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Abstract— Based on experiments and numerical simulation, it has been
widely believed that the time average mean square error in the first
order sigma-delta modulator with input of bandlimited signals decays
like

� � � � � �
as the sampling ratio

�
goes to infinity. This conjecture

remains as an open problem for many years. Combining tools from
number theory, harmonic analysis, real analysis and complex analysis,
this paper shows that the conjecture holds in some reasonable sense.

I. INTRODUCTION

Converting an analog signal into a digital signal (A/D conversion)
consists of two steps: sampling and quantization. According to
sampling theorems [3], [4], [7], [16], the loss in the sampling step
is reversible. However, the quantization step usually introduces an
irreversible loss of information. The loss in the quantization step is
called the quantization error. Recent research shows that the accuracy
of A/D conversion can be improved by refining the resolution of
sampling as well as quantization [3], [6]. Due to the expensive cost in
building a high resolution quantizer, high accuracy of A/D conversion
is usually achieved by refining the resolution of sampling. Among
many schemes, the sigma-delta ( � � ) modulator provides a promising
architecture for high accuracy A/D conversion because it is robust
against circuit imperfections and hence is amenable to LSI and VLSI
imperfection [1], [2], [7].

In the literature, the input signal � to a � � modulator is modelled
to be a bandlimited function taking values in the interval 	 
 � �  or	 � � � �  for the convenience of discussion [7], [9], [10], [11], [12].
For the same reason, in this paper, we consider the signal � to be
a bandlimited function taking values in the interval 	 � � �  instead.
But these assumptions are essentially equivalent. In this paper, we
consider the bandlimited signals in the space � � � � � so that some
important signals, such as sinusoidal signals, can be included in our
discussion. In other words, we define the signal class to be� � � � � � � � � � � � � �� has support contained in 	 � � � �  � �
where �� denotes the Fourier transform of � which is defined by�� � � � � �  �� � � � ! � " � # $ % & ! for � � � ' � � � and extended to the
tempered distributions in the usual way [8]. Without loss of generality,
in this paper we work with the space

� (
and all the results in this

paper can be easily extended to arbitrary bandwidth � by rescaling.
For ) * � , let + be a function in the Schwartz class such that �+ � �
on the interval 	 � , � ,  and �+ has support contained in the interval	 � ) , � ) ,  . Then the following sampling formula [9], [10], [14] holds

� � ! � � �) -. / 0 � 1 2 ) 3 + 1 ! � 2 ) 3 � � � � ( 4
(I.1)

This + is called an admissible reconstruction filter, the quantity )
in the above sampling formula is called the sampling ratio, and5 � � 2 6 ) � 7 . / 0 are called the samples of the input signal � .
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Fig. 1. A basic 8 9 modulator using (I.6) and (I.7).

For ! � � , we denote by : ! ; the largest integer that is not greater
than ! and denote < ! = � � ! � : ! ; � 	 
 � � � . The � � modulator uses the
samples

5 � � 2 6 ) � 7 . / 0 as inputs to generate the binary digital signal5 > ? � 2 � 7 . / 0 as follows:@ ? � 2 � � � .-A B ' � 1 C ) 3 � (I.2)D ? � 2 � � � : @ ? � 2 � ; � (I.3)> ? � 2 � � � D ? � 2 � � D ? � 2 � � � � (I.4)

where
@ ? � 
 � � � 
 and

@ ? � 2 � � � � E FA B . G ' � � C 6 ) � for 2 H 
 .
It is easy to see that

@ ? � 2 � � @ ? � 2 � � � � � � 2 6 ) � for all 2 � I .
Since � takes value in the interval 	 � � �  , it is easy to check that> ? � 2 � takes the binary value � or � . Note that the equations (I.2)
and (I.4) correspond to “ � ” and “ � ”, respectively; hence giving the
name of the modulator. Since

@ ?
and

D ?
will accumulate into huge

numbers as time elapses, neither can be calculated in a circuit. Thus
one introduces the auxiliary variable J ? � � @ ? � D ? � < @ ? = . ThenJ ?

