than
R-MMSE. They have a 0.3 dB and 2 dB gain over R-MMSE,
respectively. When employing the iterative improvement with
all of the detectors, we find that R-MMSE, R-CLS and R-
CML with g = 4 have 2 dB, 1.8 dB and 1.5 dB gains at
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Fig. 3. Performance comparison of combined linear and decision feedback
detectors in an 8 × 8 BPSK MIMO system.

BER=10−3. The detector R-CML with g = 8 improves by 1
dB at BER=10−4.

The BER of GMMSE [5] and different constrained linear
detectors for 16QAM is shown in Fig. 2. GMMSE performs
the worst among all the detectors. CML with g = 4 has
a 0.8 dB loss over MMSE at BER=10−3. In low SNR,
CML with g = 8 performs better than MMSE, but they
perform identically in high SNR. With the Chase iterative
improvement, R-MMSE, R-CLS, R-CML with g = 4 and
R-CML with g = 8 have 2 dB, 1.8 dB 1 dB and 1.2
dB gains at BER=10−2, respectively. Since the group-wise
hypercube constraint (13) is loose, the resulting performance
improvement is marginal. Tighter constraints are needed for
high order QAM constellations.

Finally, we present the results for combined linear and
decision feedback detectors in a BPSK system (Fig. 3).
Clearly, our proposed CL-DFDs significantly improve the per-
formance, indicating their ability to mitigate error propagation.
At BER=10−2, the CL-DFD with g = 1 has a 4-dB gain
over V-BLAST. The CL-DFD with g = 1 performs worse
than the CMMSE-DFD. But the CL-DFD with g = 8 has
better performance than the CMMSE-DFD. At BER=10−4,

the CL-DFD with g = 8 performs 0.5 dB better than the
CMMSE-DFD. When the real constraint is applied, all the
detectors perform close to SD at high SNR. R-CL-DFD with
g = 8 can almost achieve the ML performance. However, the
performance gain using our R-CL-DFDs decreases compared
to the complex case. For non-constant modulus constellations,
the performance gain by using CL-DFD and MMSE-DFD is
also significant. Results of constrained ordering schemes are
omitted for brevity.

VI. CONCLUSION

In this paper, we have proposed a class of constrained
linear detectors and a class of constrained decision feedback
detectors. For real constellations, real constrained detectors
are proposed to exploit the real-valued property of the con-
stellations. The diversity order increases to (n + 1)/2 in a
real system. The previous CLS detector for OFDM/SDMA
and the GMMSE detector for CDMA were generalized as
MIMO detectors for both constant and non-constant modulus
constellations. A chase-principle based iterative technique has
also been proposed to improve the performance of linear
detectors. A constrained ordering scheme for DFDs has been
derived to alleviate noise enhancement and to improve inter-
ference suppression. We also proposed combined linear and
decision feedback detectors, where a global metric is defined
to mitigate the error propagation. The complexity of these
combined detectors is reasonably low.
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