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Abstract—Moments of the multibranch equal gain combiner
(EGC) output signal-to-noise ratio (SNR) are only known
for independent fading channels or exponentially correlated
Nakagami-m fading channels. In this paper, we derive the mo-
ments of the EGC output SNR in equally correlated Rayleigh,
Rician, and Nakagami-m fading channels. Our moment expres-
sions can be used to evaluate the outage and the average error rate
as well as purely moments-based measures such as the average
output SNR and the amount of fading as functions of the fading
correlation. Numerical results that illustrate the effect of fading
correlation on the distribution of the EGC output SNR are also
provided.

Index Terms—Amount of fading, diversity, equal gain combining
(EGC), equally correlated fading, moments.

I. INTRODUCTION

THE equal gain combining (EGC) scheme offers perfor-
mance comparable to the optimal maximal ratio combining

(MRC) scheme, but with greater simplicity [1]. However, it is
notoriously difficult to analyze the performance of EGC. Even
for independent fading, a closed-form solution to the proba-
bility density function (pdf) of the EGC output signal-to-noise
ratio (SNR) is only known for dual-branch EGC in Rayleigh
fading [2]. Different methods have, therefore, been developed
to analyze the EGC performance. Brennan [3] numerically
evaluates the distribution of the EGC output SNR. Beaulieu and
Abu-Dayya [2], [4], [5] apply an accurate approximation to the
pdf of a sum of independent random variables (RVs). Annamalai
et al. [6]–[8] use the Parseval theorem to transform the problem
to the frequency domain. Zhang [9], [10] provides several
closed form solutions to the average bit error rate (BER) using
the characteristic function (chf) of the decision variable. While
progress has thus been made on analyzing EGC performance
in independent fading, little is known about correlated fading.

However, in real-life applications, fading is correlated among
diversity branches, and hence characterizing the resultant EGC
performance loss is of both theoretical and practical impor-
tance. Since the joint pdf of the multiple correlated fading gains
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is not known, many published results deal with the dual-branch
case [11]–[16]. For instance, [13] and [14] derive the average
error rate via the chf of the EGC output SNR. An infinite se-
ries expression for the symbol error rate (SER) of quadrature
amplitude modulation (QAM) in terms of the Appell hypergeo-
metric functions is derived in [15]. Dual predetection EGC sys-
tems in correlated Nakagami-m fading channels are analyged.
As a result, only several papers address multibranch (L > 2)
EGC in correlated fading. Karagiannidis et al. [17] derive the
moments of the EGC output SNR in exponentially correlated
Nakagami-m fading channels. Combining this result with the
Pade approximation, [18] approximates the moment generating
function (mgf) of the EGC output SNR in correlated Nakagami-
m fading channels. Chen and Tellambura [19], [20] develop a
new approach for performance analysis of diversity combiners
in equally correlated fading channels. They transform a set of
equally correlated Rayleigh RVs into a set of conditionally inde-
pendent Rician RVs using a novel representation of the channel
gains. The average error rate and the outage performance of
multibranch EGC have been evaluated using this approach [20].

Clearly, it is difficult to derive analytical expressions for the
pdf or mgf of the EGC output SNR in correlated fading. In this
paper, we thus derive the moments of the EGC output SNR in
equally correlated Rayleigh, Rician, and Nakagami-m fading
channels. The EGC output moments are important for several
reasons. First, purely moment-based measures, such as the av-
erage output SNR and the amount of fading are commonly used
to characterize the diversity system; for example, higher order
moments are derived for certain diversity systems [21]. Second,
more widely used performance measures such as the average bit
error rate (which is appropriate for digital modulations) and the
outage probability, are typically computed using the pdf or the
mgf (which are not available in this case). However, these mea-
sures can also be evaluated directly via the moments, using the
Edgeworth series approach and Gaussian quadrature techniques.

We derive the EGC moments using the approach of [20].
The moments are expressed using the Appell hypergeometric
functions, and certain transformation formulas [22] are used
to ensure their convergence. We also show how the average
error rates and the outage probability can be directly evaluated
using the moments without the output mgf. For brevity, we only
provide numerical results to show the correlation effect on the
EGC output SNR distribution.

This paper is organized as follows. Section II derives the mo-
ments of the EGC output SNR in equally correlated Rayleigh,
Rician and Nakagami-m fading channels. Section III evaluates
the outage and the average error rate performance of EGC using
the moments of its output. Some moments-based performance
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measures, such as the amount of fading are also derived. Numer-
ical results in Section IV illustrate the effect of fading correlation
on the distribution of the EGC output SNR. Section V concludes
this paper.

