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Intercarrier Interference Self-Cancellation
Space-Frequency Codes for MIMO-OFDM

Dũng Ngo.c Ðào, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract—Space-frequency (SF) codes that exploit both spatial
and frequency diversity can be designed using orthogonal fre-
quency division multiplexing (OFDM). However, OFDM is sen-
sitive to frequency offset (FO), which generates intercarrier in-
terference (ICI) among subcarriers. We investigate the pair-wise
error probability (PEP) performance of SF codes over quasistatic,
frequency selective Rayleigh fading channels with FO. We prove
that the conventional SF code design criteria remain valid. The
negligible performance loss for small FOs (less than 1%), however,
increases with FO and with signal to noise ratio (SNR). While di-
versity can be used to mitigate ICI, as FO increases, the PEP does
not rapidly decay with SNR. Therefore, we propose a new class of
SF codes called ICI self-cancellation SF (ISC-SF) codes to combat
ICI effectively even with high FO (10%). ISC-SF codes are con-
structed from existing full diversity space-time codes. Importantly,
our code design provide a satisfactory tradeoff among error correc-
tion ability, ICI reduction and spectral efficiency. Furthermore, we
demonstrate that ISC-SF codes can also mitigate the ICI caused by
phase noise and time varying channels. Simulation results affirm
the theoretical analysis.

Index Terms—Inter-carrier interference (ICI), multiple input
multiple output (MIMO), orthogonal frequency division multiplex-
ing (OFDM), space-frequency (SF) codes.

I. INTRODUCTION

S PACE-TIME (ST) coding and related multiple input multi-
ple output (MIMO) technologies have rapidly become one

of the most active research areas in wireless communications.
ST wireless technology applications include third generation
mobile and fixed wireless standards [1]. The first ST codes
proposed by Tarokh et al. [2] for coherent systems over MIMO
quasistatic flat fading channels (i.e., frequency nonselective fad-
ing) achieve the maximum diversity order d = MN , where M
and N are the number of transmit (Tx) and receive (Rx) anten-
nas. Designing ST codes for MIMO frequency selective fading
channels has also received much attention. In frequency selec-
tive fading channels, the maximum achievable diversity order
is d = LMN where L is the number of paths of the frequency
selective fading channels. When ST codes designed for flat fad-
ing channels are transmitted over frequency selective fading
channels, they can achieve at least the designed diversity order,
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but are not guaranteed to reach the maximum diversity order
LMN.

To achieve the full potential diversity order of frequency se-
lective fading channels, in general, ST codes can be designed in
the time domain [3] or in the frequency domain using orthogo-
nal frequency division multiplexing (OFDM) and the resulting
codes are called space-frequency (SF) codes [4]–[6]. Coding
for MIMO-OFDM to achieve high diversity order has drawn
much attention after the initial papers [4], [5]. The authors in [7]
design SF codes (and also ST codes) using algebraic theory for
frequency selective fading channels [8]. [9] introduces a full-
diversity full-rate SF code design, which is developed using
complex field coding [10]. The authors in [11] propose a con-
catenation scheme with Alamouti code [12] as the inner and a
trellis code as the outer. However, a simple multipath channel
model with equally spaced path delays and uniform power delay
profile is assumed in [5]–[7]. Whether these SF coding structures
still preserve their diversity order in arbitrary frequency selec-
tive fading channels is not proven. More generally, Su et al. [13]
derive SF code criteria, showing an explicit relation between the
SF code matrix and the characteristic parameters of frequency
selective fading channels such as the path delays and power
delay profile. The authors in [13] introduce a class of SF codes
formed by repetition ST codes. They also show that when any
full diversity ST code is used in MIMO-OFDM as an SF code,
it achieves at least the diversity order that has been designed in
the time domain. Thus, many ST codes are usable as SF codes.

Since the SF codes operate over OFDM, their performance
can be affected by underlying impairments such as frequency
offset (FO), phase noise, and time varying channels, to name a
few. A residual FO exists due to carrier synchronization mis-
match and Doppler shift [14]. Residual FO destroys subcarrier
orthogonality, which generates intercarrier interference (ICI),
and the bit error rate (BER) increases consequently. The ef-
fect of such impairments on the conventional (i.e., single in-
put single output (SISO)) OFDM has been widely investigated.
For example, in [15], BER is calculated for uncoded SISO-
OFDM systems with several modulation schemes. The authors
in [16], [17] provide BER expressions of MIMO-OFDM em-
ploying Alamouti’s scheme [12]. The authors in [18] analyze
the SF code performance in different propagation settings such
as Rayleigh and Rician fading channels and with spatial cor-
relation at the transmitter and/or receiver. However, to the best
of our knowledge, the impact of ICI due to FO on the pairwise
error probability (PEP) performance of general SF codes, and
whether the existing SF code design criteria should be modi-
fied when ICI exists, have not been investigated. This important
question will be addressed in our paper.
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We analytically show that the conventional SF code design
criteria hold even with FO. The performance loss is negligible if
the normalized frequency offset (NFO) is small. This loss, how-
ever, increases rapidly with the increasing NFO and with signal
to noise ratio (SNR). When the NFO is large, the dominance of
ICI noise power prevents the typical rapid decay of PEP with
SNR and the PEP performance hits a floor.

