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Approximate ML Detection for MIMO Systems
Using Multistage Sphere Decoding

Tao Cui, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract—We derive a new multistage sphere decoding (MSD)
algorithm, which is a generalization of the conventional sphere
decoder (SD). This new MSD exploits that many higher order
signal constellations can naturally be decomposed into several
lower order constellations. We develop a two-stage SD for a
16-ary quadrature amplitude modulation (16QAM) multi-input
multi-output (MIMO) system by decomposing 16QAM into two
4QAM constellations. The first stage generates a list of 4QAM
vectors. For each of these, the second stage computes an optimal
4QAM vector. In the low signal-to-noise ratio (SNR) region, our
MSD performs close to the original (single-stage) SD, but it has a
lower complexity. In the high SNR region, our MSD is not suitable
for reaching near maximum likelihood (ML) performance.

Index Terms—MIMO, sphere decoding.

I. INTRODUCTION

SPACE-time processing and multi-input multi-output
(MIMO) systems have emerged as promising high-ca-

pacity communication techniques. The sphere decoder (SD)
[1], which is a computationally efficient decoding algorithm
with maximum likelihood (ML) performance, has received
considerable interest. The original SD has been used to decode
lattice codes [2] and space-time codes [3]. For a MIMO system
with transmit and receive antennas , the input and
output relationship is , where is the transmitted
signal vector, is the channel perfectly known to the
receiver , and is the additive noise vector. The basic
detection problem is the discrete least-squares optimization

(1)

where denotes the Euclidean norm, is a finite
complex set called the signal constellation , and

. Typically, the computational complexity
for solving grows exponentially with and the size of

. Remarkably, the SD achieves polynomial complexity in
the high signal-to-noise ratio (SNR) region (however, its com-
plexity is exponential in the low SNR region). Nevertheless, the
complexity of the SD may be too high for certain applications.
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Suboptimal detectors for (1) include the zero-forcing (ZF) de-
tector and the vertical Bell Labs layered space time (V-BLAST)
detector (nulling and cancelling) [4]. The complexity of the
SD is substantially higher than that of V-BLAST in the low
SNR region, but the SD performs much better than V-BLAST.
Attempts have been made to develop other suboptimal algo-
rithms that have performance/complexity advantages over SD
and V-BLAST (see [5] and [6]).

Multilevel codes and multistage decoding allow the use
of component codes and their sequential decoding [7]. This
approach has been widely used to construct complicated codes.
Each stage uses the decisions from the previous stages and
decodes one component code. Multistage sequential decoding
facilitates this approach since ML decoding of large codes
can be prohibitively complex. To the best of our knowledge,
such an approach has not been developed for uncoded MIMO
systems. Spectrally efficient, higher order constellations such as
16QAM, which are popular with MIMO systems, can naturally
be decomposed into several lower order constellations [8]. Thus,
the uncoded MIMO detection problem can be viewed as a
multistage decoding problem.

This letter develops a multistage sphere decoder using such
decompositions. We explain the key idea by a specific example
and let -ary quadrature amplitude modulation (QAM) con-
stellation and all QAM vectors be and . Specif-
ically, we know that if , there exist
such that . This means a vector in
can be uniquely mapped into two component vectors and
in . We can then envision two-stage decoding in which
and are detected sequentially by two SDs. The second SD
uses the detected value for interference cancellation. How-
ever, due to error propagation, passing hard decisions between
stages can result in poor performance. To overcome this, we use
a list SD (LSD) [9] to generate a list of candidates
in the first stage. For each candidate, a second SD computes
the optimal candidate in (see Fig. 1). Depending on the list
size, our multistage sphere decoding (MSD) performs close to
the original single-stage SD (SSD) but reduces computational
complexity. It can readily be generalized to other constellations.
However, its complexity needed to achieve near ML perfor-
mance increases with increasing SNR.

Notation: Bold symbols denote matrices or vectors. and
denote transpose and conjugate transpose. The set of all

complex vectors is denoted by and . We
use the terms SSD and LSD to denote a conven-
tional, SSD, and a list SD over the space. For , we
write , where .
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Fig. 1. Block diagram of the MSD for 16QAM systems.

II. MSD ALGORITHM

By transforming (1), the SSD of Fincke and Phost [1] solves
the equivalent problem

(2)

where , the upper triangular matrix , and the
orthogonal matrix are the QR factorization

of . The matrices and represent the first and last
orthonormal columns of . The SSD computes all s

that lie within a sphere of the given radius.
For brevity, we only show how to apply the MSD to

16QAM, and a more general algorithm is given later. An
arbitrary 16QAM vector can be uniquely expressed as

, where . Similarly, let the
true transmit vector be . The problem
of detecting (2) is equivalent to detecting two 4QAM
component vectors as follows:

(3)

To begin, we need an initial approximation to the true signal .
Let this be . Using this, we do a partial
interference cancellation as in the first
stage1. If , is clearly sufficient to detect . We search

that minimizes

(4)

However, in general, and minimizing (4) will likely give
a wrong estimate. Therefore, we use an LSD [9] to generate a list

of the candidates that make (4) the smallest. The list
size is between and 1 and is proportional to the probability
that the true solution falls in the list. With a properly chosen
radius , we can obtain with candidates on average. To
obtain a typical value of , we note that for true

(5)

where is the additive Gaussian noise vector with variance .
Since is correlated with and , (5) cannot be treated as a
chi-square random variable with degrees of freedom. The
expected value of this random variable is denoted by , which
can be obtained via simulation. As in [9], one possible choice

1Note that we cancel ~s first since any errors in ~s will be attenuated by
p
2

[see (3)], whereas any errors in ~s will be magnified by
p
2.

of radius is , where is chosen so that the average
length of the list is . For typical values of and ,
corresponding to can be obtained from simulation and
can be stored in memory for practical use.