satisfies the recursive relation:

J ? � 2 � � J ? � 2 � � � � � 1 2 ) 3 � > ? � 2 � 4
(I.5)

Since J ? � 2 � � 	 
 � � � , from (I.5) one has the relation
> ? � 2 � �

: � � 2 6 ) � K J ? � 2 � � � ; . Using the auxiliary variable J ?
, now we

can translate the procedure in (I.2)–(I.4) into the following equivalent
procedure:

J ? � 2 � � � J ? � 2 � � � K � 1 2 ) 3 � > ? � 2 � with J ? � 
 � � � 
 �
(I.6)> ? � 2 � � � L � � if � M . ? N K J ? � 2 � � � H � O� � if � M . ? N K J ? � 2 � � � P � 4 (I.7)

The simplest � � modulator is shown in Figure 1 and consists of
a discrete time integrator and a binary quantizer inside a single
feedback loop [7], [12], [18].

Reconstructing the analog signal from the digital sequence5 > ? � 2 � 7 . / 0 by the sampling formula in (I.1), one obtains the
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reconstructed signal�
� � � � � � ��

�
	 
 �

�  � � � � � � � � � � �
Then the quantization error is defined to be the difference �  � � � � � � �

� � � � �
�

� � � � . The basic estimate given in [7], [9] for the quantization
error is � �  � � � � � � � � � � � � � � � � �
In practice, however, one observes a much better decay behaviour
than that of this basic estimate. In particular, through experiments
and numerical simulation, it is commonly believed that� � �� 	 �

�� 
 � �
� � � �  � � � � � � � � � �  � � �

(I.8)

with  independent of the input signal � .
However, it is turn out to be very hard to improve the basic

estimate [7]. For very restricted classes of signals � , the conjecture in
(I.8) has been proved in some sense. In particular, Gray [11] showed
that if � � � �

for
� � � � � � � � , then� �� � � � � �� 	 �

�
 � �
� � � �  � � � � � � � � � � � � � �  � � � �

Gray’s result was later extended by Gray, Chou and Wong [12] to
the case where the input signal � is sinusoid; that is, � � � � � � � � � � � ,
with � � �  ! .

For general bandlimited signals, to our best knowledge, there was
little progress on this conjecture until the recent interesting work
of Güntürk [9], [10], who proved, by a combination of tools from
number theory and harmonic analysis, that if � � " #

takes values
in the interval � $ � � � , then for any small � % $ and all � satisfying� � � � � �� $ , there is a constant  � � � � � & � % $ such that

� �  � � � � � � � �  � � � � � & � � � � � � ' � �
where the constant  � � � � � & � depends on � and the local value � � � � � .

Our work in this paper has been greatly motivated and inspired
by the recent interesting work in Daubechies and DeVore [7] and
Güntürk [9], [10]. Our objective in this paper is to try to prove
the conjecture in (I.8). Using tools from number theory, harmonic
analysis, real analysis and complex analysis, we shall prove the
conjecture in the sense that the time average MSE decays like� � � � � '  � for any small ! % $ as the sampling ratio � approaches
infinity. Furthermore, if the signals are restricted to some special
classes including the periodic signals, our result is very much close
to the original conjecture in (I.8). See the next section for details of
the main results in this paper.

II. MAIN RESULTS

We now present the main results in this paper. Since the conjecture
in (I.8) has been confirmed by Gray [11] and Güntürk [9], [10] for
a constant input, in the following we only deal with a non-constant
signal � � " #

.
Theorem 1: Suppose that � � " #

takes values in the interval � � � � � .
Then for any large 
 % $ and any small � % $ , there are two positive
constants � � � � and  � � � � � such that

�� 
 � �
� � � �  � � � � � � � � � �  � � � � � � � � ' � " � % � � � � �

where  � � � � � depends on � , 
 and the property of the signal � .
Theorem 1 implies that, considering the input signal � on any

finite time interval � � 
 � 
 � , the decay of the average square error

behaves like
� � � � � ' � � for any small � % $ . Since � can be arbitrarily

small, Theorem 1 is close to the conjecture in (I.8) on a finite time
interval. Since in experiments and numerical simulation one always
deals with signals on a finite time interval, Theorem 1 explains well
the observations made in experiments.