Since ICI can severely degrade the performance of OFDM,
several ICI suppression methods are available (see [19]–[21] and
references therein). For SISO-OFDM, the authors in [22], [23]
propose ICI self-cancellation coding or polynomial cancellation
coding to mitigate ICI (caused by FO) effectively at the cost of
reducing spectral efficiency. By analyzing [22], [23] and [13],
we derive a new class of SF codes named ICI self-cancellation
SF (ISC-SF) codes that provide a satisfactory tradeoff among
error correction ability, ICI reduction, and spectral efficiency.
ISC-SF codes not only achieve the same diversity order (at
least 2MN ) and coding gains as the corresponding SF codes
derived in [13], but also notably improve the performance of SF
codes with FO. Although our primary focus is the performance
of ISC-SF codes with FO, we demonstrate that ISC-SF codes
also perform well when ICI is caused by phase noise, and time
varying channels. Due to the similar nature of ICI caused by
FO, phase noise, and time varying channels, we present the
simulation results for FO only.

We summarize the contributions of the paper as follows:
1) The performance of SF codes with FO is analyzed.
2) A new class of SF codes is proposed, which is capable of

both error correction and ICI reduction produced by FO,
phase noise, and time varying channels.

The rest of the paper is organized as follows. Section II
presents the model of MIMO-OFDM systems with FO. Section
III reviews the design criteria of SF codes. In Section IV, we
derive the PEP performance of SF codes with FO. In Section V,
we propose a new class of SF codes that significantly improve
the performance of SF codes with FO. Section VI shows how
ISC-SF codes also perform well with phase noise and time vary-
ing channels. Section VII provides simulations to support the
theoretical analysis for the case of FO. The results of the paper
are summarized in Section VIII.

Notation: Superscripts ( · )T and ( · )† denotes matrix trans-
pose and transpose conjugate operations. E[ · ] denotes statistical
mean. H̃ indicates the quantity H being derived with FO. The
diagonal matrix with elements of vector X on the main diagonal
is denoted by diag (X).

II. FREQUENCY OFFSET IN MIMO-OFDM SYSTEMS

We now discuss a model of MIMO-OFDM systems and ex-
tend this model to include the effects of FO for performance
analysis of SF codes with FO.

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system with M Tx and N Rx an-
tennas as illustrated in Fig. 1. The number of subcarriers in the
OFDM modulators is K. The L−path quasistatic Rayleigh fad-
ing channel model is assumed for the link between Tx antenna

Fig. 1. MIMO-OFDM model.

m (m = 1, . . . ,M) and Rx antenna n (n = 1, . . . , N). The
channel impulse response in the time domain is [24]

hm,n (t, τ) =
L−1∑
l=0

αm,n (t, l)δ(τ − τl) (2)

where τl is the delay of the lth path (l = 0, . . . , L − 1) and δ( · )
denotes Dirac’s delta function. The coefficients αm,n (t, l)’s
are complex channel gains of the lth path between Tx an-
tenna m and Rx antenna n. They are modeled as zero-mean
complex Gaussian random variables (GRV’s) with variance
E[|αm,n (l)|2] = δ2

l . We assume the MIMO channel is spatially
uncorrelated and remains constant for at least one OFDM sym-
bol duration, but can vary randomly from symbol to symbol.
Thus coefficients αm,n (t, l) are independent variables and the
time index t can be omitted. Without loss of generality, the total
power of L-path channels is normalized, so that

∑L−1
l=0 δ2

l = 1.
The frequency response of the channel between Tx antenna m
and Rx antenna n at subcarrier k is

Hm,n (k) =
L−1∑
l=0

αm,n (l) e−j2πk∆f τl , j =
√
−1 (3)

where ∆f = 1/Ts is the subcarrier spacing and Ts is the OFDM
symbol duration.

The transmitted symbols are distributed over M Tx antennas
and K subcarriers of each OFDM modulator. Let cm (k) be
the kth subcarrier input symbol being sent from Tx antenna m
in one OFDM symbol duration. In the frequency domain, the
transmitted symbols over M antennas can be represented in the
matrix form as follows.

C =




c1(0) c2(0) · · · cM (0)
c1(1) c2(1) · · · cM (1)
· · · ·

c1(K − 1) c2(K − 1) · · · cM (K − 1)


 . (4)

Before transmitting, the K symbols of each column in (4)
are modulated by inverse discrete Fourier transform (IDFT),
and cyclic prefix (CP) symbols are appended [25]. At the re-
ceiver side, the CP symbols are discarded to remove inter-block
interference. The remaining K symbols are DFT demodulated
to recover transmitted symbols in the frequency domain. As-
sume that received subcarriers are perfectly sampled and let the
received signal at the Rx antenna n be

yn (k) =
M∑

m=1

cm (k)Hm,n (k) + zn (k), k = 0, . . . ,K − 1,

(5)
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where zn (k)’s are independent and identically distributed (i.i.d)
noise samples, which are modelled as zero-mean complex
GRV’s. The Tx power from each antenna is normalized to 1,
resulting a noise variance per dimension of M/(2ρ) where ρ is
the average SNR at each Rx antenna.

