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Abstract— This paper considers carrier frequency offset
(CFO) estimation for OFDM systems over frequency-selective
fading channels. We derive three new maximum-likelihood (ML)
CFO estimators. The first estimator takes the pre-DFT signal
at the receiver as Gaussian and averages the likelihood function
over the Gaussian variable. The other two estimators first remove
the channel impulse response (CIR) and average the resulting
likelihood function over time-domain transmitted symbols. We
demonstrate that the presence of virtual carriers is critically
important for estimation. All our proposed estimators can
achieve the asymptotic Cramér Rao Bound (ACRB) and can
also be enhanced using embedded pilots.

I. INTRODUCTION

The considerable interest in Orthogonal Frequency-Division
Multiplexing (OFDM), a bandwidth efficient signalling
scheme for wireless communication, is mainly due to its
remarkable resistance to frequency-selective fading and impul-
sive noise [1]. In OFDM, the available bandwidth is sliced into
several parallel narrow subchannels so that each subchannel
is only subject to flat fading, which simplifies equalization to
mitigate frequency-selective fading. These features have made
OFDM a standard for high-speed mobile communications.
OFDM has been used in Europe for Digital Audio Broad-
casting, ETSI-BRAN High Performance Local Area Networks
(Hiperlan/2) and IEEE 802.11a. Additionally, OFDM forms
the basis for the fourth-generation broad-band systems that
will transmit multimedia to mobiles and portable personal
communications.

While OFDM systems are robust to frequency selective
fading, they are more sensitive to synchronization errors than
single-carrier systems [2]. In particular, the presence of carrier
frequency offset (CFO) introduces inter-carrier-interference
(ICI) that would significantly degrade the system performance
[2]. To mitigate this effect, various CFO estimation methods
have been proposed. In [3], repeated symbols are used for
frequency synchronization. The signal redundancy in the
cyclic prefix (CP) is exploited for CFO estimation in [4].
In [5], a blind estimation method is developed but some
restrictions on CFO values and carrier spacing are imposed.
In [6], Liu et al. exploit the presence of virtual carriers in

OFDM and propose blind estimation methods reminiscent of
spectral analysis techniques in array processing, i.e., MUSIC
and ESPRIT. ML estimators are derived in [7]–[9]. In [8],
[9], the CIR is first removed from the likelihood function
and the frequency domain transmitted signals are removed
by summing over all the possible signals.

In this paper, we derive three new ML estimators (MLE)
for CFO estimation. The CIR and the transmitted symbols
together are modelled as a Gaussian process for the first
MLE, and they are removed by averaging the likelihood
function over the resulting Gaussian variable. In MLE2, we
first average the likelihood function over the CIR. Since the
transmitted signal can be treated as Gaussian, we next average
the likelihood function over the Gaussian variable, resulting
in MLE2. In MLE3, the CIR is obtained by maximizing the
likelihood function for a given CFO. The CIR is removed by
substituting the CIR estimate back into the likelihood function.
The MLE3 is then derived by averaging over the time domain
signal. We show that the estimators in [6], [7] and all our
proposed estimators are equivalent in high SNR, when only
virtual carriers exist. Moreover, all the three estimators can
use embedded pilots to improve their accuracy and to perform
joint estimation of CIR and CFO.

Notation: boldface letters will be used for matrices and
column vectors. (·)H denotes Hermitian (conjugate transpose).
IN denotes the N ×N identity matrix. diag{x} stands for the
diagonal matrix with the column vector x on its diagonal.
tr(A) =

∑N
i=1 aii is the trace of matrix A. The Column-

Circulant down matrix of a vector a = [a1, a2, . . . , an]T

(ak can be scalar, vector or matrix) with ξ block columns
is defined as

C(ξ)
D [a] =




a1 an · · · an−ξ+2

a2 a1 · · · an−ξ+3

...
...

. . .
...

an an−1 · · · an−ξ+1


 . (1)

The Column-Circulant up matrix with ξ block columns is
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defined as

C(ξ)
U [a] =




a1 a2 · · · aξ

a2 a3 · · · aξ+1

...
...

