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Abstract— In this paper, we investigate channel estimation
(CE) and data detection for OFDM systems over doubly-
selective channels. We derive an oversampling basis expansion
model (BEM) for doubly-selective channels and its statistical
properties. The time diversity in the Doppler-induced inter-
carrier-interference (ICI) and its relationship to the carrier
frequency offset (CFO) induced ICI are illustrated using the
BEM. We derive two low complexity linear minimum mean-
square-error (LMMSE) channel estimators using the BEM. The
sphere decoder (SD) is modified to equalize the ICI channel. A
low-complexity iterative equalizer without matrix inversion is also
proposed. Our proposed channel estimators have low complexity
and achieve good performance. Furthermore, the low-complexity
iterative equalizer performs close to SD.

I. INTRODUCTION

Broadband wireless communications often require compli-
cated channel estimation (CE) and equalization to compensate
for severe frequency-selective fading. Orthogonal frequency
division multiplexing (OFDM) partitions the entire bandwidth
into parallel subchannels so that each narrow subchannel only
suffers from frequency-flat fading and only needs a one-tap
equalizer to compensate for the corresponding multiplicative
channel distortion. However, CE and equalization for OFDM
in doubly-selective (time and frequency) channels is chal-
lenging. The Doppler-induced channel variation introduces
ICI which destroys the subchannel orthogonality and hence
degrades the system performance.

When the OFDM block duration is much smaller than the
channel coherence time (relatively mild Doppler), the channel
remains approximately constant over an OFDM symbol, and
the CE for this case has been thoroughly studied. When the
OFDM symbol duration is less than 10% of the channel
coherence time, the channel varies linearly [1] and it can be es-
timated by linear interpolation between two channel estimates
acquired by training symbols. In [2], a linear minimum mean-
square error (LMMSE) and a successive interference cancel-
lation (SIC) scheme with the optimal ordering are proposed,
which can exploit the time diversity provided by the time-
selective channel. This estimator has high complexity since it
needs to estimate the N different channel impulse responses
(CIR) in each OFDM block.

In this paper, we use the basis expansion model (BEM) [3]
for estimating doubly-selective channels. Using the BEM, we
analyze the ICI in OFDM and show the diversity introduced
by time-selectivity. The time-varying channel within each
OFDM block can be represented by a few BEM coefficients.
Therefore, two LMMSE estimators are proposed. The first
one assumes that the BEM coefficients remain constant for
several OFDM symbols, while the second one assumes that
they vary from symbol to symbol and Wiener filtering is then
used to estimate the coefficients between pilot symbols. For
data detection, in addition to using the well-known vertical
Bell Labs layered space-time (V-BLAST) algorithm [4], we
develop a fast sphere decoder (SD) [5] for OFDM systems.
Observing that most of the ICI on each subcarrier comes
from several neighboring subcarriers [6], we develop a low
complexity iterative detector which avoids matrix inversion.

Notation: Bold symbols denote matrices or vectors. (·)T ,
(·)H and (·)† denote transpose, conjugate transpose and
Moore-Penrose pseudo-inverse respectively. The set of all
complex K × 1 vectors is denoted by CK . The discrete
Fourier transform (DFT) matrix of size N × N is given by
F = 1/

√
N [ej 2π

N kl], k, l ∈ 0, 1, · · · , N − 1. IN denotes the
N×N identity matrix. The Circulant Column-Sylvester Matrix
of a vector a = [a1, a2, . . . , an]T (ak can be scalar, vector or
matrix) with ξ block columns is defined as

S(ξ)[a] =




a1 a2 · · · an

. . .
. . .

a1 · · · an−1 an

an a1 · · · an−1

. . .
...

a2 · · · an a1




(1)

II. SYSTEM AND CHANNEL MODEL

A. System model

In OFDM systems, source data are grouped and mapped into
Xk, which is selected from a complex signal constellation Q
with unitary energy. Complex data are modulated by inverse
discrete Fourier transform (IDFT) on N parallel subcarriers.
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Fig. 1. The pilot pattern used for channel estimation.