The input-output relation of MIMO-OFDM systems can be
described in several matrix forms. In this paper, we adopt the
approach in [13] to derive the PEP of SF codes. For the zero FO
case, the received signal in (5) is presented in the vector form
as

Y = DH + Z (6)

where Y is the received signal vector that concatenates received
signals of N Rx antennas as

Y = [y1(0) . . . y1(K − 1)y2(0) . . . y2(K − 1) . . .

yN (0) . . . yN (K − 1)]T , (7)

and the channel vector H is of size KMN × 1 is given by

H =
[
HT

1,1 · · ·HT
M,1H

T
1,2 · · ·HT

M,2 · · ·HT
1,N · · ·HT

M,N

]T
(8)

where

Hm,n = [Hm,n (0)Hm,n (1) . . . Hm,n (K − 1)]T . (9)

The noise vector Z is represented similarly to the received
vector Y as

Z = [z1(0) . . . z1(K − 1)z2(0) . . .

z2(K − 1) . . . zN (0) . . . zN (K − 1)]T . (10)

The data matrix D of size KM × KMN in (11), shown at
bottom of this page, represents the transmitted data in (4). Each
matrix Dm consists of coded symbols transmitted from antenna
m,

Dm = diag [cm (0), cm (1), . . . , cm (K0 − 1)] . (12)

B. Model of MIMO-OFDM Systems With FO

We now extend the MIMO-OFDM system given in (6) for the
nonzero FO case. To subsume the FO in (6), we first review the
model of SISO systems with FO that was described in [26].

There is always a FO δf at the sampling points of received
signal in frequency domain [26], [25]. In the SISO-OFDM sys-
tem, the NFO ε is defined by ε = δf/∆f . The NFO is the same
for all subcarriers of one OFDM symbol, but may vary from
symbol to symbol. In the SISO systems, the received symbol at
the kth subcarrier is expressed as follows:

y(k) = S(0)H(k)c(k)︸ ︷︷ ︸
desired signal

+
K−1∑

p=0,p �=k

S(p − k)H(p)c(p)

︸ ︷︷ ︸
ICI

+z(k)

(13)

Let I(k) denotes ICI from the other subcarriers to the received
kth subcarrier:

I(k) =
K−1∑

p=0,p �=k

S(p − k)H(p)c(p). (14)

Coefficients S(k) in (14) are expressed as:

S(k) =
sin[π(k + ε)]

K sin
[

π
K (k + ε)

] exp
[
jπ

(
1 − 1

K

)
(k + ε)

]
.

(15)

The coefficient S(0) in (13) can be derived by substituting
k = 0 in (15) to be

S(0) =
sin(πε)

K sin
(

π
K ε

) exp
[
jπ

(
1 − 1

K

)
ε

]
. (16)

Equations (13) and (16) show that due to the FO, the am-
plitude of the desired subcarrier is attenuated and its phase is
rotated. Furthermore, the ICI from the other subcarriers can be
considered as an additional noise. Hence the SNR of the received
signal is reduced.

We now generalize (13) for MIMO-OFDM systems and allow
for distinct FOs among different Tx/Rx antenna pairs. Let the
NFO of the transmission link from Tx antenna m and Rx antenna
n be εm,n . For MIMO systems, the ICI term In (k) at subcarrier
k of each Rx antenna n is the superposition of M ICI terms
Im,n (k) caused by transmitted signals from Tx antennas m as

In (k) =
M∑

m=1

Im,n (k) (17)

where

Im,n (k) =
K−1∑

p=0,p �=k

cm (p)Hm,n (p)Sm,n (p − k) (18)

and

Sm,n (k) =
sin [π(k + εm,n )]

K sin
[

π
K (k + εm,n )

]
× exp

[
jπ

(
1 − 1

K

)
(k + εm,n )

]
, (19)

Sm,n (0) =
sin(πεm,n )

K sin
(

π
K εm,n

) exp
[
jπ

(
1 − 1

K

)
εm,n

]
.

(20)

Equation (13) becomes:

yn (k) =
M∑

m=1

cm (k)Hm,n (k)Sm,n (0) + In (k) + zn (k). (21)

D =




D1 D2 · · · DM 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 D1 D2 · · · DM · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · D1 D2 · · · DM


 . (11)
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Note that Sm,n (0) is a constant with respect to subcarrier
index k, hence in (21) we can group Hm,n (k) and Sm,n (0) as:

H̃m,n (k) = Sm,n (0)Hm,n (k).

The equivalent form of (9) is

H̃m,n = [H̃m,n (0)H̃m,n (1) · · · H̃m,n (K − 1)]T . (22)

Matrices H̃m,n are arranged into the matrix H̃, which has
exactly the same structure with the matrix H given in (8), but
the matrix H̃ accounts for the presence of FO.

The equivalent noise at each received subcarrier is a sum of
the ICI noise and complex Gaussian thermal noise terms as

z̃n (k) = In (k) + zn (k). (23)

The MIMO-OFDM model with FO is now written as

Y = DH̃ + Z̃ (24)

where Y is the received vector and the matrix D consists of
transmitted symbols. They are described in (7) and (10) accord-
ingly and rewritten in (24) without modification.

The matrix representations (6) and (24) are suitable for de-
riving the PEP performance of SF codes. In Section III, the PEP
upper bound of SF codes without FO based on (6) will be given.
It is an asymptotic bound [27] and is tighter than the Chernoff
bound [2] at high SNR. In the presence of FO, the equivalent
representation (24) will be used to derive the PEP performance
(Section IV).

