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Abstract—This paper considers multiple-symbol differential
detection (MSD) of differential unitary space–time modulation
(DUSTM) over multiple-antenna systems. We derive a novel
exact maximum-likelihood (ML) detector, called the bound-inter-
section detector (BID), using the extended Euclidean algorithm
for single-symbol detection of diagonal constellations. While the
ML search complexity is exponential in the number of transmit
antennas and the data rate, our algorithm, particularly in high
signal-to-noise ratio, achieves significant computational savings
over the naive ML algorithm and the previous detector based on
lattice reduction. We also develop four BID variants for MSD.
The first two are ML and use branch-and-bound, the third one is
suboptimal, which first uses BID to generate a candidate subset
and then exhaustively searches over the reduced space, and the
last one generalizes decision-feedback differential detection. Sim-
ulation results show that the BID and its MSD variants perform
nearly ML, but do so with significantly reduced complexity.

Index Terms—Differential space–time coding, maximum-likeli-
hood (ML), multiple-symbol differential detection (MSD).

I. INTRODUCTION

WIRELESS communication system capacity can be sub-
stantially enhanced by employing multiple transmit and

receive antennas. Space–time coding (STC), a bandwidth- and
power-efficient technique, can realize the benefits of multiple
antennas [1]. However, coherent detection (CD) needs perfect
channel state information (CSI), which is difficult to obtain in a
fast-varying mobile environment and/or in a multiple-antenna
system, motivating the development of non-CD strategies.
Differential space–time modulation (DSTM) has thus received
considerable interest [2]–[4]. Tarokh and Jafarkhani [2] first
proposed a DSTM scheme with orthogonal constellations,
which can be classified as a nongroup design, existing only for
a limited number of antennas. Hochwald and Sweldens [3] and
Hughes [4] have developed a general framework for differential
unitary space–time modulation (DUSTM) via finite-group

Paper approved by R. Schober, the Editor for Detection, Equalization, and
MIMO of the IEEE Communications Society. Manuscript received December
6, 2004; revised April 11, 2005 and June 9, 2005. This work was supported in
part by the Natural Sciences and Engineering Research Council of Canada, in
part by the Informatics Circle of Research Excellence, and in part by the Alberta
Ingenuity Fund. This paper was presented in part at the IEEE International Con-
ference on Communications, Seoul, Korea, May 2005.

T. Cui was with the Department of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, AB T6G 2V4, Canada. He is now with the Depart-
ment of Electrical Engineering, California Institute of Technology, Pasadena,
CA 91125 USA (e-mail: taocui@caltech.edu).

C. Tellambura is with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail:
chintha@ece.ualberta.ca).

Digital Object Identifier 10.1109/TCOMM.2005.860056

theory [3]. The finite-group properties can simplify the trans-
mitter modulation and constellation design; moreover, diagonal
signals, where only one transmit antenna is active at any time,
exist for any number of antennas. The reader is referred to [3]
and [4] for a thorough treatment of DUSTM.

From [3], DUSTM generalizes the classical single-antenna
differential phase-shift keying (DPSK), and, similar to DPSK,
DUSTM performs 3 dB worse than its coherent counterpart. To
improve the performance of single-symbol differential detec-
tion (SSD), multiple-symbol differential detection (MSD) has
been developed for -ary phase-shift keying (MPSK) signals
transmitted over an additive white Gaussian noise (AWGN)
channel [5]. In MSD, consecutive received samples are
jointly processed to detect data symbols. For moderate ,
MSD bridges the performance gap between coherent MPSK
and -ary (M)DPSK. The performance of maximum-like-
lihood (ML)-MSD improves with increasing , albeit at an
exponential growth of detection complexity with increasing

. Several low-complexity single-antenna MSD algorithms
are developed in [6]–[8]. Both Mackenthun’s algorithm and
the improved version [8] only work for AWGN or static fading
channels, and suffer a mismatch problem [9]. Lampe et al. [9]
develop a fast detection algorithm using sphere decoding (SD).
Another low-complexity approach, which performs worse than
SD but better than SSD, is decision-feedback differential de-
tection (DF-DD) [10], [11]. These papers treat single-antenna
systems only.

