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Abstract— We investigate the pair-wise error probability (PEP)
performance of space-frequency (SF) codes over quasi-static,
frequency-selective Rayleigh fading channels with frequency
offset (FO). The PEP expression shows that the conventional
SF code design criteria are remained valid. If the normalized
FO (NFO) is less than 1%, the performance loss is negligible.
The loss increases with FO and with signal to noise ratio (SNR).
We show that diversity can be used to mitigate the effects of
FO. However, with large FO, the PEP is no longer exponentially
decays with SNR. Therefore, we propose a SF coding scheme to
combat effectively with even very high NFO (20%). Simulation
results confirm our theoretical evaluations.

I. INTRODUCTION

The space time (ST) codes proposed by Tarokh et al. [1]
for coherent systems over quasi-static flat fading channels
achieves the maximum diversity order (DO) d = MN , where
M and N are the number of Tx (Tx) and Rx (Rx) antennas.
The ST codes can achieve at least the designed DO in the
FSF channels [1], but are not guaranteed to exploit all the
available frequency diversity advantage of FSF channels. To
overcome this, the authors in [2], [3], [4] and references
therein propose new ST coding methods so that the maximum
achievable DO is obtainable. It is found that in FSF channels,
the maximum DO is d = LMN where L is the number of
paths of channels. There are two approaches to design codes
that can achieve this maximum DO [5]. In the first method,
ST codes are constructed in the time domain, whereas in the
second method called space-frequency (SF) coding, the source
symbols are encoded across the subcarriers (or sub-carriers) of
orthogonal frequency division multiplexing (OFDM) symbols
in the frequency domain. Su et al. [6] derive SF code criteria
which show an explicit relation between the SF code matrix
and the characteristic parameters of FSF fading channels such
as path delays and delay power distribution.

Like other error control coding methods, the performance
of SF codes depends on the propagation environment [7].
Moreover, the performance of SF codes and OFDM may
be affected by underlying factors such as frequency offset
(FO), timing error, to name a few. A residual FO exists
due to carrier synchronization mismatch and Doppler shift
[8]. Residual FO breaks down the orthogonality among sub-
carriers, hence inter-carrier interference (ICI) is produced and
bit error rate (BER) is increased consequently. Several papers
have analyzed the effects of FO on the BER performance. For

example in [9], BER is calculated for single input single output
(SISO) OFDM systems with various modulation schemes. The
authors in [10], [11] provide BER expressions of MIMO-
OFDM employing Alamouti’s scheme [12]. However, to the
best of our knowledge, the impact of FO on the SF code design
criteria and the performance have not been investigated. This
interesting question will be addressed in our paper.

We analytically show that the SF code design criteria still
hold in the case of FO. The performance loss is negligible
if the NFO is small. This loss is increased rapidly with the
increase of NFO and with signal-to-noise ratio (SNR). When
NFO is large, PEP performance of SF codes no longer decays
exponentially. To mitigate the effect of FO, we generalize the
work of [13] for MIMO-OFDM with SF codes. The resulting
SF codes not only achieve the same diversity and coding gains
as the SF codes derived in [6] but also are capable of ICI
self-cancellation. Simulations have showed that the ICI self-
cancellation SF codes still yields good performance when the
FO is extremely high, about 20%.

The paper has seven sections. The model of MIMO-OFDM
systems with FO is presented in Section II. Section III reviews
the design criteria of SFC codes. In Section IV, we derive
the PEP performance of SF codes in the presence of FO.
In Section V, we propose a class of SF codes that reduce
effectively FO effects to PEP. Section VI provides simulation
results to support the theoretical analysis. We summarize the
paper in Section VII.

II. FREQUENCY OFFSET IN OFDM SYSTEMS

This section briefly introduces the OFDM system with FO
model to be analyzed for remaining parts of the paper.

A. MIMO-OFDM System Model

We consider the MIMO-OFDM system with M Tx and
N Rx antennas. The number of subcarriers in the OFDM
modulator is K. The L−path quasi-static Rayleigh fading
channel model is assumed identically for any link between Tx
antenna m (m = 1, ..., M ) and Rx antenna n (n = 1, ..., N ).
The channel impulse response in the time domain is [14]

hm,n(t, τ) =
L−1∑
l=0

αm,n(t, l)δ(τ − τl) (1)
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where τl is the channel delay of the path l-th (l = 0, ..., L −
1), δ(.) denotes Dirac’s delta function. The coefficients
αm,n(t, l)’s are complex channel gains of the path l between
Tx antenna m and Rx antenna n, they are modeled as
zero-mean complex Gaussian random variables with variance
E

