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PAPR Reduction of OFDM Signals Using Partial
Transmit Sequence: An Optimal Approach

Using Sphere Decoding
Ali Alavi, Chintha Tellambura, Senior Member, IEEE, and Ivan Fair

Abstract— Partial transmit sequence (PTS) is a promising
technique for peak-to-average-power ratio (PAPR) reduction in
orthogonal frequency division multiplexing (OFDM) systems.
Computation of optimal PTS weight factors via exhaustive search
requires exponential complexity in the number of subblocks;
consequently, many suboptimal strategies have been developed
to date. In this letter, we introduce an efficient algorithm for
computing the optimal PTS weights that has lower complexity
than exhaustive search.

Index Terms— OFDM, PAPR, PTS.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is emerging as a key technology for 4th

generation (4G) cellular networks. It is increasingly held
that OFDM results in an improved downlink performance
for 4G [1]. However, a drawback is the potentially high
peak-to-average power ratio (PAPR) of OFDM signals.
PAPR reduction techniques include block coding based on
Golay sequences (with dual capabilities of error correction
and peak reduction) [2] and clipping/filtering methods.
Another such technique that is distortion-free and of low
redundancy is partial transmit sequences (PTS) [3], [4].
Computation of optimal PTS weight factors via exhaustive
search requires exponential complexity in the number of
subblocks; consequently, many suboptimal strategies have
been developed to date. In this letter, we introduce an efficient
algorithm for computing the optimal PTS weights that has
lower complexity than exhaustive search.

Suboptimal PTS strategies include the following. The it-
erative flipping algorithm (FA) [5] has complexity linearly
proportional to the number of subblocks, and each phase
factor is individually optimized regardless of the optimal value
of other phases (it is an example of greedy algorithm). A
neighborhood search is proposed in [6] using gradient descent
search. Reference [7] uses dual layered phase sequencing to
reduce complexity, at the price of PAPR performance degra-
dation. In [4] a suboptimal strategy is developed by modifying
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the problem into an equivalent problem of minimizing the sum
of phase-rotated vectors. An initial set of phase vectors are
computed by reducing the peak amplitude of each sample and
the best phase vector of the set is chosen as the final solution.
Finally, [8] gives an orthogonal projection-based approach for
computing PTS phase factors.

II. PTS APPROACH AND LATTICE PROBLEMS

Let X = [X1, · · · ,XN ]T be a block of N symbols being
transmitted where each symbol is modulated to one of the
carrier frequencies {fn, n = 1, · · · , N}. In OFDM, the N
subcarriers are chosen to be orthogonal (fn = n∆f) where
∆f = 1/NT and T is the signal period. The complex
envelope of the transmitted signal is

x(t) =
1√
N

N∑
n=1

Xnej2πfnt 0 ≤ t < NT (1)

where j =
√−1. The PAPR of the OFDM signal x(t) is

defined as

PAPR =
max |x(t)|2

E
[
|x(t)|2

] . (2)

Note that E
[
|x(t)|2

]
= 1 for unitary signal constellations.

To better approximate the PAPR (2), (1) can be oversampled
by generating LN samples, where L > 1 is the oversampling
factor. When L = 1, Nyquist-rate sampling is obtained. These
samples can be computed by using appropriate zero-padding
and using an inverse fast Fourier transform (IFFT).

In the PTS approach, X is divided into M disjoint sub-
blocks Xm (1 ≤ m < M ) of length U where N =
MU for some integers M and U . For m = 1, · · · ,M , let
[Rm,1, · · · , Rm,LN ]T be the zero-padded IFFT of Xm. PTS
combines phase-rotated versions of these sub-block IFFTs in
order to minimize the PAPR. The signal samples at the PTS
output can be written as

x′ =

⎡
⎢⎢⎢⎣

R1,1 R1,2 · · · R1,M

R2,1 R2,2

...
. . .