Naturally, attempts have been made to extend some of these
detection techniques to the multiple-antenna case. In [12], non-
coherent DSTM receivers using MSD and DF-DD are devel-
oped to overcome the performance loss in fast-fading channels.
The robustness of DF-DD to imperfect knowledge of channel
parameters is investigated in [13]. However, as the MSD deci-
sion rule in [12] is computationally too complex, only the spe-
cial case of diagonal signals is considered in [12]. A general de-
cision metric for MSD of DUSTM is derived in [14], which uses
the Viterbi algorithm for detection, resulting in high complexity
for large constellation size . In both [12] and [14], a major
thrust is to analyze the error performance of these schemes,
as opposed to developing efficient decoders. The first impor-
tant paper dealing with this decoding problem is by Clarkson
et al. [15], which develops a low-complexity approximate algo-
rithm for the SSD of diagonal signals. Their main insight is to
recognize that the detection problem can be approximated as a
closest vector problem (CVP) in a lattice, as similar problems
appear in number-theory applications (see Section III-A). They
use the celebrated LLL lattice-reduction algorithm, named after
Lenstra, Lenstra, and Lovasz [16]. This, however, results in a
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suboptimal algorithm; moreover, it cannot be directly applied
for MSD. Throughout the paper, we will refer to it as the LLL
decoder.

In this paper, based on [12]–[14], we derive a decision metric
for MSD of DUSTM over a quasi-static (QS) fading channel.
The main contribution of the paper is, however, a fast exact ML
detector, called the bound-intersection detector (BID), for SSD
with diagonal constellations. Since the decision metric consists
of nonnegative summands, using a bound, they can be used to
generate candidate sets of the transmit signal. The intersection
of all such sets constitutes the whole solution space, which is re-
peatedly pruned until the optimal solution is found. A key novel
feature of the BID is the use of the extended Euclidean algo-
rithm [17], well known for determining the greatest common
divisor (gcd) of two integers, to generate the candidate sets.
While the ML-search complexity is exponential in the number
of transmit antennas and the data rate, our algorithm, particu-
larly in high signal-to-noise ratio (SNR), achieves significant
computational savings over the ML algorithm. Interestingly, our
BID has lower complexity than the LLL decoder in high SNR
(recall that BID is ML, while LLL is suboptimal). BID also
forms the basic backbone of efficient MSD algorithms; we thus
develop four BID variants for MSD. The first two are ML and
use branch-and-bound (BnB), the third one is suboptimal, which
first uses BID to generate a candidate subset and then exhaus-
tively searches over the reduced space, and the last one gen-
eralizes DF-DD. Simulation results show that the suboptimal
detector performs nearly ML, but does so with significantly re-
duced complexity.

The rest of the paper is organized as follows. Section II intro-
duces the system model and DUSTM. Section III first develops
the BID for SSD, and also presents several algorithms for MSD.
Section IV gives numerical results, and conclusions are drawn
in Section V.

Notation: , , , , and denote expectation,
complex conjugation, transpose, conjugate transpose, and
Moore–Penrose pseudoinverse, respectively. The imaginary
unit is . The trace, determinant, and the Frobenius
norm of matrix are , , and ,
respectively. A circularly complex Gaussian variable with mean

and variance is denoted by . The sets of
real numbers and integers are and , and the identity
matrix is . is the Kronecker delta, for ,
if , and if .

II. PROBLEM FORMULATION

A. System Model and DUSTM

We consider a multiple-input multiple-output (MIMO)
system with transmit and receive antennas, and the
input–output relationship can be written as [3], [4], [12], [14]

(1)

where is the transmitted matrix during
the th interval, and is the number of time slots per block
interval. , and is trans-
mitted by the th antenna in the th slot. is the

received signal during the th block interval, and
is defined similarly to . is the
MIMO channel matrix during the th block interval, and the en-
tries for and .

is the noise matrix with independent
and identically distributed (i.i.d.) entries ,
where is adjusted to ensure a given average SNR. Each time
slot occupies an interval , and the block interval is ,
both in seconds.