The symbol interval and block interval are denoted by Ts and
Tf = NTs. The resulting OFDM symbol during the mth block
interval that comprises N samples is given by

x(m)
n =

1√
N

N−1∑
k=0

X
(m)
k e(2πkn/N), −Ng ≤ n ≤ N − 1 (2)

where N is the IFFT size, Ng is the length of the guard
interval, which is larger than the maximum channel delay.

For channel estimation, pilot symbols are necessary. While
in the literature, several pilot patterns are possible [7], there are
two patterns frequently used in a practical system. The first one
dedicates certain subcarriers to pilot symbols in each OFDM
block, while the second one dedicates all subcarriers in certain
OFDM blocks to pilot symbols. In this paper, we assume the
second pattern (Fig. 1), in which the i, i+K, . . . , i+(M−1)K-
th blocks are pilot blocks.

B. Channel Model

The doubly-selective fading channel in mobile wireless
communications is often modelled as wide-sense-stationary
uncorrelated-scattering (WSSUS) channel with the complex
baseband representation described by

h(t, τ) =
L−1∑
l=0

h(t, τl)δ(τ − τl) (3)

where τl is the delay, δ(·) denotes Dirac’s delta function and
L is the number of paths. The maximum delay is denoted
by Tm. The autocorrelation function of the WSSUS channel
is given by E{h(t, τ)h∗(t + ∆t, τ + ∆τ)} = φh(∆t, τ)δ(τ).
The autocorrelation function can be separated into the multi-
plication of time correlation φt(∆t) and power delay profile
(PDP) φτ (τ). In a rich-scattering environment, φh(∆t, τ) =
φt(∆t)φτ (τ). The Fourier transform of the φt(∆t) gives
the Doppler power spectrum φD(f). In the classic Jakes’
model, φt(∆t) = J0(2πfd∆t) and φD(f) = 1

πfd

√
1−(f/fd)2

|f | < fd, where J0(x) is the zeroth-order Bessel function of
the first kind and fd is the maximum Doppler frequency. In
a Rayleigh fading channel, h(t, τl)’s are complex Gaussian
processes with zero mean and variance σ2

l = φτ (τl), which

are independent for different paths. The channel is normalized
so that

∑L−1
l=0 σ2

l = 1.
The Fourier transform of h(t, τl) over time t is the delay

Doppler-spread function S(f, τl), which is given by

S(f, τl) =
1
2π

∫ +∞

−∞
h(t, τl)e−2πftdt. (4)

This function is band limited in Doppler frequency, i.e.
S(f, τl) = 0 for |f | > fd. The inverse Fourier transform gives

h(t, τl) =
∫ +fd

−fd

S(f, τl)e2πftdf. (5)

In the time interval NTs, the Riemann integral in (5) can be
approximated by the Riemann summation after sampling. The
discrete-time baseband equivalent channel model at the i-th
block can be described as

h(i)(n, dl)
.=

Q∑
q=−Q

h(i)
q (dl)e 2πq

Ns
n (6)

where h(i)(n, dl) = h[(i − 1)(N + Ng)Ts + nTs, dl], dl =
�τl/Ts� is the discrete delay after sampling, Ns = GN is
the number of samples in Doppler frequency domain and
Q = �fdNsTs� = �fdGNTs�. If G = 1, (6) is equivalent to
the BEM in [3]. Therefore (6) can be viewed as the oversam-
pling BEM. Without oversamping, the reconstructed channel
differs from h(n, dl) at the borders of the observation interval.
The time varying channel h(t, τl) within NTs can now be
represented by 2Q + 1 BEM coefficients. From simulation,
we find that (6) is valid for 0 ≤ n ≤ Nc = �GN/4�. Eq. (6)
can be written in matrix form as

h(i)(dl) = Φh(i)
b (dl) (7)

where h(i)(dl) = [h(i)(0, dl), · · · , h(i)(Nc, dl)]T ,
hb(dl) = [h(i)

−Q(dl), · · · , h
(i)
Q (dl)]T and Φ(n, :) = [e− 2πQ

Ns
n,

· · · , e 2πQ
Ns

n]. Here we use the Matlab notation and subscript
b denotes the use of BEM. If Nc ≥ 2Q + 1, Φ is invertible.
From (7), we can obtain