II. MOMENTS OF THE EGC OUTPUT SNR

Consider a diversity combining system with L input branches.
The received signal at the kth branch can be written as

yk = gks + nk , k ∈ {1, . . . , L} (1)

where gk is the random channel gain associated with the kth
branch, s is the transmitted signal with energy Es , and nk

is the additive white Gaussian noise (AWGN) with power
spectral density (N0/2) per dimension. We assume that the
noise components are independent of the channel gains, i.e.,
E(njG

∗
k ) = 0 for any j, k ∈ {1, . . . , L}, where x∗ and E(x) de-

note the complex conjugate and the average of x and are uncorre-
lated with each other, i.e., E(njn

∗
k ) = N0δjk , where δjk is the

Kronecker delta function defined as δjj = 1, and δjk = 0 for
j �= k. Throughout this paper, all RVs are denoted by uppercase
letters, and their realizations are denoted by lowercase letters.

In EGC, the received signals are cophased and equally
weighted and then summed to form the resultant output. The
instantaneous SNR at the EGC output can be written as [23]

γegc =
(r1 + r2 + · · · + rL )2Es

LN0
(2)

where Rk = |Gk | is the amplitude of the channel gain Gk .
We assume that the channel gains are equally correlated. That
is, the correlation (fading correlation) between any Gk and
Gj (j �= k) is a constant, and all of the channel gains Gk have
the same average power; i.e., E(|Gk |2) = E(|Gj |2) for any
k, j ∈ {1, . . . , L}.

Using the multinomial expansion, we obtain the moments of
the EGC output SNR as [18]

mn = E
(
γn
egc

)
= (2n)

[
γ̄c

LE(R2
k )

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n

1∏L
j=1 kj

E


 L∏

j=1

R
kj

j


 (3)

where γ̄c is the average branch SNR given by

γ̄c =
Es

N0
E(R2

k ). (4)

When the channel gain envelopes Rk are independent, (3) can
be readily evaluated as

mn = (2n)
[

γ̄c

LE(R2
k )

]n 2n∑
k 1 , . . . , k L =0

k 1+···+k L =2n

L∏
j=1

[
E(Rkj

j )
kj

]
. (5)

However, it is an extremely complicated task to compute (3)
when the channel gains are correlated and when the correspond-
ing joint pdf is unknown.

In this section, we use the representations for the channel
gains developed in [23] to derive the moments of the EGC output

SNR in three types of equally correlated fading channels. The
equally correlated model presents a worst case among correlated
fading channels. It can also be used to describe the correlation
among closely placed antennas [24].

A. Rayleigh Fading Channels

The Rayleigh envelopes can be represented by the amplitudes
of a set of zero-mean complex Gaussian RVs {Gk}L

k=1 given
by [20]

Gk = (
√

1 − ρXk +
√

ρX0) + i(
√

1 − ρYk +
√

ρY0) (6)

where i =
√
−1, 0 ≤ ρ < 1, {Xk}L

k=0 and {Yk}L
k=0 are two

sets of independent zero-mean Gaussian RVs with variance
E(|Xk |2) = E(|Yk |2) = (1/2). Since {Gk} is a set of complex
Gaussian RVs with zero means, Rk = |Gk | is a set of Rayleigh
envelopes with mean-square value

E(R2
k ) = 1. (7)

The cross-correlation coefficient between any Gk and Gj (k �=
j) equals to ρ [26]. Thus, we can readily represent a set of
equally correlated Rayleigh envelopes using.

We consider X0 and Y0 to be fixed (X2
0 + Y 2

0 = U). Then,
{Rk}L

k=1 is a set of independent Rician RVs with the Rice factor
and the average power given, respectively, by

Kf =
ρu

1 − ρ
(8a)

Ωf = 1 − ρ + ρu. (8b)

The moments of a Rician RV are given by [25, Eq. (2-1-146)]

E(Rkj

j ) = (1 − ρ)
k j
2 Γ

(
1 +

kj

2

)
1F1

(
−kj

2
, 1;− ρu

1 − ρ

)
(9)

where Γ(x) is the gamma function, and 1F1(a, c; z) is the con-
fluent hypergeometric function defined as [26, Eq. (9.210.1)]

1F1(a, c; z) =
∞∑

n=0

(a)n

(c)nn
zn (10)

where (a)n = (Γ(a + n)/Γ(a)), and (a)0 = 1.
Substituting (7) and (9) into (5), we obtain the moments of

the EGC output SNR for a given x2
0 + y2

0 = u as

mn (u) = (2n)
[
γ̄c(1 − ρ)