For a frequency-flat Rayleigh fading MIMO channel and
a rich scattering environment [18], the autocorrelation of the
channel gains is given by

(2)

where is the Kronecker delta and is the correla-
tion function of . This model describes spatially i.i.d.
random channel gains with the identical correlation function

. The fading channel is QS, i.e., the underlying contin-
uous fading channel gain remains constant over each
block interval, and hence, is approximated by the mid-
point sample of [14], whereas the channel changes from
block to block. Typically, when Clarke’s (Jakes’) model [19] is
used, , where is the zeroth-order
Bessel function of the first kind, and is the Doppler spread
due to users’ mobility. Note that the QS condition is met when

[12].
From [3], the transmit symbols are generated using a

finite group , where is a
unitary matrix , and , where

denotes the data rate. We assume , and .
binary information bits are first converted to an integer

, and is chosen from . The th
transmitted block is encoded as

(3)

In the first block, is sent. The internal composition
property of a group ensures that , and is unitary for any
positive . Specifically, for diagonal constellations, the unitary
matrices are chosen as

(4)

where for are optimized to achieve the
maximum diversity product [3].

B. Multiple-Symbol Differential Space–Time Demodulation

This section derives the ML MSD metric for DUSTM.
Since MSD estimates the transmitted symbols in con-
secutive intervals given received symbols, let us
consider symbol intervals to . Let

and
. The

ML estimate for can be expressed as

(5)
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where is the probability density function (pdf) of
conditioned on . We define the covariance matrix of

as

...
...

...
...

. . .
...

(6)

and let . Using the results of [12]–[14],
(5) can be simplified as shown in (7) at the bottom of the page,
where is the th entry of . We normalize with

, or ,
and denote , where denotes the largest
integer less than or equal to (the reason for this normalization
will be clear soon). Equation (7) is equivalent to (8), shown at the
bottom of the page. When the channel is static over the
blocks, or equivalently, , it can be readily obtained
that ( , , and ).
Equation (8) becomes

(9)

When , (8) reduces to

(10)

Equation (10) is the decision rule given in [3, eq. (21)]. Hence,
the differential detector in [3] is still ML in a QS fading channel.
If the normalization in (8) is not performed as in [12] and [14],
the decision rule will not reduce to [3, eq. (21)] when

. The normalization will provide a tighter bound, as will be
shown in the next section. Equation (9) can be interpreted as the
summation of ML metrics between any two received symbols
within the receive blocks. The nonnegative summands in
(8) facilitate our efficient MSD algorithm in the next section.

If the channel changes in each time slot, the MSD metric is
derived in [12] for diagonal constellations. It can be readily ver-
ified that (7) reduces to [12, eq. (26)]. Hence, the efficient de-
tection algorithms in Section III can also be applied to the non-
coherent receivers in [12].

III. REDUCED-COMPLEXITY DIFFERENTIAL UNITARY

SPACE–TIME DEMODULATION

We first introduce an efficient algorithm for SSD, which
also forms a basis for reduced-complexity MSD algorithms
for DUSTM. While our algorithm is developed for diagonal
constellations, it can also be modified to handle a nondiagonal
constellation , where is a unitary matrix, and

is a diagonal constellation [3] (details omitted for brevity).

A. Reduced-Complexity SSD

To put the development of our new algorithm in perspective,
let us briefly review the problem and several previous contribu-
tions. The key idea of [15] is to convert the decoding of diag-
onal differential constellations to the CVP in a modular lattice
via the cosine approximation . An -dimen-
sional lattice generated by a set of linearly independent vec-
tors is the set . Given
a lattice and arbitrary vector , the CVP is to find so
that is the minimum where the distance is measured in