The constant  � � � � � in Theorem 1 is determined by the behaviour
of the signal � in the interval � � 
 � # � 
 ( # � for any fixed # % $ .
Suppose that the increasing sequence

) $ % * % 
 & are all the distinct
zeros of � � � on + , where ' is a set of consecutive integers. Suppose
also that

) $ % * ( � � �% , � ) � � � are all the distinct zeros of � � � on � � 
 � 
 � .
If there is a zero of � � � in the open interval � � 
 � # � � 
 � , we set
 * � � $ � ) � � � � � and + * � � � , � 
 � � � , otherwise 
 * � � � 

and + * � � � , � 
 � ; If there is a zero of � � � in the open interval� 
 � 
 ( # � , we set 
 - � � $ ( � � � ' � and + - � � . � 
 � ( � , otherwise
 - � � 
 and + - � � . � 
 � . Let / %

denote the order of the zero
$ %

of
the analytic function � � � for all 0 � ' , and / � � � � 1 2 3 4 5 % 5 3 6 / %

.
Let - � � � � � � 3 4 5 % 5 3 6 � � � 7 8 ' � � � $ % � � . Then - � % $ . For any
positive small

�  # such that the
�

-neighbourhood of
$ %

defined
by 9 � $ % � � � � � � $ % � � � $ % ( � � are disjoint to each other for0 � + * � � � � � + - , let: � � � � � � � � ;& 
 < � 4 � = � > � � 6 ' = � > ? @ A B 68 C B 4 D � E 8 � = � � � � � � � � � � � �
Then : � � � � % $ . As a matter of fact, the constant  � � � � � in
Theorem 1 is determined by the quantities � , / � , - � and : � � � � .
Naturally, if we put some conditions on the quantities / � , - � and: � � � � , the result in Theorem 1 can be improved and we have the
following theorem.

Theorem 2: Suppose that � � " #
takes values in the interval � � � � �

and
� 1 2 % 
 & / %  F . If there is a real number

� % $ such that9 � $ % � � � are disjoint to each other for all 0 � ' ,� � ;% 
 & � � ;& 
 D � E 8 � = � � � � 7 8 ' � � � � � � % $ and
� � ;& 
 G @ A 8 H I D � E 8 � = � � � � � � � � � % $ �

then for any small � % $ , there exist two positive constants � � and � � � such that� � �� 	 �
�� 
 � �

� � � �  � � � � � � � � � �  � � � � � � ' � " � % � � �
where the constant  � � � is independent of 
 and � .

For any periodic signal, the quantities / � , - � and : � � � � are
completely determined by its behaviour in one period. Therefore, / � ,

- � and : � � � � are independent of 
 . Hence we have the following
result.

Corollary 1: Suppose that � � " #
is periodic and takes values in

the interval � � � � � . Then for any small � % $ , there exist two positive
constants � � and  � � � such that� � �� 	 �

�� 
 � �
� � � �  � � � � � � � � � �  � � � � � � ' � " � % � � �

The sinusoidal signals considered by Gray et al [12] are obviously
covered by Corollary 1. However, the constant  � � � in Theorem 2
and Corollary 1 is not independent of the input � . We guess that such
an absolute constant may depend on the statistical properties of the
signals in

" #
. In Gray’s estimate, he got the absolute constant since

he took the integration over all possible signals � � � � � � � � � for� � � � � � � � . It could be possible to define a measure in
" #

and take
integration of the average square error with respect to the measure
to obtain an absolute constant.

III. PROOF OF THEOREM 1

In this section, we will present the proof of Theorem 1. Since
Theorem 2 and Corollary 1 are immediate consequences of our proof
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of Theorem 1, we will omit their proofs. In this section, we always
use � to stand for a general absolute constant.

