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Abstract— We derive a generalized sphere decoder (GSD) for
rank-deficient Multiple Input Multiple Output (MIMO) systems
using N transmit antennas and M receive antennas. This problem
arises when N > M or when the channel gains are strongly
correlated. The upper triangular factorization of the Grammian
yields an under-determined system and the standard sphere
decoding (SD) fails. For constant modulus constellations, we
modify the maximum likelihood (ML) cost metric so that the
equivalent Grammian is rank N. The resulting GSD algorithm has
significantly lower complexity than previous algorithms. A method
to handle non-constant modulus constellations is also developed.
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I. INTRODUCTION

Space-time wireless technology using multiple antennas pro-
vides very high data rates with low error probability. In this
paper, we consider ML detection (MLLD) for rank-deficient
multi-antenna systems with NV transmit antennas and M receive
antennas, denoted by MIMO (N, M). MLD of the N symbols
transmitted per symbol period over the MIMO channel is an
integer least-squares (LS) problem, which is known to be
NP-hard. Common, reduced-complexity algorithms such as V-
BLAST [1] perform much worse than the true MLD. Sphere
decoder (SD) algorithms [2]-[4] however achieve near exact
ML performance by providing an efficient way for generating
all candidate solutions that lie inside a hypersphere defined by
the channel matrix and the received signal vector. In the high
signal-to-noise ratio (SNR) region, the radius of the sphere can
be chosen small enough so that only a few candidates are found
inside the sphere. This search space is therefore drastically
smaller than the MLD search space which consists of ¢ points
for a g-ary signal constellation. Thus, the number of operations
(complexity) is polynomial in N in the high SNR region [5].

The QR decomposition of the M x N channel matrix o,
equivalently, the Cholesky decomposition of the grammian is
required. When M > N, these matrices have rank N and
the standard SD algorithm is readily applicable. However, for
N > M (i.e., the downlink detection in MIMO systems) or for
highly correlated MIMO channels [6], the matrix rank is less
than the number of symbols to be estimated. A generalized SD
(GSD) algorithm for this case has been derived in [4], [7].
The signal vector (to be estimated) and the channel matrix
are partitioned and M symbols are estimated using SD for
all ¢V~ combinations of the remaining N — M symbols.
The complexity is exponential in (N — M) regardless of the
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SNR. Recently, [8] also presented a fast GSD for rank-deficient
MIMO systems by partitioning the subspace of the remaining
N — M symbols for an efficient search. In this paper, we utilize
a different concept where the ML metric can be advantageously
modified for a constant modulus constellation. We first derive
the new algorithm assuming the transmit symbols to be constant
modulus. We later show how MIMO systems with non-constant
modulus constellations can be adapted so that our algorithm is
applicable.

Notation: Bold symbols denote matrices or vectors. ()7 and
() denote transpose and conjugate transpose, (-)! denotes
pseudo-inverse. The set of all complex K x 1 vectors is
denoted by CX. For 24-ary phase shift keying (PSK), the signal
constellation Qoq = {e27%/2" k. = 0,1,---,29 — 1} and all
PSK N x 1 vectors are denoted by Q2. 4-ary PSK is commonly
known as quadrature PSK (QPSK). If z and y are Gaussian with
Ela] = pay Bly] = py and E [(z — p2)’] = E[(y — py)*] =
0?/2, then z = =+ jy (where j = v/—1) is Complex Gaussian.
We write z ~ CN (g + jpy,02) in this case. The N x N
identity matrix is denoted by In.

II. SYSTEM MODEL

The complex baseband input-out relationship of a
MIMO(N, M) system can be described in vector notation as

ey

where s, € QO is the transmit vector, y € C™ is the
receive vector, H = [h;;] is the M x N channel matrix and
hi; ~ CN(0,1) for i = 1,---,M and j = 1,---,N and
n € CM is the additive white Gaussian noise (AWGN) vector.
The receiver has perfect knowledge of the random channel
matrix H, which remains constant over one or more symbol
periods (slow fading). The transmitted vector over the linear
MIMO channel (1) is ML detected as

y=Hs;+n

8 = arg min [ly — Hs|"

@)

III. SPHERE DECODING ALGORITHM

The original SD algorithm by Fincke and Phost [2] is
proposed to solve the shortest vector problem (SVP). SD
restricts the search space to the lattice points within a sphere
instead of searching all the lattice points. Each time a valid
lattice point is found, the search space is restricted further
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by updating the radius. Although its worst case complexity
was shown to be exponential, FP has been widely used in
the closest vector problem (CVP) due to its efficiency on
many communication problems (refer to the references in the
introduction and references therein).