III. SPACE-FREQUENCY CODE DESIGN CRITERIA

In the SF encoding process, the source data is two-
dimensionally encoded across the space (over multiple anten-
nas) and frequency (over the subcarriers of OFDM symbols).
An SF codeword may occupy several OFDM symbols [6], [11]
or one OFDM symbol [5], [7], [13]. The maximal diversity or-
der can be achieved by coding over the subcarriers of only one
OFDM symbol [5], [13], whereas in [6], [11] the maximal di-
versity order is gained by coding over multiple OFDM symbols,
which obviously causes higher coding and decoding delay. We
adopt the approach in [13] for our analysis. In the following, we
summarize the results of [13].

The input data symbols are divided into b-symbol source
words and are parsed into blocks and mapped to SF codewords
as represented in (4). At the receiver, the maximum likelihood
(ML) decoder selects a codeword E if its metric Me is mini-
mum:

Me =
K−1∑
k=0

N∑
n=1

∣∣∣∣∣yn (k) −
M∑

m=1

em (k)Hm,n (k)

∣∣∣∣∣
2

. (25)

Assume perfect channel state information (CSI) is available
at the receiver but not at the transmitter and perfect symbol
timing. The PEP for a transmitted codeword C and erroneously
decoded codeword E in a frequency selective fading channel is
upper bounded as [13]:

P (C → E) ≤
(

2ΓN − 1
ΓN

) (
Γ∏

i=1

λi

)−N

ρ−ΓN (26)

where Γ is the rank of the matrix Q which is defined as

Q
∆= ∆ o R (27)

and where ◦ denotes Hadamard product [28] and λi(i =
1, . . . ,Γ) are nonzero eigenvalues of Q. The matrices ∆ and
R are as follows:

∆ = (C − E)(C − E)†, (28)

R = Rm,n = E
[
Hm,nH†

m,n

]
= Wdiag

(
δ2
0 , δ2

1 , . . . , δ2
L−1

)
W † (29)

where

W =




1 1 . . . 1
wτ0 wτ1 · · · wτL −1

...
...

...
...

w(K−1)τ0 w(K−1)τ1 · · · w(K−1)τL −1


 (30)

and w = e−j2π∆f .
From (26), the SF code design criteria can be stated as follows.
1) Diversity criterion: The minimum rank of Q over all pairs

of distinct codewords should be as large as possible.
2) Product criterion: The minimum value of the product∏Γ

i=1 λi over all pairs of distinct codewords should be
also maximized.

From (26), the diversity order of SF codes is ΓN , maximum
achievable diversity order is equal to min(LMN,KN).

IV. PERFORMANCE OF SF CODES WITH FO

We continue the analysis with the two assumptions below:
1) AS1: Residual NFOs εm,n are independent of the channel

coefficients.
2) AS2: The ICI terms Im,n (k) in (17) and (18) are indepen-

dent.
The coherent receiver first estimates the channel coefficients.

Then the phase shift caused by FO is compensated [26]. Thus
the residual FO can be weakly dependent on the channel estima-
tion method. AS1 is given to simplify our analysis. In practice,
transmit data over multiple antennas are encoded. There exists
a degree of correlation among the transmitted data streams and
consequently, the ICI noise terms Im,n (k) are also correlated
with respect to the subscript m. With AS2, all the ICI noise
at the Rx antennas will have the same variance and zero mean.
AS2 will be made clearer during the derivation below. Therefore
the ML detection in the presence of AWGN noise given in (25)
holds.

To investigate the PEP of SF codes with FO using formula
(26), the channel coefficients H̃m,n (k) in (26) should be com-
plex GRVs. This requirement can be met if Sm,n (0) is determin-
istic or NFO is not a random variable (Case 1). In the general
case, εm,n can be assumed to be i.i.d random variables in the
range [E1, E2], and their values can be changed from OFDM
symbol to symbol (Case 2). However, the performance of SF
codes with fixed values of FO is of greater interest since it pro-
vides a closer look at the performance of SF codes at specific
FO values.
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For analytical tractability, we additionally have the third as-
sumption:

3) AS3: NFO εm,n are constant and the same for all pairs of
indices (m,n) : εm,n = ε0.

If |E1| = |E2| = |ε0| (if the absolute value of random NFO
is not more than a fixed NFO value), we expect that the PEP
performance of Case 2 is more optimistic than that of the Case 1.
Therefore, PEP obtained with AS3 is an upper bound of PEP
with FO. This assumption will be relaxed in our simulation
study (Section VII) and thus more realistic performance evalu-
ation is carried out by simulations. Our analytical results below,
however, provide useful insight into the ICI performance of SF
codes.

In OFDM systems, K is typically 64 or larger; therefore the
central limit theorem can be applied to model the term Im,n (k)
as a GRV [25]. The ICI term In (k) in (17) is a sum of M
independent GRVs, it is also a GRV. The first two moments of the
term Im,n (k) in (18) by Gaussian approximation are calculated
as follows. Assume that coded symbols cm (p) have zero-mean
(such as M -PAM, M -PSK, and M -QAM signal constellations),
then E[Im,n (k)] = 0.

