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Abstract

Performance of Orthogonal frequency division multiplexing (OFDM) is heavily
dependent on the intercarrier interference (ICI) caused by frequency offset. Re-
cently, this ICI is shown to be mitigated by using the partial transmit sequence
(PTS), in which the PTS weights minimizing the peak ICI noise-to-signal power
ratio (MinMax search) are selected. The exhaustive search leads to exponen-
tial complexity in the number of PTS weights. Therefore, an algorithm using a
modified sphere decoder to avoid exhaustive search is proposed. Furthermore, a
new algorithm called MinSum is also introduced to minimize the total ICI power.
Compared with exhaustive search, the MinMax and MinSum algorithms reduce
complexity by 10 and 170 times. Moreover, both algorithms are robust to mis-
matched optimization.

Keywords—Orthogonal frequency division multiplexing (OFDM),
frequency offset, inter-carrier interference (ICI), partial transmit
sequence (PTS), sphere decoder.

1 Introduction

Orthogonal frequency division multiplexing (OFDM) tech-
nique is used widely in broadband communication systems.
However, the bit error rate (BER) of OFDM is sensitive to
the carrier frequency offset (FO). The partial transmit sequence
(PTS) approach, initially proposed to reduce the peak to average
power ratio (PAPR) [1], can also be used to mitigate the effect
of FO [2] [3] in additive white Gaussian noise (AWGN) chan-
nels. The authors in [2] used an exhaustive search to find the
best PTS weights to minimize the peak intercarrier interference
(ICI) noise-to-signal ratio (PICR). The complexity grows expo-
nentially in the number of the PTS weights. We thus propose
a new algorithm by modifying the sphere decoder (SD) [4] to
find the best PTS weights. We call this algorithm as MinMax for
short, where no notational confusion may arise.

We examine the performance of MinMax algorithm in mul-
tipath Rayleigh fading channels. The channel state information
(CSI) is assumed to be known exactly at the transmitter and re-
ceiver. This assumption is reasonable for time division duplex-
ing (TDD) systems, where the channel is assumed slowly vary-
ing an uplink and downlink are assumed reciprocal [5]. With
this assumption the MinMax algorithm for AWGN channel can
be immediately applied. However, in a fading mobile channel,
some subcarriers may experience deep fading and the symbol
error rate (SER) is heavily dependent on the SER of those. The
PICR of such subcarriers can become large. Minimization of ICI
for such deeply faded subcarriers may not improve the overall
system SER.

We propose a new method minimizing the total ICI of all the
subcarriers. We call this algorithm as MinSum for short. The
MinSum algorithm can also be implemented by a SD. From

the simulation results, for 16 PTS weights, both MinMax and
MinSum algorithms perform nearly identical for SER > 10−5.
Even without optimizing the parameters of the SD’s, MinMax
and MinSum algorithms reduce complexity by 10 and 170 times
compared with exhaustive search. In practice, the transmitter
never knows the exact FO. However, the results show that the
two algorithms perform nearly independent of the value of FO
that is used for optimization.

The paper is organized as follows. Section II briefly intro-
duces system model, PICR notation and problem formulations.
Section III describes the sphere decoding algorithm and its im-
plementations for MinMax and MinSum algorithms. Section IV
presents numerical results. Conclusions are summarized in Sec-
tion V.

Notation: Matrix and vector are denoted by boldface upper-
case and lowercase letters, respectively, their entries are denoted
by corresponding normal uppercase and lowercase letters with
subscripts. Superscripts T and † denote matrix transpose and
transpose conjugate operations, respectively. E[·] denotes statis-
tical mean. The diagonal matrix with elements of vector X on
the main diagonal is denoted by diag(X).

2 System Model
2.1 OFDM Transmission over Fading Channel

We consider the transmission of OFDM signal over
frequency-selective fading channels. The discrete transmited
OFDM signal can be represented as

D = Fc (1)

where c is the data vector c =
[

c1 c2 . . . cK

]T
, F is

the inverse fast Fourier transform (IFFT) matrix with the en-
try Fi,k = 1√

N
ej2π(i−1)(k−1), K is the IFFT size, i, k =

1, 2, . . . , K, j =
√−1.

