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Abstract— A novel moment-based m parameter estimator
using noisy channel samples is derived. This estimator is simpler
than known estimators. Numerical results are presented to
demonstrate that, under some practical fading conditions, it
outperforms previous estimators.

Index Terms— Fading channels, Nakagami fading, parameter
estimation.

I. INTRODUCTION

The Nakagami-m distribution is one of the most widely
used fading channel models in wireless communications. It
describes the fast channel amplitude changes which occur in
many wireless transmission environments [1]. The probability
density function (PDF) of the Nakagami-m distribution is

fR(r) =
2r2m−1

Γ(m)
(
m

Ω
)me−

mr2
Ω , r ≥ 0 (1)

where m = Ω2

E{(r2−Ω)2} is the fading measure with m ≥ 0.5
and Ω = E{r2} is the second moment [1]. The parameter,
m, indicates various fading conditions. For example, when
m = 0.5, it represents a deeply fading channel. When m = 1,
it represents a Rayleigh fading channel. When m = ∞, it
represents a static channel without any fading. Since the value
of m measures the channel quality, it is of great importance
to obtain an accurate estimate of m, in advanced receiver
implementations and in channel data analyses.

Estimation of m has been studied previously by several
researchers [2]- [7]. In [2]- [5], noiseless channel samples
(unavailable in a practical system) were used. In [6] and
[7], noisy channel samples assuming knowledge of the fading
phases were used, and the derived estimators require a sample
size as high as 10,000 to achieve reliable performances. In
[8], a simpler but better moment-based estimator for m using
noisy channel samples was developed. This estimator uses
exact expressions for the moments of the noisy samples, which
are expressed using the hypergeometric function. As a result,
a moment of order as high as four has to be used and the
estimator performs poorly when the noise is large. It is well
known that, generally speaking, the lower the orders of the mo-
ments used, the better the performance of the moment-based
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estimator will be. Thus, one expects that one can improve
the performance of the estimator in [8] by using moments of
lower orders. In this letter, we derive a new moment-based
estimator for m using the first and the second order moments
of the noisy samples. In order to do this, the hypergeometric
function is approximated by a polynomial. This approximation
was previously used in the context of efficient generation of
correlated Rayleigh envelope samples where the moments of
the amplitude of the envelope are expressed in terms of the
hypergeometric function [9]. Numerical results show that this
estimator achieves better performance.

II. NEW m PARAMETER ESTIMATOR

We use the same system model as that in [8]. It was derived
in [8] that the n-th order moment of the noisy channel sample,
zi, satisfies

µn = (2σ2)
n
2 Γ(

n

2
+ 1)

(
m

γ + m

)m

· F (m,
n

2
+ 1; 1;

γ

γ + m
)

(2)
where F (·, ·; ·; ·) is the hypergeometric function [10, p. 556],
γ = Ω

2σ2 is the average signal-to-noise ratio (ASNR), 2σ2 =
N0
E is the inverse of the transmitted-signal-to-noise ratio

(TSNR), E is the transmitted signal energy and N0 is the
noise power spectral density. The value of N0 can be obtained
using an independent estimator for N0. For example, it can be
estimated by using an in-band measurement of the noise when
a “zero” signal symbol is sent, an out-of-band measurement
of the noise, or a quadrature channel measurement in BPSK
systems. Furthermore, we examine here the sensitivity of the
new estimator to errors in the estimate of N0. Thus, we
consider the case when the measurement filter or the estimator
are well-designed and the measurement or the estimate of N0

is accurate enough such that the effect of the measurement
error or estimation error of N0 on m parameter estimation is
negligible, and therefore, we assume known N0 [8]. Using the
second-order moment, an estimator for Ω can be derived from
(2) as

Ω̂ =
1
N

N∑
i=1

z2
i − 2σ2 (3)

where N is the number of independent and identically dis-
tributed samples used in the estimation and zi is the i-th noisy
sample. In moment-based estimation, µn is usually approxi-
mated by µ̂n = 1

N

∑N
i=1 zn

i . The moment-based estimators for
m can be derived by using (2) and (3). The main difficulty lies
in the fact that the hypergeometric function is complicated.
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TABLE I

THE DERIVED POLYNOMIAL COEFFICIENTS.