E{h(i)
b (dl)} = E{Φ−1h(i)(dl)} = 0 (8)

and

Rb(dl) =E{h(i)
b (dl)[h

(i)
b (dl)]H} = σ2

l Φ
−1Rh

(
Φ−1

)H (9)

where Rh(k1, k2) = φt((k2 − k1)Ts). Rb(dl) is independent
of i. If G = 1 and Nc = N , it can be readily verified that
Rb becomes a diagonal matrix, which means h

(i)
q (dl)’s are

independent and verifies the Assumption 3 in [3]. If G > 1,
h

(i)
q (dl)’s are correlated but h

(i)
q (dl)’s for different paths are

independent. From (9), Rb depends on Nc. We find when
Nc > N , the change of Rb with the increase of Nc is
negligible.

III. ICI AND DIVERSITY ANALYSIS

The received signal y(i)(n) in the i-th OFDM block can be
expressed as

y(i)
n =

L−1∑
l=0

h(i)(n, dl)x
(i)
n−dl

+ w(i)
n (10)
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where w
(i)
n is additive white Gaussian noise with zero-mean

and variance σ2
n. Substituting the BEM (6) into (10), we have

y(i)
n =

L−1∑
l=0

Q∑
q=−Q

h(i)
q (dl)e 2πq

Ns
nx

(i)
n−dl

+ w(i)
n . (11)

If G = 1, h
(i)
q (dl)’s are independent. The representation (11)

can be interpreted as L(2Q+1) independent, flat-fading chan-
nels. Therefore, the maximum diversity order is proportional
to the product Tm/Ts(2fdNTs + 1). The additional diversity
due to the time-selectivity is proportional to NTmfd. With
appropriate linearly precoding, the maximum diversity can be
achieved [3]. Eq. (11) can be written in matrix form as

y(i) =
Q∑

q=−Q

ΓqS(N)[h(i)
q ]x(i) + w(i) (12)

where Γq = diag{1, e 2πq
Ns , . . . , e 2πq

Ns
(N−1)}, h(i)

q =
[h(i)

q (d0), 0, . . . , h
(i)
q (dL−1)]T , x(i) = [x(i)

0 , x
(i)
1 , . . . , x

(i)
N−1]

T

and w(i) = [w(i)
0 , w

(i)
1 , . . . , w

(i)
N−1]

T . After DFT, (12) becomes

Y(i) =
Q∑

q=−Q

ΞqH(i)
q X(i) + W(i) (13)

where X(i) = FHx(i), H(i)
q = diag{H(i)

q (0), . . . , H(i)
q (N −

1)}, H
(i)
q (k) =

∑L−1
l=0 h

(i)
q (dl)e−2πkdl/N and W(i) =

FHw(i). Ξq is the CFO induced ICI matrix with frequency
offset ε = q/G. Therefore, the effect of ICI in (13) is the
summation of CFO with −Q/G, . . . , Q/G. When G → +∞,
the ICI induced by Doppler frequency fd is the accumulation
of the ICI induced by frequency offset within [−fd, fd],
which establishes the relationship between Doppler induced
ICI and CFO induced ICI. Different from the CFO induced
ICI, the received vector Y(i) (13) has 2Q + 1 replicas of
X(i), which offers time-diversity. When only frequency offset
exists, no diversity can be achieved. The compensation of
Doppler induced ICI is more challenging since it requires
many more parameters to estimate than for the case of CFO.
Next we will show that with our channel estimators and near-
optimal equalizers, time-diversity can be achieved with low
complexity.

IV. CHANNEL ESTIMATION

In a doubly selective channel, it is impossible to estimate all
the LN parameters with only one pilot block. In [2], M pilot
blocks are collected to perform MMSE channel estimation.
However, the complexity of this estimator is high. In this
section, we present two computationally efficient LMMSE
channel estimators using the BEM (6). The pilot pattern is
as Fig. 1.

A. Channel estimator 1

As indicated in Section II B., the BEM (6) is valid for
0 ≤ n ≤ Nc = �GN/4�. If we assume that the BEM
coefficients are constant within (M −1)K +1 OFDM blocks,

G must satisfy �GN/4� > ((M−1)K+1)N . The input-output
relationship (11) can be written in matrix form as

y(i) =
Q∑

q=−Q

ΓqS(L)[x(i)]hq + w(i)

=D(i)hb + w(i).