L

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n

L∏
j=1

]
A(kj )1F1

(
−kj

2
, 1;− ρu

1 − ρ

)]

(11)

where γ̄c = (Es/N0), and

A(kj ) =
Γ
(
1 + kj

2

)
kj

. (12)
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Notice that X2
0 + Y 2

0 = U is chi-square distributed with two
degrees of freedom, and its pdf can be found as [25]

pU (u) = e−u , u ≥ 0. (13)

Averaging the conditional moments (11) over the distribution of
U (13), we obtain the moments of the multibranch EGC output
SNR in equally correlated Rayleigh fading channels as

mn =
∫ ∞

0

mn (u)pU (u)du

= (2n)
[
γ̄c(1 − ρ)

L

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n


I(k1, . . . , kL )

L∏
j=1

A(kj )


 (14)

where I(k1, . . . , kL ) is a single-fold integral which can be de-
rived in terms of the Lth-order Appell hypergeometric function
with the aid of [8, Eq. (C.1)]:

I(k1, . . . , kL )

=
∫ ∞

0

e−u
L∏

j=1

1F1

(
−kj

2
, 1;− ρu

1 − ρ

)
du

= FA

(
1;−k1

2
, . . . ,−kL

2
; 1, . . . , 1;x1, . . . , xL

)
(15)

where xk = −(ρ/1 − ρ) for k ∈ {1, . . . , L}, and
FA (α;β1, . . . , βn ; γ1, . . . , γn ;x1, . . . , xn ) is the nth-order
Appell hypergeometric function defined as [26, (9.180.2)]

FA (α;β1, . . . , βn ; γ1, . . . , γn ;x1, . . . , xn )

=
∞∑

p1=0

· · ·
∞∑

pn =0

(α)p1+···+pn
(β1)p1 · · · (βn )pn

(γ1)p1 · · · (γn )pn
p1 · · · pn

xp1
1 · · ·xpn

n

(16)

whose convergence region is defined by |x1| + . . . + |xL | < 1
[22]. If all βj ’s are either zeros or negative integers in (16), then
the Appell hypergeometric function reduces to a finite series

FA (α;β1, . . . , βn ; γ1, · · · , γn ;x1, · · · , xn )

=
−β1∑
p1=0

· · ·
−βn∑
pn =0

(α)p1+···+pn
(β1)p1 · · · (βn )pn

(γ1)p1 · · · (γn )pn
p1 · · · pn

xp1
1 · · ·xpn

n .

(17)

Notice that (15) only converges for −(1/L − 1) < ρ <
(1/L + 1). Hence a transformation formula for the higher tran-
scendental function FA [22] must be used to obtain a converge
expression for (15) as

I(k1, . . . , kL )

=
1 − ρ

1 + (L − 1)ρ
FA (1;β1, . . . , βL ; 1, . . . , 1; z1, . . . , zL )

(18)

where βj = 1 + (kj/2), and zj = (ρ/1 + (L − 1))ρ for
j ∈ {1, . . . , L}. Since 0 ≤ ρ < 1, |z1| + . . . + |zL | =
(Lρ/Lρ + (1 − ρ)) < 1, i.e., the Appell hypergeometric
function FA in (18) converges. Therefore, the moments of the
EGC output SNR in an equally correlated Rayleigh fading
channel can be calculated using (18) and (12) with (14).

Next we present some special cases of (14).
1) Average Output SNR: Using (17) and the relation between

the second order Appell hypergeometric function and the Gauss
hypergeometric function [8, Eq. (C.4)], we can readily simplify
the average output SNR of EGC in equally correlated Rayleigh
fading channel as [18]

m1 = γ̄c

[
1 +

(L − 1)π
4 2F1

(
−1

2
,−1

2
; 1; ρ2

)]
(19)

where 2F1(a, b; c; z) is the Gauss hypergeometric function de-
fined in [26, Eq. (9-100)]

2F1(a, b; c; z) =
∞∑

n=0

(a)n (b)n

(c)n n
zn . (20)

When ρ = 0, (19) reduces to

m1 = γ̄c

[
1 +

(L − 1)π
4

]
(21)

which is the well-known result [27, Eq. (5.2-20)].
2) Second Moment of the Output SNR: We can also show

that the second moment of the EGC output SNR is given by (see
the Appendix)

m2 =
γ̄2

c

L

{
2 + 3(L − 1)(1 + ρ2)

+
3π(L − 1)

2 2F1

(
−3

2
,−1

2
; 1; ρ2

)