C0
0 C1

0 C2
0

0.288300 -0.129765 -0.000005

C0
1 C1

1 C2
1

-0.776352 1.124807 0.000012

C0
2 C1

2 C2
2

0.000304 0.000066 -0.000000025

In [8], this was solved by using recurrence relationships of
the hypergeometric function. As a result, a moment of order
as high as four has to be used. Here, we approximate the
hypergeometric function enabling us to obtain estimators using
lower orders of moments.

Denote two real numbers as p and q . From (2), one has

fp,q(m, γ) =
F (m, p

2 + 1; 1; γ
γ+m )

F (m, q
2 + 1; 1; γ

γ+m )
h1(m)h2(γ)

= (2σ2)
q−p
2

µp

µq
· Γ( q

2 + 1)
Γ(p

2 + 1)
h1(m)h2(γ) (4)

where h1(m) and h2(γ) are polynomials in m and γ, respec-
tively. We have found by numerical experiments that, for most
values of p and q, there exist some h1(m) and h2(γ) such that
fp,q(m, γ) can be closely approximated by a polynomial in
both m and γ, gp,q(m, γ). This suggests that one can derive
moment-based estimators for m by approximating fp,q(m, γ)
with gp,q(m, γ) and solving the resulting equation for m. To
show how the approximation method can be applied to obtain
moment-based estimators for m, we discuss the case when
p = 1 and q = 2 in the following.

First, we need to determine the polynomials of h1(m) and
h2(γ) such that fp,q(m, γ) can be well approximated by a
polynomial. Using [11, eq. (9.121.1)], [11, eq. (9.137.11)] and
[11, eq. (9.131.1)], one has

F (m, 2; 1;
γ

γ + m
) = (γ + 1)

(
m

γ + m

)−m

(5)

F (m,
3
2
; 1;

γ

γ + m
) =

(
m

γ + m

)−m

F (m,−1
2
; 1;− γ

m
).

By applying the series expansion of the hypergeometric fun-
tion in F (m,− 1

2 ; 1;− γ
m ), one also has [11, eq. (9.100)]

F (m, 3
2 ; 1; γ

γ+m )

F (m, 2; 1; γ
γ+m )

=
∞∑

i=0

ai

mi
(6)

where ai (i = 0, 1, · · · ,∞) are constants independent of

m. For large values of m,
F (m,1.5;1; γ

γ+m )

F (m,2;1; γ
γ+m ) ≈ a0 + a1

1
m ,

and therefore, h1(m) = m can be chosen. Also, numerical
experiments show that h2(γ) = γ

3
2 will make fp,q(m, γ) an

approximately linear function of γ for fixed values of m.
Second, we approximate the function

f1,2(m, γ) =
mγ

3
2 F (m, 3

2 ; 1; γ
γ+m )

F (m, 2; 1; γ
γ+m )

(7)

with a polynomial. Since both m and γ are unknown, this is
actually a two-dimensional surface-fitting problem. We use a

Fig. 1. Normalized sample mean of the new estimator in a noisy Nakagami-
m fading channel for N = 500.

fourth-order polynomial

g1,2(m, γ) = C0
0 + C1

0γ + C2
0γ2 + (C0

1 + C1
1γ + C2

1γ2)m
+(C0

2 + C1
2γ + C2

2γ2)m2 (8)

where C0
0 , C1

0 , C2
0 , C0

1 , C1
1 , C2

1 , C0
2 , C1

2 , C2
2 are coefficients

to be determined. We have found that polynomials with higher
or lower orders won’t provide simpler estimators with better
performances in all examples tested. By applying the least
squares method, one determines the coefficients shown in
Table 1.

Finally, we solve the equation to obtain moment-based
estimators for m. One has from the preceding results that

2γ̂
3
2
√

2σ2µ̂1√
πµ̂2

m ≈ g1,2(m, γ̂) (9)

where the true value of γ is replaced by its estimate, γ̂. Solving
the equation for m, a moment-based estimator for m can be
derived as

m̂1 =
−b +

√
b2 − 4ac

2a
(10)

where a = C0
2 + C1

2 γ̂ + C2
2 γ̂2, b = C0

1 + C1
1 γ̂ + C2

1 γ̂2 −
2γ̂

3
2
√

2σ2µ̂1√
πµ̂2

, c = C0
0 +C1

0 γ̂+C2
0 γ̂2, γ̂ = Ω̂

2σ2 and Ω̂ is obtained
from (3).