RLN,1 RLN,M

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
R

·

⎡
⎢⎢⎢⎣

b1

b2

...
bM

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b

(3)
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where x′ = [x′
1, · · · , x′

LN ] is the block of optimized signal
samples. The optimization problem is to find optimum phases
bi according to

{b∗1, · · · , b∗M} = arg min︸ ︷︷ ︸
{b1,··· ,bM}

⎛
⎝ max︸︷︷︸

1≤k<LN

∣∣∣∣∣
M∑

m=1

bmRk,m

∣∣∣∣∣
⎞
⎠ (4)

where bi ∈ P = {e j2πk
q , k = 0, · · · , q − 1}. The last phase

factor can be fixed (bM = 1) without loss of generality.
Therefore, qM−1 distinct possible vectors b should be tested
to solve (4). Accordingly, in an exhaustive search approach,
the computational complexity increases exponentially with the
number of sub-blocks. In the next section, we propose a new
optimization algorithm that solves (4) with lower complexity.

Our new algorithm is motivated by the shortest vector
problem (SVP) in a lattice. An M -dimensional lattice is the
set of vectors (lattice points) {Ab | bi ∈ Z}, where b =
(b1, . . . , bM )′ and the columns of matrix A ∈ R

N×M are
called the basis for the lattice. The SVP requires finding the
shortest non-zero vector in the lattice, where the length can
be measured in any lp (p ≥ 1) norm. The lp norm of a vector
x = (x1, x2, . . . , xN ) is defined to be ||x||p = (

∑ |xi|p) 1
p

and ||x||∞ = maxi |xi| . Fincke and Phost [9] develop an
efficient algorithm for SVP in l2 (i.e., Euclidean distance) by
enumerating all the lattice points inside a sphere centered at
the origin. This is one example of sphere decoding which
has wide application in communication problems (see [10]
for a detailed survey). The signal vectors (3) can be readily
interpreted as lattice points generated by R. However, (4) is
equivalent to the SVP in l∞ norm. As such, the original Fincke
Phost sphere decoder (FPSD) cannot be directly applied to our
problem at hand. Nevertheless, the basic premise of FPSD
- to generate only lattice points x for which ||x||2 ≤ µ -
can be adapted; consequently, only lattice points for which
||x||∞ ≤ µ are generated, and this is equivalent to |xk| ≤ µ
∀k.

III. NEW FPSD-BASED PTS OPTIMIZER

Let x′ = [x′
1, · · · , x′

LN ] be defined as in (3) and let Rk

represent the k-th row of the matrix R. Then each element of
x′ can be expressed as x′

k = Rk ·b. To find the PAPR of the
OFDM signal, the amplitude of x′

k is computed according to

|x′
k|2 = x′

k
H · x′

k

= bH · RH
k · Rk · b

= bH · [RH
k · Rk + α2I

]
︸ ︷︷ ︸

Ak

·b − α2bH · b

= bH · Ak · b − α2M. (5)

where α is an arbitrary nonzero real number and (·)H

denotes conjugate transpose. The resulting M ×M matrix Ak

is positive-definite due to the addition of α2I, and therefore
can be Cholesky factorized as

Ak = QH
k · Qk (6)

where Qk is an upper-triangular matrix. Substituting Ak

from (6) into (5) gives

|x′
k|2 = bH · Qk

H · Qk · b − α2M

= ‖Qk · b‖2 − α2M (7)

where the signal sample is now a function of the phase
vector b. We wish to limit the PAPR (2) to µ2E

[
|x(t)|2

]
for

some positive number µ. The candidate phase vectors can be
generated from (7) subject to the following constraint:

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

Qk
1,1 · · · Qk

1,M

0 Qk
2,2

...
...

. . .
0 0 Qk

M,M

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

b1

b2

...
bM

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥

2

< µ2 + α2M (8)

for 1 ≤ k ≤ LN . Sphere decoding only searches among
those candidates that lie inside the sphere of radius µ2 +α2M
and therefore, reduces the complexity of the search. We rewrite
(8) as

M∑
v=1

∣∣∣∣∣
M∑

u=v

Qk
v,ubu

∣∣∣∣∣
2

< µ2 + α2M , 1 ≤ k ≤ LN. (9)

In order to satisfy (9), the following set of inequalities must
be satisfied for 1 ≤ k ≤ LN :

∣∣Qk
M,MbM

∣∣2 < µ2 + α2M, (10)

M∑
v=M−1

∣∣∣∣∣
M∑

u=v

Qk
v,ubu

∣∣∣∣∣
2

µ2 + α2M, (11)

M∑
v=M−2

∣∣∣∣∣
M∑

u=v

Qk
v,ubu

∣∣∣∣∣
2

µ2 + α2M, (12)

...