+
3π(L − 1)(L − 2)

2

[
(1 − ρ)2F1

(
−1

2
,−1

2
; 1; ρ2

)

+
9ρ

4 2F1

(
−1

2
,−1

2
; 2; ρ2

)

− 3ρ(1 − ρ)
2 2F1

(
−3

2
,
1
2
; 2; ρ2

)

+
ρ(1 − ρ)2

4 2F1

(
1
2
,
1
2
; 2; ρ2

)]

+
π2(L − 1)(L − 2)(L − 3)(1 − ρ)3

16(1 − ρ + Lρ)

× FA

(
1;

3
2
, . . . ,

3
2
; 1, . . . , 1; z1, . . . , zL

)}
(22)

where zk = (ρ/1 + (L − 1)ρ) for any k ∈ {1, . . . , L}.
For dual-branch and triple-branch EGC, the second moment

of the EGC output SNR (22) can be simplified as

m2 = γ̄2
c

[
5
2

+
3
2
ρ2 + 3π42F1

(
−3

2
,−1

2
; 1; ρ2

)]
(23)
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and

m2 = γ̄2
c

{
8
3

+ 2ρ2 + π

[
2F1

(
−3

2
,−1

2
; 1; ρ2

)

+(1 − ρ)2F1

(
−1

2
,−1

2
; 1; ρ2

)]

+ πρ

[
9
4 2F1

(
−1

2
,−1

2
; 2; ρ2

)

− 3(1 − ρ)
2 2F1

(
−1

2
,
1
2
; 2; ρ2

)

+
(1 − ρ)2

4 2F1

(
1
2
,
1
2
; 2; ρ2

)]}
(24)

respectively. It can be shown that (23) is a special case of [17,
Eq.(14)].

3) Independent Fading: In the independent case (ρ = 0),
(14) reduces to

mn =
( γ̄c

L

)n

(2n)
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n


 L∏

j=1

A(kj )


 . (25)

4) Dual-Branch EGC: The moments of the dual-branch
EGC output SNR can be written in terms of the Gauss hy-
pergeometric function as

mn =
( γ̄c

2

)
(2n)

2n∑
k=0

Γ
(
1 + k

2

)
Γ
(
1 + n − k

2

)
k(2n − k)

× 2F1

(
−k

2
,−2n − k

2
; 1; ρ2

)
. (26)

As a comparison, we present the moments of the MRC output
SNR in equally correlated Rayleigh fading channels here. The
pdf of the MRC output SNR in such channels is given by [24,
Eq. (12)]. Hence, the output moments are obtained as

E (γn
mrc) = γ̄n

c

(1 − ρ)1+nΓ(L + n)
(1 − ρ + Lρ)Γ(L)

× 2F1

(
1, L + n;L;

Lρ

1 − ρ + Lρ

)
. (27)

B. Rician Fading Channels

The equally correlated Rician channel gains can be associated
with a set of nonzero mean complex Gaussian RVs {Gk}L

k=1:

Gk = (
√

1 − ρXk +
√

ρX0 + M1)

+ i(
√

1 − ρYk +
√

ρY0 + M2) (28)

where {Xk}L
k=0 and {Yk}L

k=0, are two sets of independent
zero-mean Gaussian RVs with identical variance E(|Xk |2) =
E(|Yk |2) = (1/2), and M1 and M2 are the light-of-sight (LOS)
components. It has been shown that Rk = |Gk | is Rician dis-
tributed with the Rician factor K = M2

1 + M2
2 , and the mean-

square value

E(R2
k ) = 1 + K. (29)

Also the fading correlation between any Gk and Gj (k �= j) is
shown to be equal to the constant ρ.

Fix (X0 + (M1/
√

ρ))2 + (Y0 + (M2/
√

ρ))2 = U in (28),
then Rk is independent Rician distributed with the Rice factor
and the average power given by (8). Then, the Rician moments
(9) can be used with (29) and (5) to derive the output moments
of EGC for a given u:

mn (u) = (2n)
[

γ̄c(1 − ρ)
L(1 + K)

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n


 L∏

j=1

A(kj )1F1

(
−kj

2
, 1;− ρu

1 − ρ

)
 .