norm . The shortest vector problem (SVP) is the
homogeneous version of the CVP (i.e., is the origin). Both of
these problems are known to be NP-hard. Recent results show
the CVP in an -dimensional lattice to be NP-hard to approxi-
mate to within factor for some constant [20].
Note also that [15, eq. (12)] involves translation from a modular
lattice to a nonmodular lattice. Such a translation has also been
considered in [21] and [22]. The celebrated LLL algorithm [16]
is a polynomial-time algorithm that approximates both the SVP
and CVP to within a factor of . Thus, the LLL decoder [15]
is faster than the ML exhaustive search, but the cosine approx-
imation and the LLL algorithm incur a performance loss. The
CVP can also be optimally solved by the well-known SD [23].
In [24], SD has thus been used along with the lattice approxima-
tion of [15]. But note that the search space increases to in
[24], while the original search space is only . In addition, the
cosine approximation also makes the SD solution suboptimal.
Therefore, the direct application of SD is not optimal in terms
of both computational complexity and performance. We next
derive a novel, efficient SSD algorithm by combining bounding
and the extended Euclidean algorithm.

The ML SSD rule (10) for diagonal signals can be written as

(11)

(7)

(8)
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where is defined in (4). The cost metric in (11) can be ex-
panded as

(12)

where

(13)

We let the arg operation take values in so that
. If is the true solution, the cost metric (11) becomes

(14)

where are the AWGN terms in (1). Note that is a
chi-square random variable with degrees of freedom.
Therefore, we can choose a bound to be proportional to the
variance of the noise as

(15)

so that the probability that at least one candidate exists, which
ensures that the cost metric (11) is less than , is very high

(16)

where is set to a value close to zero (e.g., ). Instead of
searching all of the , we only search the values of
such that . To find all of the ’s that meet this condition,
we note that (12) consists of nonnegative terms. Thus,
a necessary condition for is that each term of (12) is
less than , or equivalently

(17)
where reduces to an integer between zero
and . Let us define the candidate set

, i.e.,
consists of all which satisfy the th term in (17). Note that

when , is a null set. If ,
all the integers in are included in . The problem at hand
is to determine efficiently for all . Since is mono-
tonically decreasing between zero to , and monotonically
increases from to , and since is an even function, we
can readily show that (17) is equivalent to

or

(18)

where

(19)

and takes values in . Expanding (18), we have

(20a)

or (20b)

or (20c)

Define ,
, and

. Since
and , we have

,
and

. Clearly, , and exhaustive checking of (20)
for all is not efficient. We next develop an efficient
algorithm to determine .

To do so, we first show how to find such that
. Since is relatively prime to , the gcd of integers and

is one. The well-known extended Euclidean algorithm [17]
computes the gcd of and , as well as the numbers and
such that

(21)

where 1 is the gcd of and . For the details of the extended
Euclidean algorithm, the reader is referred to [17]. To find

, we multiply both sides of (21) by , which
yields

(22)

Therefore, satisfies . We are
now in a position to determine . Define

(23)

where denotes the smallest integer greater than or equal to
, and denotes the largest integer smaller than or equal to
. We now find that

(24)

Note that it can be readily verified that

(25)
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Equation (24) immediately reduces to

(26)

We have

(27)
Let . The candidate set of for
the th term of (12) is given by

(28)

Although the extended Euclidean algorithm is NP-complete
[25], can be computed before detection. Furthermore, (28) is
a one-to-one mapping. For , we can store

in memory, and (28) can be accomplished
by .

The candidates that satisfy all of the (17) are chosen, i.e.,
the candidate set is the intersection of all of the sets as

(29)

Intuitively, the term in (17) with the largest , which typically
is , varies most with the change of . Thus, the element in

that is closest to is searched first. If no can make
(12) less than the bound , or equivalently, if is a null set,
we increase the probability (e.g., ),
adjust the bound , and perform the same process again. If
is chosen, is replaced by the new cost , and is deleted
from the set . All are updated
using the new bound . In later iterations, (29) is replaced by

(30)

which avoids duplicate searches and reduces the search space.
The process continues until becomes the null set. The with
the minimum cost is then the optimal solution. We call this
optimal detection algorithm the Bound-Intersection Detector
(BID).