[
|αm,n(l)|2

]
= δ2

l . Assume that coefficients αm,n(t, l) are
constant during an OFDM symbol duration, but vary randomly
from symbol to symbol. Thus during a symbol period, the
time index t in (1) can be omitted. The total power of L-path
channels is normalized, so that

∑L−1
l=0 δ2

l = 1. The frequency
response of the channel is

Hm,n(f) =
L−1∑
l=0

αm,n(l) e−j2πfτl , j =
√−1 . (2)

At the veceiver, assume that Rx subcarriers are perfectly
sampled, let cm(k) is the subcarrier k-th (k = 0, ..., K − 1)
being sent from Tx antenna m, the received signal at the Rx
antenna n is rn(k)

rn(k) =
M∑

m=1

cm(k)Hm,n(k) + zn(k) (3)

where zn(k)’s are independent noise samples, which are
modelled as zero-mean complex white Gaussian variables. The
Tx power from each antenna is normalized to 1, resulting the
noise variance per dimension is M/(2ρ) where ρ is the average
SNR at each Rx antenna.

B. Model of MIMO-OFDM Systems with FO

There is always a FO at the sampling points of received
signal [15], [16]. In the SISO-OFDM system, the NFO ε is
defined by ε = δf/∆f , where δf is the residual FO between
the demodulated and transmitted subcarrier k-th, ∆f = 1/Ts

is the subcarrier spacing, Ts is the OFDM symbol duration.
The NFO is assumed the same for all subcarriers of one OFDM
symbol, but can vary from symbol to symbol. In SISO systems,
the k-th received subcarrier is expressed as follows:

r(k) = c(k)H(k)S(0) + I(k) + z(k) (4)

where I(k) is the inter-carrier interference (ICI) from the other
subcarriers to received subcarrier k; it is described by

I(k) =
K−1∑
p=0

∑
p �=k

c(p)H(p)S(p − k) . (5)

Coefficients S(k) in (5) are expressed as:

S(k) =
sin [π (k + ε)]

K sin
[

π
K (k + ε)

] exp
[
jπ

(
1 − 1

K

)
(k + ε)

]
.

(6)
We generalize (4) for MIMO-OFDM systems. Let NFO of

the transmission link from Tx antenna m and Rx antenna n
is εm,n, (4) becomes:

rn(k) =
M∑

m=1

cm(k)Hm,n(k) Sm,n(0)+
M∑

m=1

Im,n(k)+zn(k) .

(7)

III. SPACE-FREQUENCY CODE DESIGN CRITERIA

In the SF encoding process, the source data is two-
dimensional encoded across the space (over multiple antennas)
and frequency (over the subcarriers of OFDM symbols). An
SF codeword may occupy several OFDM symbols [4], [17]
or within one OFDM symbol [3], [5], [6]. It is found that the
maximal DO can be achieved by coding over the subcarriers
of only one OFDM symbol [3], [6], whereas in [4], [17] the
maximal diversity order is gained by coding over multiple
OFDM symbols, that obviously causes higher coding and
decoding delay. We adopt the approach in [6] for our analysis.

The input data symbols are divided into b-symbol source
words then parsed into blocks and mapped to SF codewords.
An SF codeword can be represented by a K × M matrix

C =

⎡
⎢⎢⎣

c1(0) c2(0) ... cM (0)
c1(1) c2(1) ... cM (1)

. . . .
c1(K − 1) c2(K − 1) ... cM (K − 1)

⎤
⎥⎥⎦ . (8)

At the receiver, the maximum likelihood (ML) decoder
selects a codeword E if its metric Me is minimum

Me =
K−1∑
k=0

N∑
n=1

∣∣∣∣∣rn(k) −
M∑

m=1

em (k) Hm,n (k)

∣∣∣∣∣
2

. (9)

Assume perfect channel state information (CSI) is available
at the receiver but not at the Txter and perfect symbol timing,
the PEP of a transmitted codeword C and erroneously decoded
codeword E is upper bounded [6] as:

P (C → E) ≤
(

2ΓN − 1
ΓN

) (
Γ∏

m=1

λi

)−N

ρ−ΓN . (10)

In (10), Γ is the rank of the matrix Q = ∆ ◦ R, ◦
denotes Hadamard product [18], λi, i = 1, ..., Γ are non-zero
eigenvalues of Q,

∆ = (C − E) (C − E)† , (11)

R = Rm,n = E
[
Hm,nH†

m,n

]
= Wdiag

(
δ2
0 , δ2

1 , ..., δ2
L−1

)
W †,
(12)

where Rm,n = E
[
Hm,nH†

m,n

]
,

Hm,n = [Hm,n (0) Hm,n (1) ...Hm,n (K − 1)]T , (13)

