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An Efficient Generalized Sphere Decoder for
Rank-Deficient MIMO Systems

Tao Cui and Chintha Tellambura, Senior Member, IEEE

Abstract— We derive a generalized sphere decoder (GSD) for
rank-deficient Multiple Input Multiple Output (MIMO) systems
using N transmit antennas and M receive antennas. This
problem arises when N > M or when the channel gains are
strongly correlated. The upper triangular factorization of the
Grammian yields an under-determined system and the standard
sphere decoding (SD) fails. For constant modulus constellations,
we modify the maximum likelihood (ML) cost metric so that the
equivalent Grammian is rank N . The resulting GSD algorithm
has significantly lower complexity than previous algorithms. A
method to handle non-constant modulus constellations is also
developed.

Index Terms— Sphere decoding, MIMO, rank deficiency.

I. INTRODUCTION

Space-time wireless technology using multiple antennas
provides very high data rates with low error probability. In
this letter, we consider ML detection for rank-deficient multi-
antenna systems with N transmit antennas and M receive
antennas, denoted by MIMO (N,M). ML decoding of the N
symbols transmitted per symbol period over the MIMO chan-
nel is an integer least-squares (LS) problem, which is known to
be NP-hard. Common, reduced-complexity algorithms such as
V-BLAST [1] perform much worse than the true ML detection.
Sphere decoder (SD) algorithms [2]–[4] however achieve ML
performance by providing an efficient way for generating all
candidate solutions that lie inside a hypersphere defined by
the channel matrix and the received signal vector. In the high
signal-to-noise ratio (SNR) region, the radius of the sphere can
be chosen small enough so that only few candidates are found
inside the sphere. This search space is therefore drastically
smaller than the ML search space which consists of qN points
for a q-ary signal constellation. Thus, the number of operations
(complexity) is roughly polynomial in N in the high SNR
region [5].

The QR decomposition of the M × N channel matrix or,
equivalently, the Cholesky decomposition of the grammian is
required. When M ≥ N , these matrices have rank N and
the standard SD algorithm is readily applicable. However, for
N > M (i.e., the downlink detection in MIMO systems) or for
highly correlated MIMO channels [6], the matrix rank is less
than the number of symbols to be estimated. A generalized
SD (GSD) algorithm for this case has been derived in [4],
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[7]. The signal vector (to be estimated) and the channel
matrix are partitioned and M symbols are estimated using
SD for all qN−M combinations of the remaining N − M
symbols. The complexity is exponential in (N−M) regardless
of the SNR. Recently, [8] also presented a fast GSD for
rank-deficient MIMO systems by partitioning the subspace
of the remaining N − M symbols for an efficient search.
In this letter, we utilize a different concept where the ML
metric can be advantageously modified for a constant modulus
constellation. We thus derive the new algorithm assuming the
transmit symbols to be constant modulus. We later show how
MIMO systems with non-constant modulus constellations can
be adapted so that our algorithm is applicable.

Notation: Bold symbols denote matrices or vectors. (·)T and
(·)H denote transpose and conjugate transpose, (·)† denotes
pseudo-inverse. The set of all complex K × 1 vectors is
denoted by CK . For 2q-ary phase shift keying (PSK), the
signal constellation Q2q = {ej2πk/2q

, k = 0, 1, · · · , 2q − 1}
and all PSK N × 1 vectors are denoted by QN

2q . 4-ary PSK is
commonly known as quadrature PSK (QPSK). If x and y are
Gaussian with E[x] = µx, E[y] = µy and E

[
(x− µx)2

]
=

E
[
(y − µy)2

]
= σ2/2, then z = x + jy (where j =

√−1) is
Complex Gaussian. We write z ∼ CN (µx + jµy, σ2) in this
case. The N ×N identity matrix is denoted by IN .