(30)

Also, note that U is noncentral chi-square distributed with
two degrees of freedom and noncentrality parameter (K/ρ),
and its pdf is given by [25]

pU (u) = e−(u+ K
ρ )I0

(
2

√
Ku

ρ

)
, u ≥ 0 (31)

where I0(x) is zeroth-order modified Bessel function of the first
kind defined as

I0(x) =
1
π

∫ π

0

ex cos θdθ. (32)

Thus, averaging the conditional output moments (30) over
the distribution of U (31), we obtain the moments of the EGC
output SNR in equally correlated Rician fading channels as

mn = (2n)
[

γ̄c(1 − ρ)
(1 + K)L

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n


J(k1, . . . , kL )

L∏
j=1

A(kj )


 (33)

where A(kj ) is defined as (12), and J(k1, . . . , kL ) is a single-
fold integral

J(k1, . . . , kL ) = e−
K
ρ

∫ ∞

0

e−uI0

(
2

√
Ku

ρ

)

×
L∏

j=1

1F1

(
−kj

2
, 1;− ρu

1 − ρ

)
du. (34)

Using an infinite series expression [28, Eq. (9.6.10)] for I0(x)
and applying the integral identity [8, Eq. (C.1)] and the trans-
formation formula for FA [22], we may express (34) in terms
of the L-th order Appell hypergeometric function as

J(k1, . . . , kL )

= e−
K
ρ

∞∑
l=0

1
l

(
K

ρ

)l ( 1 − ρ

1 + (L − 1)ρ

)l+1

× FA (l + 1;β1, · · · , βL ; 1, . . . , 1; z1, . . . , zL ) (35)
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where βj = 1 + (kj/2), and zj = (ρ/1 + (L − 1)ρ) for j ∈
{1, . . . , L}. The moments of the L-branch EGC output SNR
in equally correlated Rician fading channels can thus be com-
puted using (35) and (12) with (33).

The average output SNR of EGC in equally correlated Rician
fading channels can be simplified in terms of the hypergeo-
metric function of two variables, i.e., the second-order Appell
hypergeometric function, as

m1 = γ̄c


1 + e−

K
ρ

(1 − ρ)2(L − 1)π
4(1 + ρ)(1 + K)

∞∑
j=0

1
j

(
K(1 − ρ)
ρ(1 + ρ)

)j

× FA

(
j + 1;

3
2
,
3
2
; 1, 1;

ρ

1 + ρ
,

ρ

1 + ρ

)]
. (36)

Notice that the second-order Appell hypergeometric function is
available in common mathematical software such as Maple and
Mathematica.

C. Nakagami-m Fading Channels

When m is an integer, the equally correlated Nakagami-m en-
velopes can also be represented using a set of complex Gaussian
RVs

Gkj = (
√

1 − ρXkj +
√

ρX0j ) + i(
√

1 − ρYkj +
√

ρY0j )

(37)

for k ∈ {1, . . . , L} and j ∈ {1, . . . , m}, where {Xkj} and
{Ykj}, k ∈ {0, 1, . . . , L} and j ∈ {1, . . . ,m} are two sets of
independent zero-mean Gaussian RVs with identical variances

of (1/2). It has been shown that Rk =
√∑m

j=1 |Gkj |2 is equally

correlated Nakagami-m distributed with mean-square value

E(R2
k ) = m. (38)

The correlation between any R2
k and R2

j (k �= j) is equal to ρ2.
Now fix X0j = x0j and Y0j = y0j , (j ∈ {1, . . . , m}) and let

u =
∑m

j=1(x
2
0j + y2

0j ), then R2
k is noncentral chi-square dis-

tributed with 2m degrees of freedom and noncentrality parame-
ter ρu. The moments of Rk can be found as [25, Eq. (2-1-146)]

E
(
Rki

i

)
= (1 − ρ)

k i
2

Γ
(
m + ki

2

)
Γ(m) 1F1

(
−ki

2
,m;

−ρu

1 − ρ

)
.

(39)

Substituting (38) and (39) into (5), we obtain the output mo-
ments of EGC conditioned on u as

mn (u) = (2n)
[
γ̄c(1 − ρ)

mL

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n


 L∏

j=1

B(kj )1F1

(
−kj

2
,m;− ρu

1 − ρ

)


(40)

where

B(kj ) =
Γ
(
m + kj

2

)
(m − 1)kj

. (41)

Also notice that U is chi-square distributed with 2m degrees
of freedom, and its pdf is given by [25]

pU (u) =
1

Γ(m)
um−1e−u , u ≥ 0. (42)

Averaging the conditional output moments (40) over the distri-
bution of U (42), we can obtain the moments of the EGC output
SNR in equally correlated Nakagami-m fading channels as

mn = (2n)
[
γ̄c(1 − ρ)

mL

]n

×
2n∑

k 1 , . . . , k L =0
k 1+···+k L =2n

[
K(k1, . . . , kL )

L∏
i=1

B(kj )