Before proceeding further, we need some auxiliary results. First,
we review some important facts about bandlimited functions in [19].� A bandlimited function � � � �

is the restriction to � of an
entire function of exponential type � [19, page 85]; that is, the
function defined by

� � � � � 	
 �
� �

� �  � � � �� � � � � � � � � � �
is an entire function and satisfies � � � � � � � �  � � � �

for all � � �
with some constant

� � � .� Bernstein’s inequality [19, page 88]: If � � � �
, then� � � � � � � � � � � � � � .

For a function � of complex variable, � � is called a zero of � if� � � � � � � . An interesting result about the zeros of an entire function
of exponential type which plays an important role in this paper is as
follows.

Proposition 1: (see [19, page 52]) If � � � � is a nonzero entire
function of exponential type � , then� � 	 
 � � � �

� � � �� � 
 �� � 
 �
where

� � � � is the number of zeros of � inside the disc with radius� and center at the origin.
The following fundamental estimate in number theory was used in

Güntürk’s work [9], [10] and will be useful in this paper.
Lemma 1: (Koksma-Erdös-Turán [13], [15]) Let � be a function

of bounded variation on � � � 	 � . For any finite sequence of points� � � � � � � � � in � � � 	 � ,����� 	
�

� � ! � � � � 	 � " � �
� � � � � � �

�����
� � � �� � � � � � �
 � �

� 	 #

 �

! �
	� ����� 	

�
� � ! �  � $ �

� � � ����� � �
where � �� � � � is the total variation of � on � � � 	 � .

We also need an estimate for oscillatory integrals in harmonic
analysis.

Lemma 2: (van der Corput [17, page 332]) Suppose that � is a
real-valued function on the interval � � � � � such that for a positive
integer � , � � � � � � % � � & � for all % � � � � � � . Then���� � ��  � � � ' � � % ���� � � � � � � � � � (III.1)

holds when:
(i) � & 
 or
(ii) � � 	 and � � is monotonic in � � � � � .

The constant � � depends only on � .
The following result is an extension of an interesting result

established by Güntürk [9], [10], which will be useful in this paper.
Lemma 3: (Güntürk [9], [10]) The sequence

( )
can be extended

to an analytic function, which we shall denote by
( )

as well.
Moreover, for any positive integer � ,( � � �) � 	* � � � � � � � � � + �* , # � � � )
and � � � � ) � � � � � - * � �  $ � ) � � � �	 " � - * �

Now we present the proof of Theorem 1. For any % � � , define� ) � % � . � / * % 0 � % ) . � � ) � % �* and � ) � % � . � % " % ) � 1 * % 2* �
Let 3 be a function in the Schwartz class such that �3 � 	 on � " � � � �
and has support contained in � " 
 � � 
 � � . Therefore, there are constants� � � � � � such that for all

� & � and � & � ,

� 3 � � � � % � � � � � � �� 	 # � % � � � � % � � �
For a small  � � , set � ) � * ! � "

and define 3 )
by

3 ) � % � . � � ) 3 � � ) % � �
Then �3 ) � � � � �3 � � - � ) � . Since �3 ) � 	 on � " � ) � � � ) � � � � " � � � �
and �3 )

has support contained in � " 
 � ) � � 
 � ) � � � � " * � � * � � for* � � ,
4 3 ) 5 )

is a family of admissible reconstruction filters. Define
the difference operator 6 � by 6 � 3 . � 3 " 3 � � " � � and denote6 . � 6 � . From the sampling formula in (I.1) and the definition of
quantization error, by % � % ) # � ) � % � and 6 � ) � � � � � � � - * � " 7 ) � � � ,
we have

 ) � � � % � � 	*
 

� 8 9 � � ) � � - * � " 7 ) � � � � 3 ) + % " � * ,� 	*
 

� 8 9 6 � ) � � � 3 ) + % " � * ,� 	*
 

� 8 9 � ) � � � 6 �� 3 ) + % " � * ,� 	*
 

� 8 9 � ) � � # � ) � % � � 6 �� 3 ) + � ) � % � " � * , �
Since � ) � � � � 	 � , we deduce that� ) � % � . � 	*  