II. SYSTEM MODEL

The complex baseband input-output relationship of a
MIMO(N,M) system can be described in vector notation as

y = Hxt + n (1)

where xt ∈ QN is the transmit vector, y ∈ CM is the
receive vector, H = [hij ] is the M × N channel matrix and
hij ∼ CN (0, 1) for i = 1, · · · ,M and j = 1, · · · , N and
n ∈ CM is the additive white Gaussian noise (AWGN) vector
with variance σ2

n. The receiver has perfect knowledge of the
random channel matrix H, which remains constant over one
or more symbol periods (slow fading). The transmitted vector
over the linear MIMO channel (1) is ML detected as

x̂t = arg min
x∈QN

‖y −Hx‖2. (2)

III. SPHERE DECODING TECHNIQUE

Solving (2) is equivalent to

x̂ = arg min
x∈QN

‖R(H†y − x)‖2 (3)

where R is an upper triangular matrix such that RHR =
HHH. Sphere decoding [2]–[4] provides an efficient recursive
method for computing all x such that ‖R(H†y− x)‖2 < r2.
If M ≥ N , HHH is full rank (positive definite). The SD is
applicable due to the non-zero diagonal terms of R.
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Fig. 1. The average complexity versus N −M .

However, if M < N , HHH is positive semidefinite. The
Cholesky factor R of HHH is not full rank and only the first
M rows of R are non-zero. The GSD developed in [4], [7]
can solve this case. Since the elements of x are of constant
modulus, the product αxHx is equal to αN and we get an
equivalent minimization problem as

x̂ = arg min
x∈QN

‖y −Hx‖2 + αxHx

= arg min
x∈QN

yHy − yHHx− xHHHy + xH(HHH + αIN )x.

(4)

Let the positive definite matrix G = HHH + αIN be
Cholesky factorized as G = DHD, where D is an upper
triangular matrix (i.e., D = [dij ] and dij = 0 for i > j).
Define ρ = G−1HHy and add ρHDHDρ to the both sides
of (4). An equivalent optimization problem can be represented
as

x̂ =arg min
x∈QN

‖D(ρ− x)‖2. (5)

Now the diagonal terms of D (rank N ) are all non-zero and
the original sphere decoding can be applied to (5). Note (3)
and (5) are equivalent only for constant modulus signals. The
new radius for (5) becomes

r2
1 = r2 + αxHx + yHHG−1HHy − yHy. (6)

When α → 0, it can be easily verified r2
1

.= r2 −
αnHH(HHH)−2Hn.
Remarks

• A tree of N levels and qN+1−1
q−1 nodes can represent the

entire solution space QN . The basic SD approach is to
prune as many nodes of the tree as possible without
eliminating the optimal solution. The key difference
between the GSD (5) and that of [7] is as follows. First,
the derived gram matrix D is positive definite. Second,
the original GSD [7] cannot prune any nodes in the first
N − M levels while the proposed GSD (5) can prune
from the first level. For large N −M , the new GSD can
prune more nodes and hence has lower complexity.

• The complexity of the new GSD depends on the choice of
α. If α = 0, the new GSD reverts to the GSD in [7]. There
exists an optimal α that leads to the lowest complexity.
It appears impossible to derive a closed-form expression
for the optimal α, which depends on the variance of the
additive noise and N − M . In simulation, we test α =
1 and α = σ2

n, respectively. We find even with these
arbitrary choices of α the new GSD has less complexity
than the previous GSDs [7], [8].

• Recently, Hassibi and Vikalo [5] showed that SD has
polynomial complexity in the high SNR region with M ≥
N . This is not true for any previous GSDs [7], [8]. The
GSD (5) also has complexity exponential in N −M .

• The proposed GSD does not depend on the rank of matrix
H. Thus, the original SD algorithm or its derivatives can
be used regardless of N ≤ M or N > M .

• As the proposed GSD exploits the constant modulus
property of the transmitted signals and other algorithms
do not make use of this information, we expect the
proposed GSD to have low complexity.

• Like the GSD in [7], the proposed GSD can also be used
for vector quantization and multiuser detection.