To further improve the BID performance, we note that each
term of (12) has a lower bound as

(31)

where and denotes the nearest integer to its
argument. Hence, the lower and upper bounds (23) are updated
to

(32)

Remarks:

• In high SNR, is small. The in (30) usually contains
only one element. On the contrary, becomes large in
low SNR. The size of approaches . Therefore, similar

to SD, the complexity of BID decreases with the increase
of SNR.

• If the normalization in (8) is not performed, in (14)
is not a chi-square random variable with degrees
of freedom. The initial bound will be loose and diffi-
cult to estimate.

• The dimension of the lattice formed in [15] is the product
. Hence, for a large number of receive antennas

, the complexity of LLL may indeed be larger than
that of a brute-force ML search which is linear in

. However, our problem formulation (12) does not
expand the search space.

• In [24], SD has been used to solve the DUSTM detection
problem based on the lattice formulation in [15]. But note
that the search space increases to in the lattice rep-
resentation, while the original search space is only .

• The bottleneck of BID is the computation of candi-
date sets , and since they can be obtained simultane-
ously, the BID algorithm can be readily parallelized, an
attractive feature for the implementation on a float-point
multiple-processor digital signal processor (DSP).

The pseudocode of the BID is given in Algorithm 1.

Algorithm 1: Bound-Intersection Detection Algorithm
input: Received signals , .
output: The optimal .
1 Compute , and ; ;
2 Compute using (16) and ;
3 for to do
4 if then
5 ; goto 16;
6
7 else if then
8 ;
9
10 else
11 Compute and using (23) and using

(28);
12 end
13 end
14 ;
15 if then
16 ; goto 2;
17 end
18 Sort according to ; ;

;
19 ; ;
20 while do
21 for to do
22 if then
23 ; goto 33;
24
25 else if then
26 ;
27
28 else
29 Compute and using (23) and using

(28);
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30 end
31 end
32 ;
33 if then
34 return ;
35 end
36 ; ;
37 if then
38 ; ;
39
40 else
41 goto 33;
42 end
43 end
44 return ;

B. Reduced-Complexity MSD

For the MSD of the diagonal signals, the search space in-
creases to , and the computation of the metric (8) is more
complex than in the SSD case.

(33)

where is given in (4). We next give four MSD algorithms
which generalize the BID algorithm.

1) MSD1: We first use BID for the SSD of the block sym-
bols, and the result is denoted by . is then substituted back into
(33), and the cost is denoted by . Note that (33) is the summa-
tion of nonnegative terms. The exhaustive search is performed.
After each of the terms in (33) is computed, the
current cost is compared with . If it is larger than , the search
stops, and another candidate is tested. When all the
terms have been finished, the total cost is compared with . If
the cost is less than , is replaced by this value, the current

is saved, and the search continues until all of the possible
candidates have been finished. The best one is output as the op-
timal solution. This MSD is similar to a BnB algorithm. Unfor-
tunately, this algorithm is not very efficient when is large and
the SNR is low, making the initial bound loose.

2) MSD2: The efficiency of our proposed BID is due to
avoiding a search of all . To apply the same idea
to MSD, we also begin by using BID for applying SSD for
symbols over blocks. The result is then substituted back
into (33), and the initial bound is obtained as . Since (33) is
the summation of nonnegative terms, a necessary
condition for the cost (33) to be less than is that each term of
(12) is less than , in particular

(34)

which is the SSD problem. The candidate set for
can be found by using BID. For every in , the bound
for can be improved to , where

. The candidate set

for can also be found by using BID. A similar process
continues for , and so on. When it comes to , the
bound is updated as , where is given by

(35)

When a set of has been chosen, (33) is computed and compared
with . If it is less than , is updated, is saved and deleted
from their candidate set, and the candidate set for each is
updated by using the new bound. The process continues until
all of the elements in the candidate set have been searched. The
output is the optimal solution.

However, the initial bound can become loose with the in-
crease of and in high SNR. In this case, the candidate set
usually contains all of the ’s. To overcome this problem and
further reduce the complexity, an idea similar to BID can be
used to find the lower bound of each term in (33), which can be
obtained the same as in (31). The bound for each can be fur-
ther improved by using these lower bounds (details omitted for
brevity).

