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Abstract— We derive a new multistage sphere decoding (MSD)
algorithm, a generalization of the conventional sphere decoder
(SD). This new MSD exploits that many higher-order signal
constellations can naturally be decomposed into several lower-
order constellations. We develop a 2-stage SD for a 16-ary
quadrature amplitude modulation (16QAM) MIMO system by
decomposing 16QAM into two 4QAM constellations. The first
stage generates a list of 4QAM vectors. For each of these, the
second stage computes an optimal 4QAM vector. In the low SNR
region, our MSD performs close to the original (single-stage) SD,
but has lower complexity. In the high SNR region, our MSD is
not suitable for reaching near ML performance.

I. INTRODUCTION

Space-time processing and multiple input multiple output
(MIMO) systems have emerged as promising high-capacity
communication techniques. The sphere decoder (SD) [1], a
computationally efficient decoding algorithm with maximum
likelihood (ML) performance, has received considerable inter-
est. The original SD has been used to decode lattice codes
[2] and space-time codes [3]. For a MIMO system with m
transmit and n receive antennas (n ≥ m), the input and output
relationship is y = Hs∗ + n, where s∗ is the transmitted
signal vector, H ∈ Cn×m is the channel perfectly known to the
receiver, y ∈ Cn and n is the additive noise vector. The basic
detection problem is the discrete least-squares optimization

ŝml = arg min
s∈Qm

‖y − Hs‖2 (1)

where ‖ · ‖ denotes the Euclidean norm, Q is a finite com-
plex set called the signal constellation, sk ∈ Q and s =
[s1, s2, . . . , sm]T . Typically, the computational complexity for
solving ŝml grows exponentially with m and the size of Q.
Remarkably, the SD achieves polynomial complexity in the
high SNR region (however its complexity is exponential in
the low SNR region). Nevertheless, the complexity of the SD
may be too high for certain applications. Suboptimal detectors
for (1) include the zero-forcing (ZF) detector and the vertical
Bell Labs layered space time (V-BLAST) detector (nulling
and cancelling) [4]. The complexity of the SD is substantially
higher than that of V-BLAST in the low SNR region, but
the SD performs much better than V-BLAST. Attempts have
been made to develop other suboptimal algorithms that have
performance/complexity advantages over SD and V-BLAST
(see [5], [6]).

Multilevel codes and multistage decoding allow the use
of component codes and their sequential decoding [7]. This
approach has been widely used to construct complicated codes.
Each stage uses the decisions from the previous stages and
decodes one component code. Multistage sequential decoding
facilitates this approach since ML decoding of large codes
can be prohibitively complex. To the best of our knowledge,
such an approach has not been developed for uncoded MIMO
systems. Spectrally-efficient, higher-order constellations such
as 16QAM, popular with MIMO systems, can naturally be
decomposed into several lower-order constellations [8]. Thus,
the uncoded MIMO detection problem can be viewed as a
multistage decoding problem. This paper develops a multistage
sphere decoder using such decompositions.

Notation: Bold symbols denote matrices or vectors. (·)T and
(·)H denote transpose and conjugate transpose. The set of all
complex K × 1 vectors is denoted by CK and j =

√−1.
We use the terms SSD(M,m) and LSD(M,m) to denote
a conventional, single-stage SD and a list SD over the Qm

M

space. For u ∈ Qm
16, we write u =

√
2u1 +

√
2/2u2 where

u1,u2 ∈ Qm
4 .

Input
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Fig. 1. The block diagram of the multistage sphere decoder for 16QAM
systems.

II. SINGLE STAGE SPHERE DECODING ALGORITHM

The single stage SD algorithm by Fincke and Phost [1]
(FPSD hereafter) is proposed to solve the shortest vector
problem (SVP). SSD restricts the search space to the lattice
points within a sphere instead of searching all the lattice
points. Each time a valid lattice point is found, the search
space is restricted further by updating the radius. Although its
worst case complexity was shown to be exponential, SSD has
been widely used in many communication problems.