W =

⎡
⎢⎢⎣

1 1 ... 1
wτ0 wτ1 ... wτL−1

. . ... .
w(K−1)τ0 w(K−1)τ1 ... w(K−1)τL−1

⎤
⎥⎥⎦ . (14)

In (14), w = e−j2π∆f , ∆f = 1/Ts is the subcarrier
spacing, Ts is the OFDM symbol duration. XT and X†

denote transpose and transpose conjugate of matrix X .
From (10), the DO of SF codes is ΓN , maximum achievable

DO is equal min(LMN, KN) [6].
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IV. PERFORMANCE OF SF CODES WITH FO

We continue the analysis with two assumptions below:

• AS1: Residual NFO’s εm,n are identical independent
distributed (i.i.d) random variables. Their values are in-
dependent of the channel coefficients.

• AS2: The ICI terms Im,n(k) in (8) are independent.

In practice, AS2 is not completely true since there is a
degree of correlation between transmitted streams. In OFDM
systems, K is typically 64 or larger. Therefore the central
limit theorem can be applied to model the term Im,n(k) as a
Gaussian random variable [16].

To investigate the PEP of SF codes with FO using formula
(10), the channel coefficients HS

m,n(k) in (12) should be
complex GRVs. This requirement can be met if Sm,n(0) is
deterministic or NFO is not a random variable (Case 1). In
general case, εm,n can be assumed to be independent and
identically distributed random variables in the range [E1, E2],
their values can be changed from OFDM symbol to symbol
(Case 2). However, the performance of SF codes with fixed
values of FO is of greater interest since it provides a closer
look at the performance of SF codes at specific FO values. For
analytical tractability, we further make a third assumption:

• AS3: NFO εm,n are constant and the same for all pair of
indices (m,n): εm,n = ε0.

Eq. (7) is rewritten with a slight modification. The channel
coefficient and the Sm,n(0) are grouped as

rn(k) =
M∑

m=1

cm(k) [Hm,n(k)Sm,n(0)]+
M∑

m=1

Im,n(k)+zn(k).

(15)
Eq. (13) becomes

HS
m,n = Sm,n(0) [Hm,n (0) Hm,n (1) Hm,n (K − 1)]T .

(16)
The correlation matrix in (12) has a new form

RS
m,n = S

2

0E
[
Hm,nH†

m,n

]
, (17)

R = RS
m,n = S

2

0Rm,n. (18)

QS = ∆ ◦ RS
m,n = σ2

S (∆ ◦ Rm,n) (19)

where S
2

0 = E
[
|Sm,n(0)|2

]
. Note that the residual NFO is

usually small, ε ≤ 0.2 [16], the number of subcarriers K ≥ 8,
hence K sin(πε/K) ≈ πε. S

2

0 can be evaluated as

S
2

0 = E
[
|Sm,n (0)|2

]
= [sinc(ε0)]2 . (20)

We can easily verify that: if the rank of matrix Q is Γ, then
QS also has the same rank Γ; if λi is an eigenvalue of Q then
λS

i = S
2

0λi is an eigenvalue of QS .

The first two moments of the term Im,n(k) in (14) by
Gaussian approximation are calculated as follows.

Im,n(k) =
K−1∑
p=0

∑
p�=n

cm(p)Hm,n(p)Sm,n(p − k). (21)

Assume that coded symbols cm(p) have zero-mean, then
E [Im,n(k)] = 0. The variance σ2

Im
of Im,n(k) is evaluated in

Appendix to be σ2
Im

= 1− S
2

0. σ2
Im

is independent of indices

m and n, it is just dependent on the NFO through S
2

0. In
(15), let Zn(k) = In(k)+zn(k) and In(k) =

∑M
m=1 Im,n(k).

With AS2, In(k) is a complex Gaussian random variable with
zero-mean and variance M(1 − S

2

0). Therefore Zn(k) is also
a zero-mean complex Gaussian random variable with variance
σ2

Z = M
(
1 − S

2

0 + 1/ρ
)
. Values of σ2

Z is identical for all
Rx antennas. Hence equivalent SNR at each Rx antenna with
FO is

ρS =
S

2

0

1 − S
2

0 + 1/ρ
. (22)

We substitute λS
i = S

2

0λi and ρS into (10), re-arrange the
terms and get the PEP expression in the presence of FO as

P (C → E) ≤ G

(
2ΓN − 1

ΓN

) (
Γ∏

i=1

λi

)−N

ρ−ΓN (23)

where

G =

(
S

4

0

ρ(1 − S
2

0) + 1

)−ΓN

. (24)

Comparing (10) and (23), we see that G represents the PEP
performance loss due to FO. By inspecting (20) and (24), we
can draw following theoretical conclusions:

1) The design criteria for SF codes in the presence of FO
is still valid for small values of FO.