]
(43)

where K(k1, . . . , kL ) can also be expressed in terms of the Lth
order Appell hypergeometric function as

K(k1, . . . , kL )

=
1

(m − 1)

∫ ∞

0

um−1e−u
L∏

j=1

1F1

(
−kj

2
,m;− ρu

1 − ρ

)
du

=
1

(m − 1)

[
1 − ρ

1 + (L − 1)ρ

]m

× FA (m;β1, . . . , βL ;m, . . . , m; z1, . . . , zL ) (44)

where βj = m + (kj/2), and zj = (ρ/1 + (L − 1)ρ) for j ∈
{1, . . . , L}. Combining (44) with (41) and (43), we can read-
ily compute the moments of the L-branch EGC output SNR in
equally correlated Nakagami-m fading channels. For the dual-
branch case, (43) reduces to the previously-derived average out-
put SNR of EGC [18]

m1 = γ̄c

[
1 +

(L − 1)Γ2
(
m + 1

2

)
m[(m − 1)]2 2F1

(
−1

2
,−1

2
;m; ρ2

)]
.

(45)

III. PERFORMANCE MEASURES

The moments of the EGC output SNR derived in Section II
can be further used to evaluate the average error rate and the
outage performance of multibranch EGC in equally correlated
fading channels. In this section, we derive the output cdf and
the BER of a wide class of digital modulations with EGC in
terms of the output moments. The cdf or the outage probability
can therefore be expressed as an Edgeworth series related to
the moments, and the average error rate performance of EGC
can be evaluated using a Gaussian quadrature approximation.
Such moment-based methods circumvent the need for pdf or
mgf expressions, which are not available for the EGC problem.
Moment-based statistical measures, such as skewness, kurtosis
and Pearson’s coefficient of variation are also evaluated.
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A. Cdf of the EGC Output SNR

It can be shown that the cumulants κk s of the EGC output
SNR γegc can be evaluated in terms of the output moments:

κk = mk −
k−1∑
t=1

(
k − 1
t − 1

)
κtmk−t . (46)

Using (46) and applying the Edgeworth series [29], we express
the cdf of the EGC output SNR in

Fegc(x) = 1 − Q(u) − c3φ
(2)(u)

−
[
c4φ

(3)(u) + c6φ
(5)(u)

]

−
∞∑

k=2

[
c3k−1φ

(3k−2)(u)

+c3k+1φ
(3k)(u) + c3k+3φ

(3k+2)(u)
]

(47)

where Q(x) is the upper-tail probability of a unit Gaussian pdf,
and u = (x − m1)/σ, σ2 = E[(γout − m1)2] is the variance of
the EGC output SNR. φ(k)(x) is the kth-order derivative of the
error function φ(0)(x) defined as

φ(0)(x) =
1√
2π

e−x2/2. (48)

The coefficients ck are given by

ck =
1
σk

∞∑
t =3, r =1

t r =k

κr
t

tr
, k = 3, . . . . (49)

Equation (47) only requires the output moments and does not
require the chf or the pdf of the output SNR. Notice that the
coefficients ck (49) generally decrease with increasing k, while
φ(k)(x) begins to increase rapidly after a certain value of k.
Hence, (47) behaves like an asymptotic series, which converges
up to a certain point and then diverges.

B. Average Error Rate Analysis

The average error rate of a certain digital modulation with
EGC is often computed by averaging the corresponding con-
ditional error probability (CEP) g(γ) over the pdf of the EGC
output SNR:

P̄e = E[g(γ)] =
∫ ∞

0

g(γ)pegc(γ)dγ (50)

where pegc(γ) is the pdf of the EGC output SNR. Since the out-
put pdf of multibranch EGC (L > 2) is unknown for correlated
fading channels, we shall evaluate the average error rates using
the moments of the EGC output SNR.

By applying the Taylor’s series expansion of g(γ), we may
express the average error rate as

P̄e =
∞∑

k=0

E[(γ − γ0)k ]
g(k)(γ0)

k
(51)

where g(γ) is analytic at γ = γ0, and E[(γ − γ0)k ] =∑k
t=0(

k
t
)mk (−γ0)k−t can be computed using the output mo-

ments mk . For example, the CEP for binary differential phase-
shift-keying (BDPSK) is given by

g(γ) =
1
2
e−γ . (52)

Hence, the average BER of BDPSK can be obtained as

P̄e =
1
2

∞∑
k=0

mk
(−1)k

k
. (53)

In practice, due to roundoff errors, it is impossible to add up as
many terms in (51) as are required to achieve a desired accuracy
[30].