The primary difficulty with the optimization in (1) is that s is
a discrete vector, and hence widely-available multidimensional
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continuous optimization strategies cannot be applied. A brute
force algorithm must search all |Q|M possible values of s.
Next we we briefly describe the basic idea of FPSD and for
brevity we consider the variables in (1) to be real without loss
of generality. Minimizing (1) is equivalent to

ŝ = arg min
s∈QM

∥∥∥∥y − [Q1,Q2]

[
R

0

]
s

∥∥∥∥
2

= arg min
s∈QM

∥∥∥∥
[

QH
1

QH
2

]
y −

[
R

0

]
s

∥∥∥∥
2

= arg min
s∈Qm

arg min
s∈Qm

‖y′ − Rs‖2

(2)

where y′ = QH
1 y, the m × m upper triangular matrix R

and the n × n orthogonal matrix Q = [Q1,Q2] are the QR
factorization of H. The matrices Q1 and Q2 represent the first
m and last n−m orthonormal columns of Q. The lattice point
lies inside a hypersphere with radius r when

r2 ≥ ‖y′ − Rs‖2 (3)

We assume the initial radius r is large enough so that the
hypersphere (3) contains the ML solution. Let the entries of R

be denoted by rij , i ≤ j. To this end, we assume that n ≥ m
so that R has full rank (positive definite). The diagonal terms
of R are non-zero (rii �= 0). Eq. (3) can be rewritten as

‖y′ − Rs‖2

=

m∑
i=1

⎛
⎝y′

i −
m∑

j=i

rijsj

⎞
⎠

2

=

m∑
i=1

r2
ii (si − ρi)

2 ≤ r2

(4)

where

ρi =
y′

i

rii
−

m∑
j=i+1

rij

rii
sj (5)

Since each term in the above equation is nonnegative, a
necessary condition for s to lie inside the hypersphere is that⌈

ρm − r

rmm

⌉
≤ sm ≤

⌊
ρm +

r

rmm

⌋
(6)

where �·� denotes the smallest integer greater than or equal to
its argument. 	·
 denotes the largest integer less than or equal
to its argument. For sm−1, we have

r2
m−1,m−1 [sm−1 − ρm−1]

2

+ r2
mm [sm − ρm]

2 ≤ r2
(7)

which leads to the following bound⎡
⎢⎢⎢−

√
r2 − r2

mm [sm − ρm]
2

rm−1,m−1

+ ρm−1

⎤
⎥⎥⎥ ≤ sm−1

≤
⎢⎢⎢⎣

√
r2 − r2

mm [sm − ρm]
2

rm−1,m−1

+ ρm−1

⎥⎥⎥⎦
(8)

The sphere decoder generates candidates for sm−1 from this.
We can continue in the same process for sm−2 and so on. The
bounds for sj are

�ρj − ξj� ≤ sj ≤ 	ρj + ξj
 (9)

where ξj = [r2 − ∑m
i=j+1

r2
ii(si − ρi)

2]1/2/rjj . If there is
no valid candidate for, say, sj , the SD reverts to sj+1 and
choose another candidate for sj+1. If SD reaches s1, a valid
s′ for (3) are generated. If the value of ‖y′ − Rs′‖2 is less
than r, we replace the radius r. This process continues until
no further lattice points are found. The lattice point achieves
the smallest value of (1) is ML. If no point in the sphere is
found, the initial search radius r must be increased and the
search can be restarted.

III. MULTISTAGE SPHERE DECODING ALGORITHM

For brevity, we only show how to apply the MSD to
16QAM. An arbitrary 16QAM vector s can be uniquely
expressed as s =

√
2s1 +

√
2/2s2, where s1, s2 ∈ Qm

4 .
Similarly, let the true transmit vector be s∗ =

√
2s∗1+

√
2/2s∗2.