The variance σ2
Im , n

of Im,n (k) in (18) is

σ2
Im

= E[|Im (k)|2]

= E


∣∣∣∣∣

(
K−1∑
p=0

cm (p)Hm,n (p)Sm,n (p − k)

)∣∣∣∣∣
2



− E[|cm (k)Hm,n (k)Sm,n (0)|2]

=
K−1∑
p=0

E[|cm (p)|2]E[|Hm,n (p)|2]E[|Sm,n (p − n)|2]

− E[|cm (k)|2]E[|Hm,n (k)|2]E[|Sm,n (0)|2]. (31)

In the last two rows of (31), the term E[|cm (k)|2] is the signal
power, which is normalized to 1. The term E[|Hm,n (k)|2] is the
average of the channel power, and it is also normalized to 1.
Equation (31) becomes

σ2
Im , n

=
K−1∑
p=0

E[|S(p − k)|2] − S0 (32)

where S0 = E[|Sm,n (0)|2] = |Sm,n (0)|2. Note that the residual
NFO is usually small, ε ≤ 0.2 [25], the number of subcarriers
K ≥ 8, hence K sin(πε/K) ≈ πε. Let p(ε) be the probability
density function (pdf) of εm,n . In the case of constant FO,
p(ε) = 1, S0 can be evaluated as

S0 =
(

sin(πε0)
πε0

)2

= [sinc (ε0)]2. (33)

It is found in [14] that the sum
∑K−1

p=0 E[|S(p − k)|2] = 1,
hence

σ2
Im , n

= 1 − S0. (34)

It is clear that σ2
Im , n

is independent of indices m and n, and
it is just dependent on the NFO through S0. With AS2, In (k)

is a complex GRV with zero-mean and variance M(1 − S0).
Therefore, the ICI noise of MIMO-OFDM z̃n (k) given in (23)
is also a zero-mean complex GRV with variance σ2

z = M(1 −
S0 + 1/ρ). Values of σ2

z is identical for all Rx antennas.
From (21), the received signal power is multiplied by S0,

hence the equivalent SNR at each Rx antenna with FO is

ρ̃ =
MS0

σ2
z

=
(

S0

(1 − S0)ρ + 1

)
ρ. (35)

Using the MIMO-OFDM model developed in Section II-B
and SF code design criteria in Section III, we derive PEP per-
formance given in (26) with FO in the following.

The correlation matrix defined in (29) for equivalent channel
matrix H̃m,n given in (21) has a new form

R̃ = R̃m,n = E[H̃m,n (H̃m,n )†]

= S0E[Hm,nH†
m,n ] = S0Rm,n . (36)

Hence the matrix Q in (27) becomes matrix Q̃

Q̃ = ∆ ◦ R̃m,n = S0(∆ ◦ Rm,n ) = S0Q. (37)

We can easily verify that:
1) Matrices Q and Q̃ have the same rank Γ.
2) If λi is an eigenvalue of Q, then λ̃i = S0λi is an eigenvalue

of Q̃.
Substiting λ̃ = S0λi and ρ̃ into (26), and rearranging the

terms, the PEP expression with FO is

P (C → E) ≤ L0

(
2ΓN − 1

ΓN

) (
Γ∏

i=1

λi

)−N

ρ−ΓN (38)

where

L0 =
(

S2
0

ρ(1 − S0) + 1

)−ΓN

. (39)

Comparing (26) and (38), we discern that L0 represents the
PEP performance loss due to FO. From (26), (38), and (39), we
draw the following theoretical conclusions:

1) The design criteria for SF codes without FO is still valid
in the case of FO. The code design should maximize the
diversity order and coding gain.

2) At the same Tx power, the higher the NFO, the higher the
PEP performance loss. That is, at the same PEP, the higher
the NFO, the further the PEP curve shifted to the right.

3) The PEP curves will shift right if FO is nonzero. However,
with the same NFO, the shift of PEP curves of lower
diversity order systems is larger than the shift of PEP
curves of the system with higher diversity order. This is
due to the fact that given the same loss factor L0, the SNR
compensation for this loss is smaller for the codes with
higher diversity order [cf. (39)]. Thus, the higher diversity
order systems are more robust to the effects of FO.

4) If ρ(1 − S0) � 1 or at high Tx power and high value of
FO,

P (C → E) ≤
(

2ΓN − 1
ΓN

) (
Γ∏

i=1

λi

)−N

×
(

S2
0

1 − S0

)−ΓN

.

(40)
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The PEP is no longer inversely proportional with the SNR
and hits a floor.

These analytical results can be anticipated since the ICI
term is considered as an additional Gaussian noise. When FO
is small, the ICI power is smaller than the power of ther-
mal noise; thus its impact on the performance of SF codes
is negligible. However, when the FO is large, the ICI noise
dominates thermal noise. The ICI power increases with de-
sired signal power; therefore when SNR is large, ICI causes
the error floor as we have derived. Nevertheless, the analyt-
ical results reveal explicitly that when residual FO is small,
about 1%, the performance loss is almost negligible (see Sec-
tion VII).

To complete this section, we note that one can derive the ML
receiver using (21) and (25), and the same result as (38) can be
obtained.

V. ICI SELF-CANCELLATION SF CODES

In Section IV, we have shown that if the NFO is high, the PEP
performance is limited by a floor level at high SNR. Thus a SF
code which can mitigate the effects of high NFO is desirable.
We now relate SF codes and polynomial cancellation coding
(PCC). PCC is first proposed by authors in [22]. This idea is
further analyzed in [23] from theory of finite differences.