3) MSD3: We may use the output of SSD as a starting point
of MSD. In [6], a reduced-complexity detector is proposed for
MSD of MPSK. The key idea is to search for a small candidate
subset with the largest symbol-wise metrics for pairs of
received signals, and then search exhaustively over the reduced
space of size where is the number of MPSK symbols.
Similarly, for the MSD of DUSTM, we first modify BID to do
SSD for each signal and gen-
erate a candidate list of the smallest metrics, instead of
returning only the optimal solution. This can be accomplished
by choosing a larger initial bound. If less than the candidates
are found, the bound is increased until they are obtained. The

-tuples are substituted into (33), and the one with min-
imum cost is output. When is small, the number of -tuples
to search is relatively small, and this significantly reduces com-
plexity. Furthermore, when testing all of the -tuples, the
BnB algorithm in MSD1 can also be used to further reduce the
complexity. Reference [6] shows that when choosing ,
the performance of the reduced-complexity algorithm is nearly
ML. While ignoring the first-stage BID, the complexity of the
reduced-complexity MSD is only of that of the ML
search. The effectiveness of MSD3 in static fading channels is
verified in Section IV.

4) MSD4: The MSD problem (8) can be formulated as ML
sequence estimation (MLSE). DF-DD [12] is equivalent to a DF
sequence estimator (DFSE). In [26] and [27], a reduced-state
sequence estimator (RSSE) is introduced to reduce the number
of states in MLSE. DFSE can also be viewed as a special RSSE.
Similarly, a reduced-state DD (RS-DD) can be used to solve (8)
as a generalization of DF-DD.

As a special case of DFSE in [26] and [27], RS-DD re-
places with previously decided symbols

, . The ML detection is then
performed for . Clearly, if ,
RS-DD reduces to DF-DD in [12], and if , RS-DD
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Fig. 1. Performance comparison for N = 3; 4; 5 transmitter antennas,
N = 1 receiver antenna as a function of SNR. The channel is static fading
and R = 2.

reduces to MSD. For , MSD1 and MSD2
can be used to reduce the complexity of exhaustive search.
Therefore, RS-DD or MSD4 gives a tradeoff between perfor-
mance and complexity.

Remarks:

• Similar to the BID, our proposed MSD2 and MSD3 can
also be parallelized and implemented on float-point mul-
tiple-processor DSP, which is efficient for practical ap-
plication.

IV. SIMULATION RESULTS

This section discusses simulation results. We assume a
MIMO channel model as described in Section II-A, and
generate the channel gains by sampling a continuous fading
process via Jakes’ model [19]. We use the diagonal signals
with parameters , from [15, Table 1]. The
brute-force ML detector is referred to as ML detector in the
following. For CD, the transmit symbols are estimated
assuming perfect knowledge of the channel matrix . The
information symbols are recovered by differential decoding (3).

Fig. 1 compares the performance of BID for SSD with that of
ML and the LLL decoder [15] when , ,
and . Our proposed BID performs exactly ML. At a
BER of and , the LLL decoder performs 0.15 dB
worse than the ML decoder. When , the performance
loss by using LLL decoder increases to 0.5 dB at BER .
As stated in [16], LLL achieves an approximation factor ,
which is exponential in the dimension , which agrees with
our simulation results that the gap between ML and LLL in-
creases with the increase of . Note that in [15], an exact de-
coder is also proposed. This exact algorithm may be used to-
gether with LLL, which increases the complexity by a factor of

. Moreover, the exact decoder incurs a perfor-
mance loss due to cosine approximation.

Fig. 2 shows the complexity of BID in flops when
, , and . We use the flops function

Fig. 2. Complexity of BID for N = 3; 4; 5 transmitter antennas, N = 1

receiver antenna versus SNR. The channel is static fading and R = 2.