M∑
v=1

∣∣∣∣∣
M∑

u=v

Qk
v,ubu

∣∣∣∣∣
2

µ2 + α2M (13)

Note that (10) contains bM only, (11) contains bM−1 and
bM only, and so on. We fix bM = 1 without loss of generality.
However, (10) constrains the parameter µ (which specifies
the achievable PAPR reduction). We use (11) and bM = 1
to generate candidates for bM−1. These candidates and (12)
are used to generate candidates for bM−2. This process is
repeated until the candidates for the whole phase vector b are
generated. The resulting number of candidates is substantially
smaller than qM−1. Therefore, the search space is reduced,
compared to exhaustively searching all qM−1 phase vectors,
which reduces complexity.
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TABLE I

NORMALIZED OPTIMIZATION TIME VERSUS µ FOR 512 SUBCARRIER

OFDM WHERE M = 8 AND P = {−1, +1}

µ2 = 7 µ2 = 8 µ2 = 9 µ2 = 10 µ2 = 11

0.9427 0.6455 0.8408 0.9251 0.9659

TABLE II

NORMALIZED OPTIMIZATION TIME VERSUS µ FOR 512 SUBCARRIER

OFDM WHERE M = 4 AND P = {±1,±j}

µ2 = 7 µ2 = 8 µ2 = 9 µ2 = 10 µ2 = 11

0.7294 0.5106 0.5576 0.9082 0.9624

IV. SIMULATION RESULTS

Computer simulation is used to compare the performance
of our algorithm with that of exhaustive search and the
suboptimal FA [5]. We simulate OFDM signals with 512 8-
PSK subcarriers and an oversampling factor L = 4 is used.

We arbitrarily choose α =
√

1
M .

Fig. 1 compares the complementary cumulative density
functions (CCDF’s) of the PAPR where the number of sub-
blocks in PTS is 8 (M = 8). Also, the PTS phase factors
are chosen from P = {+1,−1}. Note also that both our
proposed algorithm and exhaustive search perform identically,
verifying that our proposed algorithm is optimal, resulting in
approximately 1-dB additional reduction compared to the FA.

Tables 1 and 2 show the execution time of the proposed
algorithm averaged over 10,000 OFDM symbols and nor-
malized with respect to the exhaustive search time, which is
constant in each setup (because all possible values are tested).
Simulation was done using MATLAB on a Pentium IV Intel
processor with 512MB RAM and 2.4 GHz clock speed. Table
1 shows the normalized optimization time versus the square
of the constructed sphere radius (µ2). The results show that
the computational time of the proposed optimizer can be as
low as 65% of that of an exhaustive optimizer.

CCDF’s for the case that the number of subblocks in PTS
is 4 (M = 4) is shown in Fig. 2. The PTS phase factors
are chosen from P = {±1,±j}. Again, the results show
that both the proposed algorithm and exhaustive search have
identical performance in PAPR reduction. Note that they both
give additional PAPR reduction compared to the FA.

Table 2 depicts the normalized optimization time required
by the proposed algorithm. The results show that the com-
plexity of the proposed optimizer can be reduced with an
appropriate choice of µ2. Note that nearly 50% complexity
saving is obtained in this case when µ2 = 8.

V. CONCLUSION

In this paper, we proposed a novel algorithm for computing
the optimal PTS phase factors. Only those phase vectors that
guarantee that the PAPR is bounded are searched by our
algorithm. It is based on the Fincke and Phost SD. Computer
simulation results show that our algorithm provides optimal
PAPR reduction and with lower complexity compared to
exhaustive search.
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Fig. 1. CCDF of the PAPR for exhaustive search, proposed optimizer and
flipping algorithm. M = 8.
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Fig. 2. CCDF of the PAPR for exhaustive search, proposed optimizer and
flipping algorithm.
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