The signal is transmitted over an L−path frequency-selective
fading channel. The frequency response at the kth subcarrier is

Hk =
L−1∑
l=0

hl e−j2π(k−1)∆fτl (2)

where hl and τl are the gain and delay of path l (l = 0, 1, . . . , L−
1), respectively. ∆f is the subcarrier frequency separation,
∆f = 1/T , where T is the OFDM symbol duration. The path
gains are modeled as independent zero-mean complex Gaus-

sian random variables with variance E
[
|hl|2

]
= δ2

l . The
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channel power is normalized so that
∑L−1

l=0 δ2
l = 1. Define

H = diag
[

H1 H2 . . . HK

]
.

The received signal are demodulated by a fast Fourier trans-
form (FFT) at the receiver. If there exists a carrier frequency
offset (FO) δf , defining the normalized FO by ε = δf/∆f , the
received signal can be represented as [6]

y = SHc + n (3)

where y is the demodulated vector, n is the noise vector with
identically independent distributed (i.i.d) Gaussian noise sam-

ples n =
[

n1 n2 . . . nK

]T
, the matrix S consists of ICI

coefficients

Ski =
sin [π (i − k + ε)]

K sin
[

π
K (i − k + ε)

] exp
[
jπ

(
1 − 1

K

)
(i − k + ε)

]
.

(4)
Notice that Skk = S0 are independent of the subcarrier index

k. In particular, the demodulated signal yk can be written as

yk = S0Hkck + Ik + nk (5)

where Ik stands for the ICI from the other subcarriers on subcar-
rier k and is given by

Ik =
K−1∑

i=0,i�=k

SkiHici . (6)

The parameter Peak Interference-to-Carrier Ratio (PICR) is
defined [2] as

PICR(c, ε) = max
1≤k≤K

{
|Ik|2

|S0ck|2
}

. (7)

2.2 Reducing ICI by PTS Approach
In AWGN channels, at high signal-to-noise ratio (SNR), ICI

power dominates the thermal noise. Thus the data symbol with
higher ICI will likely experience higher SER. Therefore, reduc-
ing PICR will lead to an improvement of overall system SER.
To do this, in [2], the data vector c is partitioned into M equal-
sized disjoint blocks c = [c1 c2 . . . cM ]T , each block con-
sists of K0 = K/M contiguous subcarriers. The symbols of
each block are multiplied by weight bm, where |bm| = 1, for
m = 1, 2, . . . ,M . Let b = [b1 b2 . . . bM ]. Application of the
partial transmit sequence to the data vector c results in vector ĉ.
We can rewrite (3) as

Y = SHĉ + N = S0IKHĉ + ŜHĉ + N (8)

where IK is the K-by-K identity matrix and Ŝ = S − S0IK .
Let P = ŜH , we formulate another matrix T such that :

Tki = Pkici, (i, k = 1, 2, ...,K). Then we create a matrix Q
by applying the following rule: Qkm =

∑mK0
n=(m−1)K0+1 Tkn,

where k = 1, 2, ...,K,m = 1, 2, ...,M . One can see that the ICI
term Ik becomes Ik = qkb, where qk is the k-th row of Q. The
PICR in (7) becomes:

PICR(c, ε) = max
1≤k≤K

{
|qkb|2
|S0ck|2

}
= max

1≤k≤K

{
b†q̂†

kq̂kb
}

. (9)

where q̂k = qk/S0ck. Let Q̂ = [q̂1 q̂2 . . . q̂K ]T . Assume
that the channel state information (CSI) H and FO ε are avail-
able at the transmitter, we can restate the problem of minimizing
maximum value of PICR as follows: "Given the matrix Q̂, find
a vector b of PTS weights so that the maximum value of PICR
defined in (9) is minimized." The mathematical representation of
the problem is:

bMM = arg min
b

max
1≤k≤K

{
b†q̂†

kq̂kb
}

. (10)