� 8 9 � ) � � # � ) � % � � 6 �� 3 ) + � ) � % � " � * , " 6 �� 3 ) + " � * , !
satisfies

� � ) � % � � � 	*  
� 8 9

��� 6 �� 3 ) + � ) � % � " � * , " 6 �� 3 ) + " � * ,
���

� 	*  
� 8 9

� � � � ) : " � � ' �
� � � ) ��� 6 �� � 3 ) � � � � � ��� � �

� 	*
� �� �

� � � �� � � � ) � � 3 ) � � � � # � � � #
� 	* � � � 3 ) � � � � �� * � � : ! � $ � 3 � � � � �

Noting that
� ) � % � � * % )

, we rewrite the quantization error  ) � � � � �
as

 ) � � � % � � 	*  
� 8 9 � ) � � # � ) � % � � 6 �� 3 ) + " � * , # � ) � % �

� 	*
 

� 8 9 % � ) � � # * % ) � " 	
 & 6 �� 3 ) + " � * , # � ) � % � �
Since

( )
has been extended to an analytic function in Lemma 3,� )

can be also extended to a function defined on the real line � by� ) � % � . � 1 ( ) � % � 2 � % � � . Define an auxiliary symbol # ) � � � % � by

# ) � � � % � . � $ %& %'
; �� ! � � � ) � * % # ( � " 	 - 
 � � � � <� � � � � <" ; �� ! � : � � � ) � * % # ( � " 	 - 
 � � � = � �
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Then � � � � � � � � � 	 
 � �  �
� � � � � � . Therefore,

� � � � � � � � 	�
�

� � �  �
� � � � � � �  �� � � � � � � � � � � � � �

� 	�
�

� � � �
� � � � � � �  � �� � � � � � � � � � � � � �

� 	�
�

� � �
� 	�

�
� � �

� 	�
�

� � �
�

� � � � � � �  � �� � � � � � � � � � � � � �
� � � �� � � � � � � � � � �� � � � � � � � � � � � �

In order to estimate � �� � � � � � , it suffices to estimate �
� � � � � � � . Since� �

� � � � � � � � � � �
� � � � � � � � � �

� � � � � � � �
� � � � � � � � , we only need to

estimate � �
� � � � � � � and � �

� � � � � � � �
� � � � � � � � , respectively. Since

each step involves complicated tools from number thory, harmonic
analysis, complex analysis and real analysis, we only list the major
results in each steps while omit the detailed proofs.

1) Step 1: Estimate � �
� � � � � � � . We obtain

	� �
� �

� � � �
� � � � � � � �  � � � � � � ! � �� � � � "� # � 	 
 � � � (III.2)

for all � $ 	 � % � � � � 
 � � and � � � � � .
2) Step 2: Estimate � �

� � � � � � � �
� � � � � � � � . We obtain

	� �
� �

� � � �
� � � � � � � �

� � � � � � � � �  � � � � � � � �� � 	 
 � � � � � � � � � "� � �
3) Step 3: Final estimate. Let � �  � � 	 � % � � � � 
 � � . Combining

Steps 1 and 2, by the triangle inequality we obtain that for all � $� �  � and � � � � � ,

	� �
� �

� � � �
� � � � � � � � �  � � � �  � � 	 
 � � � (III.3)

where � �  � � � � � � � � � �� � � � "� � . Using the admissible filter, Finally,
we have 	� �

� �
� � � � �� � � � � � � �  � � � �  �  � � � & � � �

Similarly, the same estimate for � � � � � � � can be attained by reflecting
the negative indices into the positive indices, which completes the
proof of Theorem 1.

IV. CONCLUSION

In this paper, we regoriously analyze the time average mean square
error of a sigma-delta system with the inputs of band-limited signals.
Combining tools from number theory, harmonic analysis, real analysis
and complex analysis, we establish the estimate

� � � � & � � � for any
small � $ � as the sampling ratio � approaches infinity, which is
very close to the long standing conjecture

� � � � & � .
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