In the context of communication systems, the maximum-
likelihood estimator yields the following integer least squares
problem

. 2
min |y — Hs| 3)

where y € RN, He RVM>*M and A= {-(2P—1),--- ,2P+
1} is a Pulse Amplitude Modulation (PAM) constellation of
P elements. The primary difficulty with the optimization in
(3) is that s is a discrete vector, and hence widely-available
multidimensional continuous optimization strategies cannot be
applied. A brute force algorithm must search all P possible
values of s. Hence, complexity is exponential in M (the number
of variables to be estimated). Minimizing (3) is equivalent to

§ —arg min — Hs|]?
gse M||3 ||
—arg min HTy - RFR HTy —s

. ~NH H ~

=arg Srgr%lw(s S)"R"R(s — 8)
where R is an upper triangular matrix such that RFR =
HYH. If (3) is relaxed so that s € RY, the solution of the
real least squares problem is § = H'y. In general, § is not the
optimal solution of (3). Furthermore, if the element of 8 are
quantized to the nearest element in .4, we obtain the so-called
zero-forcing or decorrelation detectors. These are suboptimal.
8§ can be viewed as the center of the SD. The lattice point lies
inside a hypersphere with radius » when

2 > (s —8)"RIR(s — 8) (5

We assume the initial radius r is large enough so that the
hypersphere (5) contains the ML solution. Let the entries of R
be denoted by r;5, ¢ < j. To this end, we assume that N > M
so that HH has full rank (positive definite). The diagonal
terms of R are non-zero (r;; # 0). We will discuss the case
N < M further below. Eq. (5) can be rewritten as

(s —8)"RHR(s —8)
2

M Mo
2 5 ij .
= st Y s —4y)
i=1 j=i+1 T'id (6)

where

- )
—(s5 = 55) (7
j=i+1 Tis

Pi — 8i —

Since each term in the above equation is nonnegative, a
necessary condition for s to lie inside the hypersphere is that

P s — 87 <o? (8)
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or equivalently

n r
Spr —
MM

WSsMsFJw ! J )

MM

[-] denotes the smallest integer greater than or equal to its
argument. | -| denotes the largest integer less than or equal to its
argument. For each candidate sps satisfying the above bound,
we define 7371 = 7% — (s — 8;)°. When we look at sp;_1,
we can get the following inequality

2
2 . TM—1,M R
TM—1,M—1 {SMl — 8y + — sy — sM)}

TMM (10)
+r12\4M [sar — §i]2 <7’
which leads to the following bound
. TM—1,M . TM—1
’73M1 — ————(sp — Sm) — —‘ <sp-1
MM T My M an
. TM—1,M . TAM—1
< \‘SMl — ———(sm — 8m) J
MM T'My, My

The sphere decoder can choose a candidate for sp;—1 from the
above region. We can continue in the same process for sp;_o
and so on. The bounds for s, are

[pm —&m] < sm < [pm +E&m) (12)
where &, = [r? — Zij\im+17"¢2¢(3i — 0)?1Y2 /7 . If there
is no lattice point within the region say s, the SD come
back to sp,1 and choose another candidate value from the
corresponding region for s,,1. If SD reaches s;, the SD finds
a candidate lattice point s’ within the hypersphere of radius r.
SD checks the value of ||y — Hs'||?. If this value is less than 7,
we update the radius » which means the search space is limited
by the new radius. The above process continues until no further
lattice points is found within the hypersphere. The lattice point
achieves the smallest value of (3) within the hypersphere is
deemed as the ML solution. If no point in the sphere is found,
the sphere is empty and the search fails. In this case, the initial
search radius » must be increased and the search is restarted
with a new squared radius. In [5], they analyzed the complexity
based on the statistical property of the problem, which shows
that the expected complexity of FP strategy is polynomial.

IV. GENERALIZED SPHERE DECODING ALGORITHM

Sphere decoding [2]-[4] provides an efficient recursive
method for computing all s such that [|[R(H'y —s)||> < »2.
If M > N, HYH is full rank (positive definite). The SD is
applicable due to the non-zero diagonal terms of R.

However, if M < N, HPH is positive semidefinite. The
Cholesky factor R of H¥H is not full rank and only the first
M rows of R are non-zero. The GSD developed in [4], [7]
can solve this case. Our alternative idea is to solve |R(H'y —
s)||? + aN < r?, where 71 = v/aN + r2. Since the elements
of s are of constant modulus, the product asfs is equal to alN
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and we get an equivalent minimization problem as

§ —arg sglgfl‘f ly — Hs||? + as’’s

=arg miQrleyHy —y7Hs —s"Hy + sH(HIH + ody)s.
sC

(13)

Let the positive definite matrix G = HYH + aly be
Cholesky factorized as G = DD, where D is an upper
triangular matrix (i.e., D = [dy;] and d;; = 0 for i > j).
Define p = G~'H"y and add p”D¥ Dy to the both sides of
(13). An equivalent optimization problem can be represented
as

2
I

§ —arg min ||[D(p—s
g min [|D(p —s) (14)

Now the diagonal terms of D (rank N) are all non-zero and
the original sphere decoding can be applied to (14). Note (2)
and (14) are equivalent only for constant modulus signals. A
flowchart of the proposed generalized sphere decoder, where C
denotes the initial sphere radius, is given in Fig.4.