Following similar procedures as previously, m parameter
estimators using other values of p and q can also be derived. It
seems not possible to derive simple estimators using moments
of orders lower than p = 1 and q = 2, since both Ω and
m are unknown . Note that the use of h1(m) and h2(γ)
makes fp,q(m, γ) as linear as possible before approximation,
and therefore, eases the approximation. Note further that
fp,q(m, γ) can also be approximated by an exponential or
a ratio of polynomials. However, an exponential or rational
approximation is much more complex than a polynomial
approximation. In addition, these approximations usually don’t
provide estimators with explicit forms. The moment-based
estimator for m derived in [8] is

m̂2 =
a2(b1c2 − b2c1) + b2(a2c1 − a1c2)

c2(b2c1 − b1c2)
(11)

where a1 = µ̂2 − 2σ2, b1 = 6σ2µ̂2 − 4σ4 − µ̂4, c1 = µ̂2,
a2 = µ̂1−σ2µ̂−1, b2 = 8σ2µ̂1−2µ̂3−2σ4µ̂−1 and c2 = 2µ̂1.
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Fig. 2. Root-mean-square-error of the new estimator in a noisy Nakagami-m
fading channel for N = 500.

Fig. 3. Root-mean-square-error of the new estimator in a noisy Nakagami-m
fading channel at N = 500 and ASNR = 20 dB when N0 estimates of
different accuracies are used.

III. SIMULATION RESULTS AND DISCUSSION

In this section, the performance of m̂1 is examined and
compared with that of m̂2. The true value of Ω is set equal to
20. The values of ASNR considered are 20 dB (σ2 = 0.1)
and 13 dB (σ2 = 0.5). A sample size of N = 500 is
used. Numerical trials suggest that smaller sample sizes won’t
provide reliable estimator performances in this case. The true
value of m varies from 0.5 to 20 in increments of 0.5, as in
[8].

Fig. 1 shows the normalized sample mean of m̂1 at N =
500. The new estimator has a bias between +5.0% and -
2.0% when ASNR = 13 dB, and between +4.0% and -1.5%
when ASNR = 20 dB, for 1.0 ≤ m ≤ 20.0. Therefore,
the estimator bias performance improves little as the ASNR
increases in these cases. Comparing m̂1 with m̂2, one sees
that their bias performances are similar for 1.0 ≤ m ≤ 20.0.
Calculation shows that their relative difference (the absolute
value of the difference between the sample means of m̂1 and
m̂2 divided by the corresponding true value) is less than 7%
in all the cases considered, quantitively demonstrating that the
biases are of the same order. However, m̂2 outperforms m̂1

for m < 1.0, owing to large approximation errors in m̂1 at
small values of m.

Fig. 2 shows the root-mean-square-error (RMSE) of m̂1.
Since a Cramér-Rao lower bound (CRLB) for the noisy
channel is not available, the CRLB for the noiseless channel
is used as a benchmark. One sees that, at m = 20, the
root-mean-square-error of the estimator is about 3.2 when
ASNR = 13 dB and about 1.6 when ASNR = 20 dB.
Therefore, the root-mean-square-error of m̂1 decreases as the
ASNR increases. Comparing m̂1 with m̂2, one sees that m̂1

has a much smaller root-mean-square-error than m̂2. The
difference increases as m increases. This is expected, as the
approximation error in m̂1 decreases when m increases. At
large values of m, the approximation error will be negligible,
and the highest order of moment used in the estimation will
become dominant. One also sees from Figs. 1 and 2 that
a sample size of 500 and a SNR of 20 dB are enough to
achieve good performance in this case. Fig. 3 shows the effect
of imperfect estimates of N0 on m̂1 and m̂2. The RMSE
performances of both m̂1 and m̂2 degrade as estimation errors
occur in the estimation of N0. In particular, m̂1 is more
sensitive to a negative bias in the estimation of N0 than m̂2,
while m̂2 is more sensitive to a positive bias in the estimation
of N0 than m̂1. Generally, the estimators have comparable
sensitivities to errors in the estimation of N0.

It is concluded that m̂1 outperforms m̂2 when 1.0 ≤ m ≤
20.0. Moreover, m̂1 is computationally simpler than m̂2, as
m̂1 only needs µ̂1 and µ̂2 while m̂2 needs µ̂−1, µ̂3 and µ̂4

additionally, which are sums of N elements. Therefore, when
m ≥ 1.0 or when 0.5 ≤ m < 1.0 but a simpler estimator
is perferred, m̂1 should be used. This result is valid when a
good estimate of N0 is available.
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