TABLE I
COMPLEXITY COMPARISON FOR ML, LLL, AND BID IN FLOPS

(it provides an estimate of the number of floating-point oper-
ations performed by a sequence of MATLAB statements) in
MATLAB to compare the numerical efficiency of various de-
coders. We do not consider parallelization issues. The LLL de-
coder exactly follows the one given in [15] without using their
exact algorithm. With the increasing SNR, the flops of BID re-
duce significantly (Fig. 2). The ML and LLL complexities are
almost constant, given in Table I for comparison. In high SNR,
our proposed BID is much more efficient than both ML and
LLL, while offering ML performance. The flops required by
the ML decoder are between 10–30 times of that of BID. With
the increase of , the complexity gap between our BID and
LLL decreases, while the performance gap increases. Note that
DUSTM is especially effective in high SNR [3], which is consis-
tent with the more efficient region of BID, making it especially
suitable for DUSTM.

Fig. 3 compares the complexity of BID and LLL with a fixed
number of transmit antennas , a different number of re-
ceived antennas , and . In [15], the lattice dimension
increases as . For large , the complexity of LLL on the
naive lattice formulation is much more than that of BID. How-
ever, we compare the LLL for our formulation (12), which only
has terms, regardless of . The complexity of LLL is al-
most independent of , and the complexity difference is due
to the preprocessing step. Interestingly, in low SNR, the com-
plexity of BID decreases for large , while the complexity of
BID increases in high SNR. Each term in (12) is a combina-
tion of terms. In low SNR, a larger requires a larger
value for each term in (12), resulting in a smaller candidate set.
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Fig. 3. Complexity comparison between BID and LLL for N = 4

transmitter antennas, N = 1; 2; 3; 4 receiver antennas versus SNR. The
channel is static fading and R = 2.

Fig. 4. Performance comparison of N = 4 transmitter antennas, N = 1

receiver antenna with N = 3; 6, and R = 1 as a function of SNR. The channel
is constant within N blocks.

Since we count the preprocessing flops in computing , ,
and in (13), larger encounters higher complexity to com-
pute these parameters, and the complexity is dominant by the
preprocessing step. In fact, the performance relates to the com-
plexity in our BID. The probability of finding the true solution
reflects the tightness of the bound.

Fig. 4 illustrates the performance improvement of MSD for a
static fading channel. A MIMO system with , ,
and is simulated. The performance gap between
and is relatively small [12]. Hence, in our simulation,

blocks of received signals are collected for detec-
tion. Since both MSD1 and MSD2 are ML, the performance of
MSD2 only is shown in Fig. 4. The performance of MSD2 is
compared with those of SSD, CD, DF-DD, MSD3, and MSD4.
In MSD3 and MSD4, we choose and , respec-
tively. The performance loss over MSD2 when using MSD3
is negligible, even when , which verifies the effective-
ness of MSD3. The gap between DF-DD and MSD2 is also

Fig. 5. Complexity comparison of N = 4 transmitter antennas, N = 1

receiver antenna with N = 3; 6, and R = 1 as a function of SNR. The channel
is constant within N blocks.

small. At BER , the gap is only 0.2 dB for .
When blocks are used, MSD2 has a 1-dB performance
gain over SSD at BER , and when blocks are
used, the performance gain increases to 1.8 dB. MSD2 with

has only a 0.8-dB loss over CD. Fig. 5 compares the
complexity of different detectors in a static fading channel in
terms of the average flops per block. In high SNR, the com-
plexity of MSD1–MSD4 decreases, a common property of BnB
detectors, since their performance depends on the noise vari-
ance, or equivalently, the SNR. In high SNR, the complexity of
MSD2 is the lowest among all the detectors. The complexity of
MSD1 is high, since it only performs naive BnB. The high com-
plexity of DF-DD is due to the computation of cancelling the
previous symbols, but DF-DD cannot offer ML performance.
Both MSD3 and MSD4 have lower complexity than MSD1 and
MSD2 in low SNR, and MSD3 and MSD4 perform better than
DF-DD. Therefore, MSD3 and MSD4 are suitable in low SNR,
and MSD2 is efficient in high SNR.