We thus use Gaussian quadrature approximation to compute
the average error rates of a wide class of digital modulations
with EGC in equally correlated fading channels. The average
error rate can be approximated as a linear combination of values
of the CEP g(γ):

P̄e ≈
N∑

i=1

ωig(xi) (54)

where the abscissas xi and the weights ωi can be computed by
solving the following nonlinear equations as [30], [31]

mk =
N∑

i=1

ωix
k
i , k = 0, 1, . . . , 2N − 1. (55)

C. Other Moment-Based Measures

The central moments, skewness, kurtosis, and the Karl Pear-
son’s coefficient of variation are useful statistical measures,
which are often used to characterize the output SNR of a di-
versity system [17].

The central moments of EGC output SNR can be obtained as

ηk = E[(γegc − m1)k ] =
k∑

n=0

(
k
n

)
mn (−m1)k−n . (56)

Skewness is a measure of the asymmetry of the data around
the sample mean, which is defined as ν = (η3/η

3/2
2 ) [32]. For

symmetric distributions, ν = 0. If ν > 0, the data are spread out
more to the right. If ν < 0, the data are spread out more to the
left.

Kurtosis is a measure of the “tail weight” of distribution,
which is defined as κ = (η4/η2

2) [32]. For normal distribution,
κ = 3. The larger κ is, the greater the relative probability in one
or both tails will be. Since the tail of the pdf mainly determines
the BER and outage probability [17], the kurtosis can be used
as an alternative performance measure.

Pearson’s coefficient of variation of a RV X is frequently
used to describe the severity of the channel fading. Charash [33]
introduced the square value of the Pearson’s coefficient as a
unified measure of the amount of fading (AF)

AF =
η2

m2
1

=
m2

m2
1

− 1. (57)

Using (19) and (23), we may obtain the AF of EGC in equally
correlated Rayleigh fading channels. For example, the AF of the
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Fig. 1. Average output SNR of four-branch EGC in equally correlated
Nakagami-m fading channels.

dual-branch EGC output is obtained as

AF =
5
2 + 3

2ρ2 + 3π
4 2F1

(
− 3

2 ,− 1
2 ; 1; ρ2

)
[
1 + π

4 2F1

(
− 1

2 ,− 1
2 ; 1; ρ2

)]2 − 1. (58)

IV. NUMERICAL RESULTS

We now present numerical results to show the correlation ef-
fect on the distribution of the EGC output SNR. Semi-analytical
simulations are provided as an independent check of our analyt-
ical results.

Fig. 1 shows the normalized average output SNR γ̂egc =
m1/γ̄c of EGC versus the diversity order L in equally correlated
Rayleigh fading channels. As the diversity order L increases, the
average output SNR of EGC increases. Fig. 2 plots the normal-
ized average output SNR of four-branch EGC versus the fading
correlation ρ in equally correlated Nakagami-m fading chan-
nels. As the fading figure m increases, i.e., the channel fading
condition improves, the average output SNR increases, and the
fading correlation has less effect on the EGC output. This obser-
vation agrees with [17]. In both figures, we find that the average
output SNR also increases as the fading correlation ρ increases.
This has never happened in the MRC and SC performance [3].
This observation departs from our expectations. However, it can
be explained by (3). Since E(RjRk ) > E(Rj )E(Rk ), (j �= k),
for ρ > 0, the average output SNR of EGC in correlated fading
channels is higher than that in independent fading channels [3].
In fact, as ρ approaches 1, the average output SNR of EGC
approaches that of MRC as

γ̄egc = γ̄mrc = Lγ̄c . (59)

It should be noted that common EGC performance measures,
such as BER, cannot be solely characterized by the average out-
put SNR; they also depend on the higher moments. The average
output SNR by itself is not a comprehensive metric for the EGC
performance in correlated fading channels. Caution must be ex-
ercised when using the average output SNR as a performance

Fig. 2. Average output SNR of four-branch EGC in equally correlated
Nakagami-m fading channels.

Fig. 3. Amount of fading of EGC in equally correlated Rayleigh fading chan-
nels.

measure. Higher order moment-based performance measures of
the combiner output SNR are required.

Fig. 3 compares the AF of EGC with that of MRC in equally
correlated Rayleigh fading channels. As expected, the AF in-
creases as the fading correlation ρ increases and the diversity
order L decreases. The AF of EGC is larger than that of MRC.
Compared to the average output SNR, AF is a more reliable
performance measure because it considers the second moment
of the output SNR.