(14)

where Γq is defined in (12), hq = [hq(d0), . . . , hq(dL−1)]T ,
hb = [hT

−Q, , . . . ,hT
Q]T and D(i) =

[Γ−QS(L)[x(i)], . . . ,ΓQS(L)[x(i)]]. Since hq is constant
within (M − 1)K + 1 OFDM blocks, we omit the superscript
(i) in hb. When collecting all the received vector in M
pilot blocks, e.g. i, i + K, . . . , i + (M − 1)K blocks, the
input-output relationship becomes

y = Dhb + w (15)

where y = [(y(i))T , . . . , (y(i+(M−1)K))T ]T ,
D = [(D(i))T , , . . . , (D(i+(M−1)K))T ]T and w =
[(w(i))T , , . . . , (w(i+(M−1)K))T ]T . Since we have (2Q+1)L
unknown BEM coefficients, to ensure uniqueness in estimating
the channel, the total number of pilot symbols must satisfy
MN ≥ (2Q + 1)L. The LMMSE channel estimator (CE1) is
given by

ĥb =
(
σ2

nR−1
b + DHD

)−1
DHy (16)

where Rb = E{hbhH
b } is the covariance matrix of hb with

(Rb)l:L:L(2Q+1),l:L:L(2Q+1) = Rb(dl) and Rb(dl) can be obtained
from (9). The covariance of the error h̃b = hb − ĥb is given
by

Rh̃b
= E{h̃bh̃H

b } = σ2
n

(
σ2

nR−1
b + DHD

)−1
(17)

and the mean square error (MSE) of ĥb is thus

σ2
h̃b

= tr(Rh̃b
) = σ2

ntr
((

σ2
nR−1

b + DHD
)−1

)
. (18)

With oversampling Rb is non-diagonal, the pilots design
approach in [3] fails in this case. The optimal pilots can be
found by minimizing the MSE (18) via exhaustive search.

Although the BEM (6) is valid for 0 ≤ n ≤ Nc = �GN/4�,
(6) is still a good approximation when n is relatively small.
To improve the accuracy of CE1, we use the i, . . . , i + (M −
1)K-th pilot blocks to estimate the BEM coefficients in the
i+1, . . . , i+K−1-th blocks. The coefficients in the i+(m−
1)K + 1, . . . , i + mK − 1-th blocks are estimated using the
i+(m−1)K, i+mK, . . . , i+(m+M −2)K-th pilot blocks.

B. Channel estimator 2

We now consider a more genearl case where the BEM
coefficients are allowed to vary. The BEM coefficients are
calculated independently for different pilot blocks and Wiener
filtering gets the BEM coefficients at other blocks. The esti-
mation accuracy can be improved using this estimator.

In the ith block, the input-output relationship (11) can be
written in matrix form as

y(i) =D(i)h(i)
b + w(i). (19)

1982
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where Γq is defined in (12), h(i)
q = [h(i)

q (d0), . . . ,

h
(i)
q (dL−1)]T , h(i)

b = [
(
h(i)
−Q

)T

,
(
h(i)
−Q+1

)T

, . . . ,
(
h(i)

Q

)T

]T

and D(i) =
[
Γ−QS(L)[x(i)], . . . ,ΓQS(L)[x(i)]

]
. The LMMSE

channel estimate for h(i)
b is given by

ĥ(i)
b =

(
σ2

nR−1
b +

(
D(i)

)H

D(i)

)−1 (
D(i)

)H

y(i)

=Ψ(i)y(i)

(20)

where Ψ(i) =
(
σ2

nR−1
b +

(
D(i)

)H
D(i)

)−1 (
D(i)

)H
and Rb

is defined in (16). h(i+K)
b , . . . ,h(i+(M−1)K)

b can be estimated
in the same way. All the M vectors in the pilot blocks
are then combined to estimate the BEM coefficients in the
data blocks. Define the estimated BEM coefficients vector

hb =
[(

ĥ(i)
b

)T

,
(
ĥ(i+K)

b

)T

, . . . ,
(
ĥ(i+(M−1)K)

b

)T
]T

The

BEM coefficients in the kth (i < k < i + K) block can be
obtained via LMMSE as (CE2)