The problem of detecting ŝml (2) is equivalent to detecting two
4QAM component vectors as follows:

[ŝ1, ŝ2] = arg min
s1,s2∈Qm

4

‖y′ − R(
√

2s1 +

√
2

2
s2)‖2. (10)

To begin, we need an initial approximation to the true signal
s∗. Let this be s̃ =

√
2s̃1+

√
2/2s̃2. Using this, we do a partial

interference cancellation as y2 = y′ − √
2/2Rs̃2 in the first

stage1. If s2 = s∗2, y2 is clearly sufficient to detect s∗1. We
search s1 that minimizes

‖y2 −
√

2Rs1‖2. (11)

However, s̃2 �= s∗2 in general, and minimizing (11) will likely
give a wrong estimate. Therefore, we use a LSD [9] to generate
a list L of the Ncand candidates ŝ1 that make (11) smallest.
The list size is between 4m and 1, and is proportional to the
probability that the true solution s∗1 falls in the list. With
a properly chosen radius r, we can obtain L with Ncand

candidates on average. To obtain a typical value of r, we note
that for true s∗1

‖y2 −
√

2Rs∗1‖2 = ‖
√

2

2
R(s∗2 − s̃2) + n‖2 (12)

where n is the additive Gaussian noise vector with variance
σ2

n. Since s̃2 is correlated with R and n, (12) cannot be treated
as a chi-square random variable with 2m degrees of freedom.
The expected value of this random variable is denoted by E,
which can be obtained via simulation. As in [9], one possible
choice of radius is r2 = kE, where k is chosen so that the
average length of the list is Ncand. For typical values of σ2

n and
σ2

h, r2 corresponding to Ncand can be obtained from simulation
and can be stored in memory for practical use.

1Note that we cancel s̃2 first since any errors in s̃2 will be attenuated by√
2 (see Eq. (10)). Whereas any errors in s̃1 will be magnified by

√
2.
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In the second stage, for each candidate ŝ1 ∈ L, the
SSD(4,m) solves

ŝ2 = arg min
s2∈Qm

4

‖y1 −
√

2

2
Rs2‖2 (13)

where y1 = y′ − √
2Rŝ1. This process provides Ncand pairs

of [ŝ1, ŝ2] and the best among them is selected as the output.
Each time a ŝ2 for (13) is found with a ŝ1, the search radius
of the second stage is updated if ‖y1−

√
2/2Rs2‖ is less than

the current radius.

IV. SIMULATION RESULTS

We now compare the MSD with the SSD for a 16QAM,
uncoded MIMO system with 4 transmit and 4 receive antennas
over a flat Rayleigh fading channel. The initial radius r is
chosen according to the noise variance. Both the SSD and the
MSD use the Schnorr-Euchner variant of SD [10]. The initial
detection uses the ZF-VBLAST.
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Fig. 2. BER comparison with different Ncand for a 16QAM MIMO system
with 4 transmit and 4 receive antennas.

Fig. 2 compares the BER of the SSD with that of the MSD
as a function of the number of candidates in the first stage
Ncand. As Ncand increases, the MSD performs close to the
SSD. As Ncand varies, its performance varies between those
of V-BLAST and SSD. The complexity of the MSD increases
as Ncand increases (Fig. 3) and it is lower than that of the
SSD’s when the SNR is below a threshold. For instance,
when Ncand = 10, this complexity crossover point is 17dB.
Fig. 3 also shows that the complexity of the MSD is almost
constant with specific Ncand. The major drawback of our MSD
is that the complexity needed to achieve near ML performance
increases with increasing SNR. Thus our MSD is suitable for
the low SNR region, where it can be combined with an outer
code to achieve low BER.

V. CONCLUSION

In this paper, we developed a multistage SD by decompos-
ing a large constellation into a sum of smaller constellations.
This is particularly easy for QAM where a higher-order QAM
constellation can be readily resolved into lower-order QAM
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Fig. 3. Complexity comparison with different Ncand for a 16QAM MIMO
system with 4 transmit and 4 receive antennas.

components. A series of conventional LSDs and SSDs are used
to search over the smaller constellation spaces. As a specific
example, 16QAM is resolved into two 4QAM constellations.
An LSD and an SSD are used to search over the 4QAM
constellations. Simulation results show that in the low SNR
region, our MSD performs close to the SSD and reduces
complexity.
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