V. CONCLUSION

In this paper, we have derived the moments of the EGC output
SNR in equally correlated Rayleigh, Rician, and Nakagami-m
fading channels. Moment-based analysis techniques can serve
as an alternative to the more common pdf and mgf approaches.
Application of our newly derived results to obtaining practical
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performance measures, such as error probability or outage prob-
ability, has been discussed in Section III. The outage probability
can be expressed as an Edgeworth series related to the moments,
and the average error rate performance of EGC can be evalu-
ated using a Gaussian quadrature approximation. Such moment-
based methods circumvent the need for pdf or mgf expressions,
which are not available for the EGC problem. Several purely
moment-based statistical performance measures such as skew-
ness, kurtosis, and amount of fading have also been evaluated.
Numerical and simulation results show that the fading correla-
tion has a negative effect on the EGC performance. The average
output SNR is not a complete performance measure. Higher
moments are required to study the EGC performance.

APPENDIX

The second moments of EGC output can be obtained as (14)

m2 =
[
γ̄c(1 − ρ)

L

]2

4
[(

L
1

)
Γ(3)
Γ(5)

FA

(
1;−2; 1;− ρ

1 − ρ

)

+ 2
(

L
2

)
Γ(2.5)Γ(1.5)

Γ(4)Γ(2)

× FA

(
1;−3

2
,−1

2
; 1, 1;− ρ

1 − ρ
,− ρ

1 − ρ

)

+
(

L
2

)
Γ2(2)
Γ2(3)

FA

(
1;−1,−1; 1, 1;− ρ

1 − ρ
,− ρ

1 − ρ

)

+ 3
(

L
3

)
Γ(2)Γ2(1.5)
Γ(3)Γ2(2)

FA

(
1;−1,−1

2
,−1

2
; 1, . . .

1;
−ρ

1 − ρ
, . . . ,

−ρ

1 − ρ

)

+
(

L
4

)
Γ4(1.5)
Γ4(2)

FA

(
1;−1

2
, . . . ,−1

2
; 1, . . .

1;
−ρ

1 − ρ
, . . . ,

−ρ

1 − ρ

)]
(60)

where

FA

(
1;−2; 1;− ρ

1 − ρ

)
=

1
(1 − ρ)2

(61)

and

FA

(
1;−1,−1; 1, 1;− ρ

1 − ρ
,− ρ

1 − ρ

)
=

1 + ρ2

(1 − ρ)2
(62)

can be readily derived from (17). Using the relation between
the second kind Appell hypergeometric function and the Gauss
hypergeometric function [8, Eq. (C.4)], we obtain

FA

(
1;−3

2
,−1

2
; 1, 1;− ρ

1 − ρ
,− ρ

1 − ρ

)

=
1

(1 − ρ)2 2F1

(
−3

2
,−1

2
; 1; ρ2

)
. (63)

Notice that the confluent hypergeometric function
1F1(a, c; z) reduces to a finite series when the first parameter a

is either zero or a negative integer

1F1(a, c; z) =
−a∑

m=0

(a)m

(c)m m
zm . (64)

Using (64) and the integral identity of the Appell hypergeo-
metric function [8, Eq. (C.1)], we obtain

FA

(
1;−1,−1

2
,−1

2
; 1, 1, 1;− ρ

1 − ρ
, . . . ,− ρ

1 − ρ

)

=
1

1 − ρ
2F1

(
−1

2
,−1

2
; 1; ρ2

)

+
ρ

1 − ρ

∫ ∞

0

ue−u
1F

2
1

(
−1

2
, 1;− ρ

1 − ρ

)
du. (65)

Using Gauss’s contiguous relation [26, Eq. (9.212.3)]

1F1(a, c; z) =
c − a

c
1F1(a, c + 1; z) +

a

c
1F1(a + 1, c + 1; z)

(66)

to expand 1F1( ·, ·; · ) in (65), we finally obtain

FA

(
1;−1,−1

2
,−1

2
; 1, 1, 1;− ρ

1 − ρ
, . . . ,− ρ

1 − ρ

)

=
ρ

1 − ρ
2F1

(
−1

2
,−1

2
; 1; ρ2

)

+
9ρ

4(1 − ρ)2 2F1

(
−1

2
,−1

2
; 2; ρ2

)

− 3ρ

2(1 − ρ)2 2F1

(
−1

2
,
1
2
; 2; ρ2

)

+
ρ

4 2F1

(
1
2
,
1
2
; 2; ρ2

)
. (67)

Thus, we may write the second moment of EGC output SNR as
(22) using (61)–(63) and (67) with the transformation formula
for FA [22].
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