. . .
...

an a1 · · · aξ−1


 . (2)

II. SYSTEM MODEL

In an OFDM system, source data are grouped and mapped
into dk, which is selected from a complex signal constellation
Q with unitary energy. Complex data are modulated by inverse
discrete Fourier transform (IDFT) on N parallel subcarriers.
The symbol interval and block interval are denoted by Ts

and NTs. The resulting OFDM symbol during the mth block
interval (for brevity we omit m) that comprises N samples is
given by

x(n) =
1
N

N−1∑
k=0

X(k)e(2πkn/N), n = 0, 1, 2, · · · , N − 1

(3)

where

X(k) =




dk k ∈ Id

pk k ∈ Ip

0 k ∈ Iv

(4)

and Id is the index set of data subcarriers, Ip is the index set
of subcarriers reserved for pilot symbols with Np elements,
Iv is the index set of subcarriers reserved for VCs with Nv

elements and the number of data subcarriers is Nd. We have
Nd + Nv + Np = N .

The guard interval, inserted to prevent inter-block-
interference, includes a cyclic prefix which replicates the end
of the IFFT output samples. The number of samples in the
guard interval Ng is assumed to be larger than the delay spread
of the channel. The signal is transmitted over a frequency
selective fading channel modelled as

h(t) =
L−1∑
l=0

αlδ(t − τl) (5)

where αl ∼ CN (0, σ2
l ) and τl is the delay of the lth tap. When

a CFO exists, the received signal after sampling is given by

y(n) = e2πε n
N

L−1∑
l=0

h(l)x(n − l) + w(n) (6)

where w(n) is an Additive White Gaussian Noise (AWGN)
sample, w(n) ∼ CN (0, σ2

n). Channel taps hl (l = 0, . . . , L−
1) represent the sampled overall channel impulse response
(which comprises the transmit/receive filters and the physical
channel h(t)). L is the total number of propagation paths. The
CFO normalized by the block interval (NTs) is denoted by ε.
As usual, we assume the channel stays constant within each
OFDM symbol. For convenience, (6) can be written in vector
form as

y = Γ(ε)C(L)
D [x]h + w (7)

or equivalently

y = Γ(ε)FHXDFLh + w (8)

where x = [x(0), x(1), · · · , x(N − 1)]T , y =
[y(0), y(1), · · · , y(N − 1)]T , h = [h0, h1, · · · , hL−1]
and w = [w(0), w(1), · · · , w(N − 1)] denote transmitted
vector, received vector, channel vector and additive noise,
respectively. The N × N discrete Fourier transform (DFT)
matrix F has the (i, j)-th entry

[F]i,j =
1√
N

e− 2π
N (i−1)(j−1) (9)

and FL = [fIh(0), fIh(1), . . . , fIh(L−1)] is the relevant N × L
submatrix of F, where Ih is the index set of channel taps and
fi is the ith column of F. The diagonal matrices Γ(ε)

Γ(ε) = diag[1, ξ, · · · , ξN−1] (10)

where ξ = exp(2πε/N) and

XD =diag[X(0),X(1), · · · ,X(N − 1)] (11)

Let X = [X(0),X(1), · · · ,X(N−1)]T . x = FHX/
√

N and
C(L)

D [x] = FHXDFL.

III. MAXIMUM LIKELIHOOD ESTIMATION OF CFO

The received symbol vector y is Gaussian with mean
Γ(ε)C(L)

D [x]h and covariance matrix σ2
nIN . The likelihood

function for the unknown parameters x, h and ε is given by

Λ(y|x,h, ε) = exp
{
− 1

σ2
n

∥∥∥y − Γ(ε)C(L)
D [x]h

∥∥∥2
}

. (12)

We next consider ML CFO estimation using the likelihood
function.

A. MLE1

When the number of subcarriers N and the channel length
L is large, the signal g = C(L)

D [x]h can be modelled as a zero-
mean complex Gaussian process via the central limit theorem.
The autocorrelation matrix of g can be evaluated as

Rg =E{ggH} = E

{
C(L)

D [x]hhH
(
C(L)

D [x]
)H

}
=E

{
FHXDFLhhHFH

L XH
DF

}
=FH

(
rΛd + ΛpFLRhFH

L ΛH
p

)
F

(13)

where r =
∑L−1

l=0 σ2
l , Rh = E{hhH} is the covariance

matrix of h and

Λd =diag[λ0, λ1, · · · , λN−1], λk =
{

1 k ∈ Id

0 otherwise
.