We now summarize and analyze the main results of PCC
in [22]. To mitigate the ICI caused by FO, one coded or uncoded
data symbol modulates a group of r, where r = 2, 3, 4, . . ., con-
secutive subcarriers. The optimum weighting coefficients for r
subcarriers to minimize ICI are the coefficients of the polyno-
mial (1 − D)r−1. The code rate of PCC is 1/r. The ICI per-
formance of this coding scheme increases with r at the cost of
spectral efficiency. Simulation results [22] show that this coding
scheme with r = 2 (or code rate 1/2) outperforms the system
using rate 1/2 convolutional code when NFO is high (20%), but
PCC performs poorly when NFO is small or medium (≤10%).
The reason is that this code is particularly designed to minimize
ICI and hence may not be suitable for error correction purposes.
To improve the performance of PCC, an outer error control code
is required. The resultant concatenated code has lower rates as
r increases. Thus, the smallest possible value of r, r = 2 is of
practical interest.

Another result of [22] is the ICI cancelling demodulation
(ICD) concept. For example, when r = 2, one data symbol x
is sent over two subcarriers that satisfies: c(k) = x, c(k + 1) =
−x. This process is called ICI cancellation modulation (ICM).
The received signals y(k) and y(k + 1) create a new signal
for detection: y∗(k) = y(k) − y(k + 1). This process is named
ICD. The combination of ICM and ICD is called ICI self-
cancellation (ISC). The ICI noise power of ISC is smaller than
the original ICI and ICI of ICM, therefore the ISC cancellation
demodulation is powerful against FO. From a diversity point of
view, using two values y(k) and y(k + 1) to detect one trans-
mitted symbol x could yield a diversity order of two. Since there
is a strong correlation between adjacent subcarriers, however,
the use of the two signals y(k) and y(k + 1) may not in fact
provide a diversity order of two. Our target is to maximize the

diversity order of SF codes; thus, in this paper, the ICM is our
concern, but not the ISC (the combination of ICM and ICD).

In summary, PCC is suitable for ICI reduction. However, its
error correction ability and spectral efficiency are low. There-
fore, a low order PCC code with r = 2 concatenated with pow-
erful error control codes would be a good tradeoff solution. We
next develop the idea of ICM to design a class of SF codes that
are robust to ICI.

Su et al. [13] show that the SF code formed by repeating each
row of a full diversity order ST codeword r times (1 ≤ r ≤ L)
achieves at least the diversity order d = rMN . This repetition
obviously reduces the spectral efficiency; thus we consider only
r = 2.

Let the number of OFDM subcarriers K = 2K̂. Suppose that
the length of an SF codeword equals the number of subcarriers
K. If the SF codeword length is smaller than K, a zero-padding
matrix can be used for the remaining subcarriers. An SF code-
word has the form

C1 =




c1(0) c2(0) · · · cM (0)
c1(0) c2(0) · · · cM (0)

. . · · · .
c1(K̂ − 1) c2(K̂ − 1) · · · cM (K̂ − 1)
c1(K̂ − 1) c2(K̂ − 1) · · · cM (K̂ − 1)


 . (41)

Applying the ICM scheme, for r = 2, this scheme is actually a
repetition scheme but the repeated symbols are sign-reversed. In
the case of MIMO-OFDM, the repeated rows are sign-reversed
to form new ISC-SF codewords as

C2 =




c1(0) c2(0) · · · cM (0)
−c1(0) −c2(0) · · · −cM (0)

· · · · · ·
c1(K̂ − 1) c2(K̂ − 1) · · · cM (K̂ − 1)
−c1(K̂ − 1) −c2(K̂ − 1) · · · −cM (K̂ − 1)


 .

(42)

We call the SF coding schemes given in (41) and (42) SC1
and SC2 for short. We now prove that the new coding scheme
SC2 yields the same coding gain and diversity order (at least
d = 2MN ) compared with SC1, but SC2 integrates ICI self-
cancellation capability.

Proof: Consider an entry ai,j of the matrix ∆1 defined in
(28) being created by SF codewords (41). The entry bi,j of the
matrix ∆2 being created by SF codewords in (42) is related with
ai,j as

bij =
{

aij , if (i + j) is even
−aij , if (i + j) is odd.

Note that the size of ∆1 and ∆2 is K × K,K = 2K̂ and, in
particular, they can be written as follows:

∆1 =




a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
. . .

...
aK 1 aK 2 · · · aK K


 ,
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∆2 =




b11 b12 · · · b1K

b21 b22 · · · b2K
...

...
. . .

...
bK 1 bK 2 · · · bK K




=




+a11 −a12 · · · −a1K

−a21 +a22 · · · +a2K
...

...
. . .

...
−aK 1 +aK 2 · · · +aK K


 .

The matrix R defined in (29) is the same for both SC1 and
SC2. Therefore, comparing the signs of entries of Q1 = ∆1 ◦ R
and Q2 = ∆2 ◦ R (defined in (27)), we can see that the signs of
entries of Q2 are changed in accordance with the sign changes
of entries of ∆2 compared to ∆1. Thus we have following
relationship:

1) If vector X1 = [x1 x2 x3 x4 · · · xK−1 xK ] is an
eigenvector of Q1 = ∆1 ◦ R, then X2 =
[x1 −x2 x3 −x4 · · · xK−1 −xK ] is an eigen-
vector of Q2 = ∆2 ◦ R and vice versa, where (Q1,∆1)
and (Q2,∆2) are sets of matrices associated with SF
codewords defined in (27) and (28) respectively.