ĥ(k)
b = R

h
(k)
b hb

R−1
hbhb

hb (21)

where R
h

(k)
b hb

= E{h(k)
b (hb)H} and Rhbhb

= E{hb(hb)H}.
From (7)

E

{
h(k)

b

(
ĥ(i)

b

)H
}

= (Φ)−1 Rh(k)y(i)

(
Ψ(i)

)H

(22)

where h(k) =
[(

h(k)(d0)
)T

, . . . ,
(
h(k)(dL−1)

)T
]T

and

Rh(k)y(i) = E{h(k)(y(i))H}. From (20)

E
{
ĥ(i)

b (ĥ(j)
b )H

}
= Ψ(i)Ry(i)y(j)(Ψ(j))H (23)

where Ry(i)y(j) = E
{
y(i)(y(j))H

}
. Both Rh(k)y(i) and

Ry(i)y(j) can be obtained from (10). The MSE of CE2 is given
by

σ2
k = tr

(
Rb − R

h
(k)
b hb

R−1
hbhb

R
hbh

(k)
b

)
(24)

where Rb is defined in (16). From (21), the MSE depends on
the block index k. The optimal pilots for CE2 can be found
by minimizing the summation of all the MSE’s at data blocks.

C. Complexity analysis

In CE1, the size of y in (16) is MN . If the estimated BEM
coefficients are used for the blocks i+1, . . . , i+(M−1)K, the
average number of complex multiplications in each block is
(2Q+1)LNM
(K−1)(M−1) . If they are only used for the blocks i+1, . . . , i+
K−1, the average number of complex multiplications in each
block is (2Q+1)LNM

K−1 . In CE2, estimating ĥ(i+(m−1)K)
b for

m = 1, 2, . . . ,M using (20) needs NML(2Q + 1) complex
multiplications and estimating each ĥ(k)

b using (21) needs
ML2(2Q + 1)2. Therefore the average number of complex
multiplications is NML(2Q+1)

(K−1)(M−1) + ML2(2Q + 1)2. Compared
with the channel estimator in [2], whose complexity is LMN2,
our proposed two channel estimators have much lower com-
plexity.

V. LOW COMPLEXITY EQUALIZATION

If the BEM vector h(i)
q is estimated, (13) becomes

Y(i) =
Q∑

q=−Q

ΞqĤ(i)
q X(i) + W(i)

=H(i)X(i) + W(i)

(25)

where H(i) =
∑Q

q=−Q ΞqĤ
(i)
q . For simplicity, we ignore the

superscript (i). The data detection problem is thus

X̂ = arg min
X∈QN

‖Y − HX‖2 (26)

where Q is the finite constellation set. Eq. (26) can be solved
by both V-BLAST and SD. Details are omitted for brevity.

The complexity of V-BLAST is O(N3) and the complexity
of SD is larger than O(N3). When N is very large, the
complexity is still high. To further reduce the complexity,
we propose an iterative and low complexity equalizer (ILE)
without performing matrix inversion.

As indicated in [6], most of the ICI on each subcarrier
comes from several neighboring subcarriers. The matrix H
in (26) can thus be approximated by a band matrix where the
half of the band width is P , meaning Hi,j = 0 for |i−j| > P .
Since the matrix becomes sparse for P ≤ N , it is not efficient
to calculate the matrix inverse of H in V-BLAST and SD. We
start by using one-tap equalization without considering the ICI
term. The initial estimate of X

(0)
k is chosen from Q close to

Yk/Hk,k, where the superscript (i) denotes the i-th iteration.
X is partitioned into K groups and each group has S elements.
e = Y − HX(0) is first computed. In the i-th iteration, the
k-th group x(i)

k = {X(i)
(k−1)S+1, . . . , X

(i)
kS} is determined by

x
(i)
k = arg min

x
(i)
k

∈QS

‖e(k-1)S+1-P:kS+P+H(k-1)S+1-P:kS+P,(k-1)S+1:kS(x
(i−1)
k −x

(i)
k )‖2.