Next, we show how the GSD (5) can also detect non-
constant modulus. When N is very large, xHx becomes
the time average of xi times N using the weak law of
large numbers and is still a constant. The proposed constant
modulus GSD can also be used. If N is small, we note
that any M -ary Quadrature Amplitude Modulation (M -QAM)
(M = 2n) constellation can be represented as a weighted sum
of n/2 QPSK constellations when n is an even number [9].
That is, for z ∈ M -QAM and zi ∈ QPSK, 0 ≤ i < n/2, we
have

z =

n
2−1∑

i=0

2i

(√
2

2

)
zi. (7)

For brevity, we only show how to decompose 16QAM so
that our algorithm is applicable. Other M -QAM cases can
be derived similarly. Using (7), the 16QAM transmit vector x
can be expressed as

x =
√

2x1 +
√

2
2

x2 (8)

where x1, x2 ∈ QN
4 . Eq. (1) can then be represented as

y =
[ √

2H
√

2
2 H

] [
x1

x2

]
+ n

=H̃x̃ + n.

(9)

That is, an MIMO(N,M ) system with 16QAM is equivalent
to MIMO(2N, M ) with QPSK. The new GSD (5) can be used
with (8).

IV. NUMERICAL RESULTS

We consider a frequency flat fading MIMO channel defined
by H = [hij ]. We incorporate the so-called Schnorr-Euchner
strategy [3], [4] into the GSD in [7] and the new GSD
with α = 1. Fig. 1 compares the computational complexity
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Fig. 2. The complexity ratio Average flops of New GSD
Average flops of Damen GSD for 16QAM with N =

3, . . . , 7.
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Fig. 3. The complexity ratio Average flops of New GSD
Average flops of Damen GSD for 64QAM, 16QAM

and 4QAM with N = 4.

of the proposed sphere decoder with those of [7] and [8]
with different depths for fixed N = 15 and QPSK at an
SNR of 20dB. We simulate this system using MATLAB V5.3
on a PC with an Intel Pentium-4 processor at 1.8GHz. The
matlab command ”flops” is used to count the number of flops.
Only the flops of the search algorithm are counted without
accounting for the prepossessing stage. The Depthi GSD in
Fig. 1 denotes the GSD in [8]. The new sphere decoder has
significantly lower decoding complexity than the GSD in [7]
and [8], especially when the difference between N and M
is large. For N − M = 8, the average number of flops are
6.76× 106 for the GSD in [7] and 2.35× 105 for GSD (5).

Fig. 2 shows the complexity ratio between the new GSD
and the Damen GSD with α = σ2

n for 16QAM, N = 3, . . . , 7
and M = N − 1, . . . , 2 at an SNR of 20dB. We apply the
V-BLAST reordering [4] to the new GSD and the complexity
of reordering is not counted. Note that this reordering is not
possible with the Damen GSD. Since the new GSD enlarges
the dimension (9) for non-constant modulus constellations
such as 16QAM, when the order of rank deficiency N −M

is small, the complexity of new GSD is larger than that of the
Damen GSD, e.g., N−M < 2 (Fig. 2). However when N−M
increases, the new GSD reduces the complexity significantly
and is more efficient.

The complexity ratio between the new GSD and the Damen
GSD with α = σ2

n for 4QAM, 16QAM and 64QAM with
fixed N = 4 and M = 1, . . . , N at an SNR of 20dB
is given in Fig. 3. For 4QAM, 16QAM and 64QAM, our
new GSD is more efficient when N − M is equal or larger
than 1, 2 and 3, respectively. Since our GSD enlarges the
matrix dimensions when handling non-constant modulations,
it increases the complexity. So when N − M is small,
this complexity increase outweighs the savings achieved by
avoiding exhaustively searching of the N−M complementary
dimensions (e.g., the Damen GSD).

V. CONCLUSION

For rank-deficient multiple antenna systems, we have de-
veloped a new sphere decoder assuming constant modulus
signalling alphabets. This assumption is not limiting because
a QAM constellation can be represented as a linear sum of
QPSK points. The new GSD is ML and has significantly
lower decoding complexity than the Damen GSD [4], [7] and
the improved GSD [8] for constant modulus constellations.
For higher-order constellations such as 16QAM, our GSD is
computationally more efficient when N − M is sufficiently
large. The proposed GSD can also be extended to frequency
selective MIMO channels.
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