In the second stage, for each candidate , the SSD (4,
) solves

(6)

where . This process provides pairs
of , and the best among them is selected as the output.
Each time a for (6) is found with a , the search radius of
the second stage is updated if is less than the
current radius.

Remarks:

• Our proposed MSD consists of an LSD (4, ) and an
SSD (4, ), which computes points of 4QAM
vector pairs. Is our approach less complex than an SSD
(16, )? That depends on the difference of the com-
plexities of SSD (4, ) and SSD (16, ). For example,
in the high SNR region, the difference of complexity is
small, and our proposed MSD is not more efficient than
the SSD(16, ), while in the low SNR region, the dif-
ference of complexity can be large, and our proposed
algorithm is much more efficient.

• The parameter gives a tradeoff between com-
plexity and performance. When is small, the
probability that is low and the bit error
rate (BER) will increase, while the complexity will
decrease.

• The initial estimate can be obtained via ZF, min-
imum mean-square error (MMSE), or V-BLAST.

• The performance of our MSD may be further improved
by using from the second stage SD to recompute
the first stage output . This will result in an iterative
MSD and will increase computational complexity.

Our proposed MSD can be generalized to other constella-
tions. For example, a 64QAM vector can be uniquely ex-
pressed as , where ,

, 2, 3. Therefore, the MSD will have three stages. In the
first stage, an LSD is used to generate a list of . Another LSD
is used to generate a list of in the second stage. In the last
stage, an SSD is used to obtain the solution. The -QAM con-
stellation can be represented as a weighted sum of Quadra-
ture Phase Shift Keying (QPSK) constellations [8]. That is, for

-QAM and QPSK, , we have

(7)

Hence, the MSD for a -QAM system has stages. For
-PSK, the MSD has stages and consists of LSDs. For

brevity, we do not give the algorithm in detail.
The complexity of a -stage MSD

, where is the list size of the th stage, and
is the complexity of the SSD with 4QAM. Simulation results
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show that the MSD achieves increased complexity savings for
large constellations.

The MSD algorithm for -QAM can be summarized by the
following steps.

Step 1) Compute the ZF solution and decompose it to
, where .

Step 2) For , . Solve
with an LSD and insert each

into a list .
Step 3) For each candidates , solve

(8)

with an SSD, where .
Step 4) Find the best -tuple and output

.

III. SIMULATION RESULTS

We now compare the MSD with the SSD for a 16QAM, un-
coded MIMO system with four transmit and four receive an-
tennas over a flat Rayleigh fading channel. This system is simu-
lated using MATLAB V5.3. The MATLAB command “flops” is
used to count the number of flops. Only the flops of the search
algorithm are counted, without accounting for the preprocessing
stage. The initial radius is chosen according to the noise vari-
ance. Both the SSD and the MSD use the Schnorr–Euchner
variant of SD [10]. The initial detection uses the ZF-VBLAST.

Fig. 2 compares the BER of the SSD with that of the MSD as a
function of the number of candidates in the first stage . As

increases, the MSD performs close to the SSD. As
varies, its performance varies between those of V-BLAST and
SSD. The complexity of the MSD increases as increases
(see Fig. 3), and it is lower than that of the SSDs when the
SNR is below a threshold. For instance, when , this
complexity crossover point is 17 dB. Fig. 3 also shows that the
complexity of the MSD is almost constant with specific ,
suggesting that its complexity is polynomial for the whole SNR
range, in contrast to the conventional SD. The major drawback
of our MSD is that the complexity needed to achieve near-ML
performance increases with increasing SNR. Thus, our MSD is
suitable for the low SNR region, where it can be combined with
an outer code to achieve low BER.

IV. CONCLUSION

In this letter, we developed a multistage SD by decomposing
a large constellation into a sum of smaller constellations. This is
particularly easy for QAM where a higher order QAM constella-
tion can be readily resolved into lower order QAM components.
A series of conventional LSDs and SSDs are used to search over
the smaller constellation spaces. As a specific example, 16QAM
is resolved into two 4QAM constellations. An LSD and an SSD
are used to search over the 4QAM constellations. Simulation re-
sults show that in the low SNR region, our MSD performs close
to the SSD and reduces complexity. On the other hand, the con-
ventional SD is still a better choice in the high SNR region.

Fig. 2. BER comparison with different N for a 16QAM MIMO system
with four transmit and four receive antennas.

Fig. 3. Complexity comparison with different N for a 16QAM MIMO
system with four transmit and four receive antennas.
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