2) If λ is an eigenvalue of X1, it is also an eigenvalue of X2

and vice versa. The rank of Q1 and Q2 are the same hence
SF codes SC1 and SC2 have the same diversity order.

Thus SF codes constructed as in (41) and (42) have the same
diversity order and coding gain. �

We refer to SC2 codes as ICI self-cancellation SF codes or
ISC-SF codes for short. The code rate of ISC-SF is Rt/2, where
Rt is the code rate of the underlying ST code. Repetition the
SF codewords more than twice in combination with polynomial
cancellation coding will gain additional diversity order and ICI
mitigation. However, the price paid for those improvements is
the spectral efficiency reduction. Moreover, from the simula-
tions in Section VII, we will see that the ISC-SF codes (r = 2)
perform well compared with the codes without ICI cancella-
tion. The higher order PCC codes (r > 2) would not signifi-
cantly improve ICI reduction. Thus analysis of the SF schemes
with higher repetition orders (i.e., lower rate) is not discussed
further. The ISC-SF coding scheme (42) gives a satisfactory
tradeoff among error control performance, ICI reduction and
spectral efficiency.

VI. PHASE NOISE AND TIME VARYING CHANNEL

Channel variations and phase noise also produce ICI. In Sec-
tion II, we assume that the MIMO channels remain constant
during one OFDM symbol. However, due to the relative move-
ment of the transmitter and receiver, the channels may vary
during one OFDM symbol. This variation causes ICI and makes
BER increase (see [29], [21], and references therein). For the
description of phase noise and its effects, refer to [30], [19], [31].

In the following, we use a continuous time model to show
how ICI is created by phase noise and time varying channels.
Consider SISO-OFDM systems. The transmitted signal over a

block, including CP, is given by

s(t) =
K−1∑
k=0

c(k)ej2πk∆f t , −Tcp ≤ t ≤ Ts, (43)

where Tcp is the length of CP. The duration of one OFDM
symbol with CP is Tb = Tcp + Ts .

The signal at the input of the receiver is

r(t) = s(t) ∗ h(t, τ) =
∫ ∞

−∞
h(t, τ)s(t − τ)dt + n(t)

=
K−1∑
k=0

L−1∑
l=0

c(k)h(t, τl)e−j2πk∆f τl ej2πk∆f t + n(t).

(44)

where n(t) is an AWGN process with zero-mean and onesided
power spectral density (PSD) is N0. At the demodulator, the
phase noise φ(t) between the carrier and the local oscillator is
added to the phase of received signals. In the baseband repre-
sentation, adding phase noise is equivalent to multiplying r(t)
with θ(t) = ejφ(t).

If we consider the effect of FO only as in Section II-B, let
φ(t) = 0 and h(t, τ) be constant, then one can derive y(p) as
in (13). In this section, we consider the ICI due to phase noise
and time varying channels, thus we let δf = 0 to simplify the
expressions. The demodulated signal y(p) is

y(p) = T−1
s

K−1∑
k=0

L−1∑
l=0

c(k)e−j2πk∆f τl

×
∫ Ts

0

h(t, τl)ejφ(t)ej2π (k−p)∆f t dt + n(p). (45)

To consider the effect of time varying channels only, let
φ(t) = 0 in (45); we then have

y(p) = H̆(p)c(p)︸ ︷︷ ︸
desired signal

+
K−1∑

k=0,k �=p

H̆(p − k)c(k)

︸ ︷︷ ︸
ICI

+n(p) (46)

where

H̆(i) =
L−1∑
l=0

(
c(k)e−j2πk∆f τl

∫ Ts

0

h(t, τl)ej2π (k−p)∆f t dt

)
.

(47)

The ICI term in (46) can be approximated by a zero-mean
GRV. Its power can be found in [32].

If we consider the effect of phase noise only, let h(t, τ) in
(45) be constant, and y(p) becomes

y(p) = a(0)H(k)c(p)︸ ︷︷ ︸
desired signal

+
K−1∑

k=0,k �=p

a(p − k)H(k)c(k)

︸ ︷︷ ︸
ICI

+n(p)

(48)
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Fig. 2. Performance of SF codes with K = 64, constant FO for the six path
COST207 typical urban channel model.

where

a(i) = T−1
s

∫ Ts

0

θ(t)e−j2πi∆f t dt, a(0) = T−1
s

∫ Ts

0

θ(t) dt.

(49)

Since H̆(i) in (47) is a non-GRV and a(0) in (49) is non-
constant, analyzing the PEP of SF codes with phase noise and
time varying channels becomes difficult. However, comparing
(46) and (48) with (14), one can see the ICI contributions of
subcarriers to one subcarrier due to time varying channels and
phase noise are similar to the ICI contribution due to FO. Thus,
ISC-SF codes with capability of cancelling ICI should perform
well compared with the SF codes without this feature in cases
of phase noise and time varying channels, as discussed for the
case of FO.