(14)

Λp =diag[λ0, λ1, · · · , λN−1], λk =
{

1 k ∈ Ip

0 otherwise
.

(15)

2507

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:56 from IEEE Xplore.  Restrictions apply. 



The average of Λ(y|x,h, ε) over g gives the marginal
likelihood function Λ(y|ε), which removes the likelihood
function dependence on h and x. The marginal likelihood
function can be expressed as

Λ(y|ε) = Eg

{
exp

{
− 1

σ2
n

‖y − Γ(ε)g‖2

}}
(16)

where EX{·} denotes the statistical average with respect to
the random vector X. Eq. (16) can be interpreted as the
characteristic function (CF) λQ(s) = E{exp(sQ)} of the
quadratic form

Q = ‖y − Γ(ε)g‖2 (17)

of the zero-mean Gaussian vector g evaluated for s =
−1/(σ2

n). If Rg is non-singular (e.g., no VCs), the CF is given
by [10, p. 595, eq. (B-3-20)]. When VC exists, Rg becomes
singular, which means some of the random variables in g are
linearly dependent. To make the CF approach still applicable
in this case, we assume

Λv(ζ) =diag[λ0, λ1, · · · , λN−1], λk =
{

ζ k ∈ Iv

1 otherwise .

(18)

Using [10, p. 595, eq. (B-3-20)], we can obtain

Λ(y|ε, ζ) = exp
{

1
σ2

n

yHΓ(ε)G(ζ)Γ(ε)Hy
}

(19)

Let ζ → 0, we have

Λ1(y|ε) = lim
ζ→0

Λ(y|ε, ζ) = exp
{

1
σ2

n

yHΓ(ε)GΓ(ε)Hy
}
(20)

where G = Rg(Rg + σ2
nIN )−1. Eq. (20) follows from that

the limitation and integral operations are interchangeable. The
ML estimate of ε can be obtained by maximizing

ε̂ = arg max
ε

yHΓ(ε)GΓ(ε)Hy (21)

B. MLE2

In MLE2 and MLE3, we assume that no pilot exists. The
existence of pilots will be discussed in the full journal version.
As [9], we first evaluate the marginal likelihood function
Λ(y|x, ε), which is the average of Λ(y|h,x, ε) with respect
to h and can be expressed as

Λ(y|x, ε) = Eh{Λ(y|h,x, ε)}. (22)

Using [10, p. 595, eq. (B-3-20)] and dropping irrelevant
factors, (22) becomes

Λ(y|x, ε) = exp
{
− 1

σ2
n

(
yHy − yHΓ(ε)C(L)

D [x]

×G
(
C(L)

D [x]
)H

Γ(ε)Hy
)} (23)

where G = Rh(Rh + σ2
nIN )−1. We define N × L matrix Ξ

Ξi,j =
{

1 i = Ih(j), j = 0, 1, . . . , L − 1
0 otherwise (24)

and

Ω = diag[ω0, ω1, . . . , ωN−1], ωi =




1 i = Ih(k),
k = 0, 1, . . . , L − 1

0 otherwise
.

(25)
It can be readily verified that C(L)

D [x] = C(N)
D [x]Ξ, ΞΞH = Ω

and

yHy =yHΓ(ε)C(N)
D [x]

(
C(N)

D [x]
)H

ΓH(ε)y

+ yHΓ(ε)C(N)
D [xv]

(
C(N)

D [x]
)H

ΓH(ε)y

+ yHΓ(ε)C(N)
D [x]

(
C(N)

D [xv]
)H

ΓH(ε)y

+ yHΓ(ε)C(N)
D [xv]

(
C(N)

D [xv]
)H

ΓH(ε)y

(26)

where xv = FHΛv/
√

N , C(N)
D [xv] = FHΛvF and

Λv =diag[λ0, λ1, · · · , λN−1], λk =
{

1 k ∈ Iv

0 otherwise
.