Remarks

o A tree of N levels and qutlf L nodes can represent the
entire solution space Q7. The basic SD approach is to
prune as many nodes of the tree as possible without elim-
inating the optimal solution. The key difference between
the GSD (14) and that of [7] is as follows. First, the
derived gram matrix D is positive definite, though the
initial search radius in (14) is increased to valN +r2.
Second, the original GSD [7] cannot prune any nodes in
the first N — M levels while the proposed GSD (14) can
prune from the first level. For large N — M, the new GSD
can prune more nodes and hence has lower complexity.

o The complexity of the new GSD depends on the choice of
a. If o« = 0, the new GSD reverts to the GSD in [7]. There
exists an optimal « that leads to the lowest complexity.
It appears impossible to derive a closed-form expression
for the optimal «, which depends on the variance of the
additive noise and N — M. In simulation, we fix o = 1.
We find even with this arbitrary choice of o the new GSD
has less complexity than the previous GSDs [7], [8].

« Recently, Hassibi and Vikalo [5] showed that SD has
polynomial complexity in the high SNR region with A >
N. This is not true for any previous GSDs [7], [8]. The
GSD (5) also has complexity exponential in N — M.

« The proposed GSD does not depend on the rank of matrix
H. Thus, the original SD algorithm or its derivatives can
be used regardless of N < M or N > M.

o As the proposed GSD exploits the constant modulus
property of the transmit symbols and other algorithms do
not make use of this information, we expect the proposed
GSD to have low complexity.

« Like the GSD in [7], the proposed GSD can also be used
for vector quantization and multiuser detection.

Next, we show how the GSD (14) can also detect M -ary

Quadrature Amplitude Modulation (M-QAM). Any M-QAM
(M = 2™) constellation can be represented as a weighted sum
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of n/2 QPSK constellations when » is an even number [9].
That is, for 2 € M-QAM and 2; € QPSK, 0 < i < n/2, we
have

(15)

For brevity, we only show how to decompose 16QAM so
that our algorithm is applicable. Other AM-QAM cases can be
derived similarly. Using (15), the 16QAM transmit vector x
can be expressed as

2
s =3, + \/7—52 (16)
where s1, 89 € fo’ . Eq. (1) can then be represented as
~| vau ﬁﬂusl}+n
y=[ v2H 3 s (17)

—H5 + n.

That is, an MIMO(N, M) system with 16QAM is equivalent to
MIMOQ@2N, M) with QPSK. The new GSD (14) can be used
with (8).

V. NUMERICAL RESULTS

We consider a frequency flat fading MIMO channel defined
by H = [hy;]. We incorporate the so-called Schnorr-Euchner
strategy [3], [4] into the GSD in [7] and the new GSD with
o = 1. Fig. 1 compares the computational complexity of the
proposed sphere decoder with those of [7] and [8] with different
depths for fixed N = 15 and QPSK at an SNR of 20dB. We
simulate this system using MATLAB V5.3 on a PC with an
Intel Pentium-4 processor at 1.8GHz. The matlab command
“flops” is used to count the number of flops. Only the flops
of the search algorithm are counted without accounting for the
preprocessing stage. The Depth ¢« GSD in Fig. 1 denotes the
GSD in [8]. The new sphere decoder has significantly lower
decoding complexity than the GSD in [7] and [8], especially
when the difference between N and M is large. For N — M =
8, the average number of flops are 6.76 x 10° for the GSD in
[7] and 2.35 x 10° for GSD (5). Fig. 2 shows the complexity
comparison between the new GSD with that of [7] for fixed
N = 8 and 16QAM at an SNR of 20dB. Even though the new
GSD enlarges the dimension (17), when N — M is more than
3, the new GSD reduces the complexity significantly.

Fig. 3 shows the performance of a MIMO system with 4
antennas at the base station and 3 antennas at the mobile.
The two sets of antennas serve as both transmitting and
receiving. We consider both QPSK and 16QAM modulations.
The proposed GSD is used for both up and down links. The
uplink detection is compared with that of V-BLAST optimal
order detection [1], which can not be used for the downlink. The
proposed GSD achieves the ML performance and outperforms
V-BLAST detection.
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VI. CONCLUSION

For rank-deficient multiple antenna systems, we have de-
veloped a new sphere decoder assuming constant modulus
signalling alphabets. This assumption is not limiting because a
QAM constellation can be represented as a linear sum of QPSK
points. The new sphere decoder is ML and has significantly
lower decoding complexity than the GSD [4], [7] and the
improved GSD [8]. The proposed GSD can also be extended
to frequency selective MIMO channels.
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INPUT
H,Q

G=HAH+T,
D=[d, ]=Chol(G)
P=GHHy

N;=length(L,U, )

z=sort(L,U;, )
x=0

r’=r?
Ty=r*
fork=Nto 2
T, =Ty 1,87, )
end
fork=1to N
seq(k):zkXk

U, =L\IT/¢/dkk +SkJ
L= ~T,7dy +S, |

end

OUTPUT
seq, 12

Fig. 4. Flowchart of the generalized sphere decoder algorithm
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