VII. SIMULATION RESULTS AND DISCUSSION

We give simulation results to verify the theoretical analysis
in Sections IV and V for SF codes with FO. We use two channel
models: 1) a simple two path channel with uniform power delay
profile and time delay between the two paths is 5 µs; and 2) the
sixpath COST207 typical urban (COST207 TU) channel model
[24], a more realistic model. We use algebraic ST convolutional
codes [7], [33] of code rate 1/2 with generator polynomial (5,
7) [34] without channel interleaver. The Viterbi decoder [33],
[34] is employed. The similar simulation results are observed
for both channel models. Thus, we present the simulations with,
COST207 TU channel model for brevity.

A. Simulations With Constant FO

We compare the performance of SF codes for 1%, 10%, and
20% NFO. Fig. 2 illustrates PEP curves of two OFDM systems
with 64 subcarriers and two Tx antennas. System 1 is equipped
with one Rx antenna and System 2 has two Rx antennas, so that
the diversity order of the two systems is at least d = 2 and d = 4,

Fig. 3. Performance of SF codes with K = 128, r = 2, constant FO, six path
COST207 channel model with and without ICI self-cancellation.

respectively. Using (33), for 1% NFO, S0 = 0.9997, and L0 ≈ 1
in the SNR region of interest (≤30 dB). Therefore, theoretically,
the performance loss is not significant. Fig. 2 confirms this
conclusion. If the NFO is small, say 1%, the PEP curves almost
overlap the PEP of the systems with no FO. In case NFO is 10%,
the PEP curves of all systems are shifted to the right and are
less steeper than the curves of PEP with 1% NFO; this shift is
larger for the system with smaller diversity order. For example,
at PEP = 10−3, the PEP curve of the system with d = 2 shifts
right 1.4 dB, whereas it is 0.8 dB for the system with d = 4. The
SNR needed to compensate for the effect of FO increases with
NFO. When NFO is 20%, the PEP reduces slightly even if SNR
increases significantly. The PEP performance reaches a floor at
an SNR of about 22 dB. This symptom is more serious for low
diversity order systems, where the floor level is higher than that
of higher diversity order systems.

B. Simulations With ICI Self-Cancelation SF Codes

The performance of SF coding schemes with and without ICI
self-cancellation (SC2 and SC1 accordingly) is illustrated in
Fig. 3. The systems to be examined have 128 subcarriers, 2 Tx
and 1 Rx antennas. We can verify the results in Section V that
when FO is absent, SC1 and SC2 have the same diversity order.
The difference between the coding gains of the two schemes is
very small, less than 0.2 dB at the plotted SNR. This difference
is expected to be zero at the higher SNR region. Once again,
the performance loss for 1% NFO is negligible for both SC1
and SC2. However, the improvement of SC2 over SC1 is re-
markable when NFO is 10% and 20%. For example, in Fig. 3
at PEP = 10−3 and 10% NFO, the performance loss of SC1 is
about 3.7 dB, whereas the loss is about 0.5 dB with SC2. This
improvement is significant in Fig. 3 where the loss of SC2 is
only 0.5 dB. In addition, SC2 lowers the error floor level notably
when NFO is very high at 20%.
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Fig. 4. Performance of SF codes with K = 64, uniformly distributed FO and
the six path COST207 typical urban channel model.

Fig. 5. Performance of SF codes with K = 128, r = 2, uniformly distributed
FO, six path COST207 channel model with and without ICI self-cancellation.

C. Simulations With Variable FO

In practice, the FO values of Rx signals at antenna n that were
transmitted from antenna m can be different, and they vary from
symbol to symbol. We now provide simulation results for vari-
able FO. The distribution of NFO values are assumed uniform
over the range [−E0, E0], where |E0| is the maximum NFO.
Similar to the previous simulations, we will examine perfor-
mance of the SF codes for |E0| = 1%, 10%, and 20%.

As discussed in Section IV, assumption AS3, the performance
of SF codes with variable FO should be upperbounded by the
performance curves with the constant FO. Fig. 4 presents perfor-
mance of 64-subcarrier systems with one and two Tx antennas.
The two systems have two Tx antennas. By examining Figs. 2
and 4, exactly the same observations can be made as with the
constant FO. The only difference between the constant and vari-
able FO cases is that in the latter case, the performance loss is

always less than the loss of the former case, as expected. For
example, comparing Figs. 2 and 4, for the system 1 (d = 2),
10% NFO, at PEP = 10−3, the loss is about 3 dB in case of
constant FO, while it is about 1.7 dB for the system with varying
FO.

Fig. 5 presents the performance of the SF coding schemes
SC1 and SC2 with variable FO. Comparing their performances
that are given in Fig. 3 with fixed FO, the loss for variable FO
is smaller.

VIII. CONCLUSION

We developed a MIMO-OFDM model with FO and used this
model to analyze the PEP performance of SF codes. Using the
PEP upper bound of SF codes, we showed that the conventional
code design criteria remain valid provided FO is small. ICI is
less severe for SF codes with high diversity order. Therefore,
diversity not only improves the performance of OFDM systems
in the dispersive channels, but also makes the system robust to
ICI. Furthermore, we proposed a new class of SF codes, ISC-SF
codes with diversity order of at least 2MN . ISC-SF codes are
constructed from ST codes to efficiently mitigate ICI caused by
FO, phase noise, and time varying channels. This class of SF
codes permits a good tradeoff among error correction capability,
ICI reduction, and spectral efficiency. Our results suggest a new
direction in the design of ST/SF codes capable of both error
correction and ICI reduction.
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