(27)

Hence, (22) becomes

Λ(y|x, ε) = exp
{
− 1

σ2
n

(β1 + β2 + β3 + β4)
}

(28)

where

β1 =yHΓ(ε)C(N)
D [x](IN − ΞGΞ)

(
C(N)

D [x]
)H

ΓH(ε)y

β2 =yHΓ(ε)C(N)
D [xv]

(
C(N)

D [x]
)H

ΓH(ε)y

β3 =yHΓ(ε)C(N)
D [x]

(
C(N)

D [xv]
)H

ΓH(ε)y

β4 =yHΓ(ε)C(N)
D [xv]

(
C(N)

D [xv]
)H

ΓH(ε)y
(29)

Let z = ΓH(ε)y and note that for two vectors a and b of
length N the following relationship holds

aHC(N)
D [b] = bTC(N)

U [a∗]. (30)

Therefore β1 − β4 can be rewritten as

β1 =xHC(N)
U [z](IN − ΞGΞ)

(
C(N)

U [z]
)H

x

β2 =xHC(N)
U [z]

(
C(N)

U [z]
)H

xv

β3 =xH
v C(N)

U [z]
(
C(N)

U [z]
)H

x

β4 =xH
v C(N)

U [z]
(
C(N)

U [z]
)H

xv.

(31)

Without pilots, the time domain transmitted signal x can be
modelled as a zero-mean complex Gaussian process by using
the central limit theorem when the number of subcarriers N
is large. The covariance matrix of x can be obtained as

Rx = E{xxH} =
1
N

FHΛdF (32)
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where Λd is given in (14). The average of Λ(y|x, ε) with
respect to x generates the marginal likelihood function, which
is given by

Λ(y|ε) = Ex{Λ(y|x, ε)}. (33)

Using [10, p. 595, eq. (B-3-20)] and following the same
approach as (18)-(20) for the singular case, (33) yields

Λ2(y|ε) =
1

det
(
IN +

RxA
σ2

n

) exp
{
− 1

σ2
n

xH
v (B + C)xv

}
.

(34)
where

A =C(N)
U [z] (IN − ΞGΞ)

(
C(N)

U [z]
)H

B =C(N)
U [z]

(
C(N)

U [z]
)H

C =B
(
IN +

RxA
σ2

n

)−1

RxB.

(35)

Therefore, MLE2 is given by

ε̂ = arg max
ε

Λ2(y|ε). (36)

C. MLE3

Two possible approaches may be taken to estimate ε accord-
ing to the ML criterion. One is the Bayesian approach adopted
in MLE2. We use the alternative approach to derive MLE3.
If we keep ε and x fixed and let h vary in (12), Λ(y|x,h, ε)
achieves a maximum for

h(x, ε) =
[(

C(L)
D [x]

)H

C(L)
D [x]

]−1 (
C(L)

D [x]
)H

ΓH(ε)y

=
(
FH

L ΛdFL

)−1
(
C(L)

D [x]
)H

ΓH(ε)y
(37)

Substituting (37) into (12), we can obtain

Λ(y|x, ε)

= exp
{
− 1

σ2
n

∥∥∥y − Γ(ε)C(L)
D [x]

(
FH

L ΛdFL

)−1

×
(
C(L)

D [x]
)H

ΓH(ε)y
∥∥∥∥

2
}

= exp
{
− 1

σ2
n

(
yHy − yHΓ(ε)C(L)

D [x]
(
FH

L ΛdFL

)−1

×
(
C(L)

D [x]
)H

ΓH(ε)y
)}

.

(38)

Following the same procedure as (24)-(35), the marginal
likelihood function can be derived as

Λ3(y|ε) =
1

det
(
IN +

RxA
σ2

n

) exp
{
− 1

σ2
n

xH
v (B + C)xv

}
.

(39)

where

A =C(N)
U [z]

(
IN − Ξ

(
FH

L ΛdFL

)−1
Ξ

) (
C(N)

U [z]
)H

B =C(N)
U [z]

(
C(N)

U [z]
)H

C =B
(
IN +

RxA
σ2

n

)−1

RxB.

(40)

Therefore, MLE3 is given by

ε̂ = arg max
ε

Λ3(y|ε). (41)

IV. PERFORMANCE OF ESTIMATORS

Since the MLE1 is equivalent to the one in [6] without
pilots, we expect that MLE1 is unbiased. Hence MLE2 and
MLE3 are asymptotically unbiased. If pilots exist, we assess
the performance of our proposed CFO estimator using the
approach in [11], which show that the expectation of the ML
estimator in high SNR is given by

E{ε̂} ≈ ε − E{ġ(ε)}
E{g̈(ε)} (42)

where g(ε) denotes the cost function of the estimator given
by (21) in this case. The first and second derivatives of g(ε)
are given by ġ(ε) and g̈(ε). It can be proved that

E{ε̂} = ε. (43)

MLE1 is thus unbiased.
From (21), (34) and (39), g(ε) is periodic of period N .