(27)
The same iteration continues. In each iteration, the complexity
is proportional to |Q|S(2P + 1)K. From simulation, we find
S = 1 and only 2-3 iterations can ensure convergence. There-
fore the complexity of ILE is O((2P +1)N). Compared with
the V-BLAST Q(N3) and the equalizer in [6] O(N2(2P +1)),
the complexity of ILE is low and offers good performance.

VI. SIMULATION RESULTS

We now present numerical results to illustrate the effective-
ness of our proposed channel estimators and equalizers for
a practical OFDM system. We assume the following system
specifications:

• Both the data and pilot symbols are chosen from binary
phase-shift keying (BPSK).

• The carrier frequency of the OFDM system is 5 GHz and
the data rate is 6 MHz.

• The 6-ray COST 207 TU model with the PDP
[0.189, 0.379, 0.239, 0.095, 0.061, 0.037] and delay pro-
file [0.0, 0.2, 0.5, 1.6, 2.3, 5.0]µs is considered. A nor-
malized Doppler frequency NfdTs = 0.1 is considered.
Each path is a complex Gaussian random process inde-
pendently generated with the classical Doppler spectrum
using the inverse discrete Fourier transform method. All
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Fig. 2. NMSE of CIR versus SNR in a BPSK OFDM system.
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Fig. 3. BER versus SNR with in a BPSK OFDM system with CE1, CVCE
and perfect CIR.

the paths are rounded to integer and we do not consider
leakage. The PDP is assumed perfectly known at the
receiver.

• The number of subcarriers N = 64. The guard interval
Nd = 16. We set M = 6 and K = 2 in Fig. 1.

To make CE1 valid for the selected pilot pattern,
�G1N/4� > ((M − 1)K + 1)N , G1 = 60 and Q1 = 6.
For CE2, G2 = 20 and Q2 = 2. For NfdTs = 0.1, more than
98% of the Xk’s energy is distributed on the k-th and its two
neighboring subcarriers [6]. Therefore we choose P = 4 and
S = 1 in the ILE.

Fig. 2 compares the average MSE of our proposed esti-
mators with that of the estimator in [2] (CVCE). The CE2
performs close to CVCE. The CE1 has a 2.2-dB gap with
CE2 and CVCE, which may be due to the assumption that the
BEM coefficients are constant within (M − 1)K + 1 blocks.
The gap can be reduced with the increase of oversampling
factor G but will increase complexity. The average number of
complex multiplications is 5990.4 for CE1, 7704 for CE2 and
147456 for CVCE. Our proposed two channel estimators hence
reduce complexity about 200 times while still performing well.
The parameter Q offers a tradeoff between complexity and
performance.

Figs. 3, 4 compare the BER of different equalizers. The
ASD with perfect CIR is used as a benchmark. The CE1 with
SD has a 0.4-dB gain over that with V-BLAST but it is 0.1 dB
worse than the CVCE with MMSE-SD and 0.55 dB worse than
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Fig. 4. BER versus SNR with in a BPSK OFDM system with CE2, CVCE
and perfect CIR.

the perfect CIR with ASD at BER=10−3 (Fig. 3). This is due to
the 2.2-dB loss in channel estimation with CE1. The CE2 with
ASD has a 0.5-dB gain over that with V-BLAST and a 0.15-
dB gain over the CVCE with MMSE-SD but it is 0.3 dB worse
than the perfect CIR with ASD at BER=10−3 (Fig. 4). The
performance loss of CE2 with ASD is negligible compared
with the benchmark. The ILE performs close to ASD and has
low complexity.

VII. CONCLUSION

This paper considered the estimation of channel and data for
OFDM systems over doubly-selective channels. We derived an
oversampling BEM for doubly-selective channels. Its statisti-
cal properties are derived and used for the LMMSE channel
estimation. Our proposed two channel estimators have low
complexity but perform similar to that of [2]. To exploit the
time-diversity introduced by time-selectivity, we contribute an
iterative low-complexity equalizer, which performs nearly ML.
The complexity of Channel Estimator 2 can be further reduced
using a reduced-rank approximation. Our proposed estimators
can also be extended to coded OFDM systems.
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