In Figs. 6 and 7, the performance and complexity are com-
pared for different detectors with , and the other
parameters are set the same as in Figs. 4 and 5. An error floor
appears for SSD in high SNR. When , the performance
gap between MSD2 and DF-DD is 0.4 dB at BER , and
the gap increases to 1 dB when (Fig. 6). However, both
MSD3 and MSD4 perform close to MSD2. MSD2 has a 6.5-dB
loss over CD with at BER , but the loss reduces
to 2.5 dB when . The complexity of different detectors,
as shown in Fig. 7, has similar properties to those explained in
Fig. 6.

We compare the performance and complexity for different
detectors in Figs. 8 and 9 with , and the other
parameters are the same as before. Note that SSD exhibits a
large error floor, which can be reduced by using both DF-DD
and our proposed MSDs. MSD2 has smaller error floors than
DF-DD. When , the error floor is not observed for both
MSD2 and MSD4 within the plotted SNR region. There also
exists a large gap between MSD2 and DF-DD. MSD4 performs
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Fig. 6. Performance comparison of N = 4 transmitter antennas, N =

1 receiver antenna with N = 3; 6, and R = 1 as a function of SNR. The
normalized Doppler frequency is f T = 0:0075 and R = 1.

Fig. 7. Complexity comparison ofN = 4 transmitter antennas, andN = 1

receiver antenna with N = 3; 6 as a function of SNR. The normalized Doppler
frequency is f T = 0:0075 and R = 1.

close to MSD2; for example, at BER , the performance
gap is only 1.2 dB. MSD3 also exhibits large error floors, which
can be reduced by increasing both and . Compared with the
case , the performance gap between MSD2 with

and CD increases significantly, almost 10 dB at BER
. Therefore, the performance of all of the noncoherent

detectors degrades with increasing . The complexity of all
of the proposed MSDs increases with increasing . This is
because for large , the coefficients in (8) are far from
one. The bound given by computing (8) will be, on average,
larger than that in small . MSD2 still achieves the minimum
complexity in high SNR. In low SNR, MSD3 and MSD4 again
have lower complexity than MSD2. They are suitable in low
SNR, where the complexity of MSD2 is rather high.

In Fig. 10, we investigate the complexity per block of MSD2
as a function of different and the normalized Doppler
with fixed SNR dB. When , the complexity
per block increases almost linearly as increases. Different

Fig. 8. Performance comparison of N = 4 transmitter antennas, and N =

1 receiver antenna withN = 3; 6 as a function of SNR. The normalized Doppler
frequency is f T = 0:03 and R = 1.

Fig. 9. Complexity comparison ofN = 4 transmitter antennas, andN = 1

receiver antenna with N = 3; 6 as a function of SNR. The normalized Doppler
frequency is f T = 0:03 and R = 1.

results in different slopes, which is also due to the bound
variation by coefficients . When the normalized Doppler fre-
quency is as high as 0.03, the slope is large at first, and then be-
comes flat with increasing . Fig. 10 also suggests higher
will cause higher complexity.

V. CONCLUSION

This paper has considered efficient algorithms for MSD of
DUSTM over QS fading channels. We have derived a novel de-
tection algorithm called BID for SSD of diagonal constellations.
This algorithm is exact ML and substantially saves complexity,
particularly in high SNR. In relation to the LLL detector [15],
the proposed BID performs better and saves complexity in high
SNRs. As well, an interesting and novel feature is the use of
the extended Euclidean algorithm for detection. Our BID algo-
rithm may also be adapted for DF-DD. For MSD, we developed
four detectors, all of which are derivatives of the BID algorithm.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:26 from IEEE Xplore.  Restrictions apply. 



CUI AND TELLAMBURA: BOUND INTERSECTION DETECTION FOR MULTIPLE-SYMBOL DUSTM 2123

Fig. 10. Complexity of MSD2 for N = 4 transmitter antennas, N = 1

receiver antenna with SNR = 30 dB,R = 1, and different normalized Doppler
frequencies as a function of N .

MSD1 and MSD2 are both ML. MSD3 first generates a candi-
date subset for each via BID, and exhaustively searches over
the reduced space. MSD4 generalizes the DF-DD.
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