If the total ICI power is minimized, the overall system SER
will also be reduced. The total ICI power can be found as fol-
lows:

PS =
K∑

k=1

|Ik|2 = b†Q†Q̂b . (11)

Thus the problem of minimizing the total ICI power is equiv-
alent to the finding of vector b such that

bMS = arg min
b

b†Q†Q̂b . (12)

We refer to searching for b satisfying (10) and (12) as MinMax
and MinSum problems, respectively. The algorithms to solve
these problems are called MinMax and MinSum algorithms ac-
cordingly. Interestingly, both the problems can be solved by a
sphere decoder, a decoder which has been proposed to solve
several problems in communications such as lattice detection,
V-BLAST detection, algebraic space-time code decoder (See [4]
and references therein). We next derive sphere decoder based
algorithms to solve (10) and (12).

3 MinMax and MinSum Algorithms
Eqs. (10) and (12) have the same quadratic form b†X†Xb.

We first present a general method to solve the problem

b = arg min
b

b†X†Xb . (13)

Assume that the matrix X is real and full rank. We further
assume that b consists of binary symbols (bk ∈ {−1, 1}). The
sufficient condition for b to minimize the cost metric (13) is the
lattice point Xb should lie in a hypersphere of a large enough
covering radius r.

Using Cholesky factorization, one can find a square upper tri-
angle matrix R such that R†R = X†X . Then

r2 ≥ b†X†Xb = b†R†Rb =
M∑
i=1

M∑
k=i

(Ri,kbk)2 (14)

or

r2 ≥ (RMMbM )2 + (RM−1,MbM + RM−1,M−1bM−1)2 + . . .
(15)

The following necessary conditions can be drawn from (15):

r2 ≥ (RMMbM )2

r2 ≥ (RM−1,MbM + RM−1,M−1bM−1)2

. . .
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This set of inequalities can be used to find admissible bk

(k = 1, 2, . . . , M) as follows. We first look for possible val-
ues of bM . Since bM is an integer, the admissible values of bM

should satisfy

−
⌈

r

RMM

⌉
≤ bM ≤

⌊
r

RMM

⌋
(16)

where �·� and �·� denote ceiling and floor functions, respec-

tively. Define LM = −
⌈

r
RMM

⌉
and UM =

⌊
r

RMM

⌋
as the

lower and upper bounds of bM . Hence

LM ≤ bM ≤ UM . (17)

For each value of bM , define aM−1 = RM−1,MbM , r2
M−1 =

r2 − RM,MbM , the admissible values of bM−1 are

⌈−rM−1 − aM−1

RM−1,M−1

⌉
≤ bM−1 ≤

⌊
rM−1 − aM−1

RM−1,M−1

⌋
. (18)

or LM−1 ≤ bM−1 ≤ UM−1.
Similarly, all admissible values of bM−2 to b1 can be found.

We obtain the set of candidate vectors b.
In our problem, we deal with complex matrices X . If vector

b is real, the following transformation can be applied.

X̄ =
[

Re(X)
Im(X)

]
(19)

where Re(X) and Im(X) denote the real and imagine parts of

X . Then X̄
†
X̄ can be Cholesky factorized.

We can readily apply the sphere decoder described above for
the MinSum problem. However, the sphere decoder for MinMax
problem needs following modifications.
• Rank deficiency: Since q̄†

kq̄k is of rank two, Cholesky fac-
torization does not work [note that q̄k is obtained from q̂k by
the transformation (19)]. However, we can use the generalized
sphere decoder proposed in [7]. Since bk’s are all unit modulus,
µb†b = µM ; thus |q̄kb|2 + µM = b†(q̄†

kq̄k + µIM )b. We now
can apply Cholesky factorization for the new full rank matrix
X̄ = q̄†

kq̄k + µIM

• Multiple constraints: In the MinMax problem, we need to find
the vector b to minimize the PICR of K subcarriers or equiva-
lently K sphere decoders must be run at the same time. This can
be performed easily by only one sphere decoder. At each step
of searching admissible values of bm (m = 1, 2, . . . , M ), the
compound lower and upper bounds are calculated as

Lm = max(L1
m, L2

m, . . . , LK
m),

Um = min(U1
m, U2

m, . . . , UK
m ).

where Lk
m and Uk

m (k = 1, 2, . . . , K) are the lower and upper
bounds of symbol bm derived from corresponding equation of
subcarrier k.