The range of MLE1 is [0, N) if L < Nv . The integer CFO
and fractional CFO do not need to perform separately. To
assure that MLE1 only has a unique minimum, the VCs are
placed distinctly and Nv = L + 2 in [12]. MLE2 and MLE3
asymptotically follow the same properties.

If neither pilot nor VC exists, it can be readily verified that
G in (20) becomes a diagonal matrix. In this case, Eq. (20)
becomes a constant, which means that MLE1 cannot estimate
CFO without VC. Likewise, MLE2, MLE3 and the estimators
in [6], [7] cannot work without VC, which means all the ML
CFO estimators are VC driven.

In MLE1-MLE3, pilots embedded for channel estimation
can be used to assist CFO estimation. This suggests the
possibility of joint estimation of CIR and CFO.

V. NUMERICAL RESULTS

We now present numerical results to illustrate the effective-
ness of the proposed ML estimators for a practical OFDM
system. We assume the following system specifications:

• Both the data and pilot symbols are chosen from the
QPSK alphabet, denoted by Q.

• The carrier frequency of the OFDM system is 5GHz and
the data rate is 12MHz.
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Fig. 1. MSE of CFO versus SNR in a QPSK OFDM system with ε = 0.25,
N = 64, Np = 0 and Nv = 12.

• The 6-ray COST 207 TU model with the PDP
[0.189, 0.379, 0.239, 0.095, 0.061, 0.037] and delay pro-
file [0.0, 0.2, 0.5, 1.6, 2.3, 5.0]µs is considered. The chan-
nel remains constant during each OFDM data block but
varies from one block to another. All the paths are
rounded to integer and we do not consider leakage. The
PDP is assumed perfectly known at the receiver.

• A normalized CFO of 0.25 is considered.
• The number of subcarriers N = 64, the number of VCs

Nv = 12 and VCs are distinctly placed [12] to preserve
the uniqueness of the estimator.

In Fig. 1, the MSE (E{(ε̂ − ε)2}) of proposed estimators
with no pilot are compared with those of the Morelli and
Mengali Estimator (MME) [8], the Chiavaccini and Vitetta
Estimator (CVE) [9] and the asymptotic Cramer-Rao bound
(ACRB) given by [9] as

ACRB =σ2
n

[
π2Nv(N2 − 1)

3N2

−2π2

N2

∑
i∈Iv

∑
j∈Iv,i/∈Iv

1
|exp[2π(i − j)/N ] − 1|2


 .

(44)

In low SNR, all the estimators perform similarly and CVE
performs slightly better than the other estimators. Both MME
and CVE show error floors in high SNR. The error floors of
MME and CVE are 0.0051 and 0.0007, respectively. MLE2
and MLE3 perform almost identically for any SNR and
both performances approach that of MLE1. Our proposed
estimators asymptotically approach the ACRB.

Fig. 2 shows the performance of MLE1 with different
number of pilots. The optimal pilots for CFO estimator can be
obtained by minimizing the CRB for MLE1. Here, the pilots
are equispaced and are randomly chosen from Q. They vary
each frame. MLE1 with Np = 4 gains 2 dB over that of
Np = 0. The gain can be as large as 4 dB when Np = 16.
These verify the performance enhancement using pilots. The
CIR and CFO can thus be jointly estimated using these pilots.
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Fig. 2. MSE of CFO versus SNR with Np = 0, 4, 16 in a QPSK OFDM
system with ε = 0.25, N = 64 and Nv = 12.

VI. CONCLUSION

Three new ML CFO estimators have been derived in this
paper. MLE2 and MLE3 perform close to MLE1 in high
SNR and all of them achieve the ACRB. We show that the
estimators in [6], [7] and MLE1 are equivalent and are VC
driven estimators. All our proposed estimators can utilize the
pilots to enhance CFO estimation, enabling joint channel and
CFO estimation. The proposed estimators can be implemented
by an efficient FFT algorithm.
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