If vector b is complex, each symbol bk may belong to phase
shift keying (PSK) constellations. One can apply the complex
sphere decoder [8], with some modifications described above.

4 Simulation Results

The complexity and SER will be the two performance crite-
ria for comparing the efficiency of our proposed algorithms. We
simulated both real (binary) and complex PTS weights (4-PSK).
The results show that 2M real weights perform much better than
M complex weights with similar complexity. Therefore, we
present the results for binary PTS weights only. The number
of subcarriers is 64 with 4-QAM. For binary weights, the value
of bM can be set to 1 without loss of generality.

4.1 Complexity

The total number of multiplications, divisions and squares of
the proposed algorithms for FO 10% are reported in Table I.
Comparing MinMax algorithm and exhaustive search (ES), the
computation saving is marginal for M = 8, but for M = 16,
the MinMax algorithm reduces about 10 times number of oper-
ations. The suboptimum MinMax algorithm saves 1/3 number
of operations. Comparing the MinSum and ES algorithms, for
M = 16, the MinSum algorithm reduces the number of opera-
tions by 171 times.

4.2 Symbol Error Rate

1. Ideal Optimization:
Fig. 1 presents the SER of MinMax and MinSum algorithms

for M = 8 when the transmitter knows exactly the value of
FO. If normalized FO is 10%, at low SNR, the two algorithms
perform identically. At high SNR, the SER curve of MinSum
reaches an error floor. When FO is 8%, the two algorithms per-
form similarly.

2. Mismatched Optimization:
Let the FO known at the transmitter is εT and the true value

of FO at the receiver is εR. We consider two cases: (a) Case 1:
εT > εR and (b) Case 2: εT < εR.

Figs. 2 and 3 plot the SER curves for MinMax and MinSum
algorithms, respectively. The performance under mismatched
optimization is almost identical with that of ideal optimization.
For example, in Fig. 2, the SER curve of mismatched optimiza-
tion done for εT = 0.1 > εR = 0.08 is almost overlap the
SER curve of the ideal optimization, where εT = εR = 0.08.
This is true for MinSum algorithm and also holds for the cases
εT = 0.08 < εR = 0.1 as well. Therefore, both MinMax and
MinSum are robust to the mismatched optimization.

TABLE I

NUMBER OF OPERATIONS OF THREE ALGORITHMS

Algorithm M = 8 M = 16

Exhaustive search 147.4×103 71.3×106

MinMax 115.6×103 7.34×106

MinSum 38.8×103 0.417×106
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Figure 1. Performance of MinMax and MinSum algorithms,
ideal optimization

25 30 35 40 45 50 55
10

−6

10
−5

10
−4

10
−3

10
−2

S
E

R

SNR [dB]

Normal OFDM, RxEps = 0.1
Normal OFDM, RxEps = 0.08
MinMax M = 8, TxEps = RxEps = 0.1
MinMax M = 8, TxEps = 0.1, RxEps = 0.08
MinMax M = 8, TxEps = RxEps = 0.08
MinMax M = 8, TxEps = 0.08, RxEps = 0.1

Figure 2: Performance of MinMax algorithm, mismatched optimization.

5 Conclusion

We presented two algorithms (MinMax and MinSum) to
search for optimum PTS weights to reduce ICI effect in OFDM
transmission over fading channels. The two algorithms are ro-
bust to the mismatched FO estimation at the transmitter. When
FO is larger (10%) and M = 16, MinMax yields better perfor-
mance compared with MinSum for SER > 10−5. For small FO
or a large number of PTS weights, the two algorithms perform
nearly identical. However, the complexity of MinSum is just a
fraction of MinMax.
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