2) At the same Tx power, the higher FO, the higher PEP
performance loss.

3) Higher NFO, the further PEP curve shifts to the right.
The shift of lower DO systems is larger than the shift
of the system with higher DO.

4) If ρ
(
1 − S

2

0

)
� 1, at high Tx power

P (C → E) ≤
(

2ΓN − 1
ΓN

) (
Γ∏

m=1

λi

)−N

×
(

S
2

0

1 − S
2

0

)−ΓN

. (25)

So the PEP is no longer inversely proportional to SNR.
The PEP reaches its floor level.

To complete this section, we note that one can derive the
ML receiver using (7) and (9), the same result as (23) can be
obtained.
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V. ICI SELF-CANCELLATION WITH SF CODES

Su et al. [6] show that if each row of the ST codeword is
repeated r times, the resulting SF code achieves at least DO
d = 2MN . We consider r = 2, a SF codeword is

C1 =

⎡
⎢⎢⎢⎢⎣

c1(0) c2(0) ... cM (0)
c1(0) c2(0) ... cM (0)

. . ... .
c1(K − 1) c2(K − 1) ... cM (K − 1)
c1(K − 1) c2(K − 1) ... cM (K − 1)

⎤
⎥⎥⎥⎥⎦ . (26)

We develop the simple but effective idea of ICI self-
cancellation of authors in [13] for MIMO-OFDM so that each
row of ST code matrix is repeated once and the repeated row
is sign reversed to form a new SF codeword.

C2 =

⎡
⎢⎢⎢⎢⎣

c1(0) c2(0) ... cM (0)
−c1(0) −c2(0) ... −cM (0)

. . ... .
c1(K − 1) c2(K − 1) ... cM (K − 1)
−c1(K − 1) −c2(K − 1) ... −cM (K − 1)

⎤
⎥⎥⎥⎥⎦ .

(27)
The number of OFDM subcarriers is 2K in (26) and (27).

The codeword formulation is different with the approach of
[6], where each row is simply repeated r times, (r = 2
here). We can prove that the new mapping method yields the
same coding gain and diversity gain (at least d = 2MN)
compared with the approach in [6] for r = 2, but our
modified scheme integrates ICI self-cancellation capability. To
prove that SF codes described in (26) and have the same
coding gain and diversity gain, the reader can verify that
if vector X1 =

[
x1 x2 x3 x4 ... x2K−1 x2K

]
is an eigenvector of Q1 = ∆1 ◦ R, then X2 =[

x1 −x2 x3 −x4 ... x2K−1 −x2K

]
is an eigen-

vector of Q2 = ∆2 ◦ R, where Q1, ∆1 and Q2, ∆2 are
quantities associated with SF codewords defined in (10) and
(11) respectively. Then if λ is an eigenvalue associated with
X1, it is also an eigenvalue associated with X2. Note that (10)
provides an upper bound for PEP, the actual performance of
different codes can be evaluated via simulations.

VI. SIMULATION RESULTS AND DISCUSSION

The simulations are to verify the theoretical analysis in
Section IV and V. We use a simple two-path channel with
uniform power delay profile (delay time between the two
paths is 5µs and COST207 six-path typical urban channel
model [14]. In [6], each row of the space time (ST) code
is repeated r times (1 ≤ r ≤ L) to form SF codewords.
This approach reduces the spectrum efficiency. However the
resulting SF codes are guaranteed to achieve diversity order
of at least d = rMN . Note that coding gain and spectral
efficiency are out of our interests. Thus we use algebraic ST
convolutional codes [5], [19], codes rate 1/2 with generator
polynomial (5, 7) [20] without channel interleaver. The Viterbi
decoder [19], [20] is used.

We compare the performance of SF codes for 1%, 10% and
20% NFO. Figs. 1 and 2 illustrate PEP curves of two OFDM
systems with 64 subcarriers and two Tx antennas. System

1 is equipped with one Rx antenna and System 2 has two
Rx antennas, so that the DO of the two systems is at least
d = 2 and d = 4, respectively. Using (20), for 1% NFO,
S0 = 0.9997, L0 ≈ 1 in the SNR region of interest (≤ 30 dB).
Therefore, theoretically the performance loss is not significant.
Figs. 1 and 2 confirm this conclusion. If the NFO is small,
1%, the PEP curves almost overlap the PEP of the systems
with no FO. In case NFO is 10%, the PEP curves of all
systems are shifted to the right, this shift is larger for the
system with smaller DO. The SNR needed to compensate the
effect of FO increases with NFO. However, when NFO is 10%
the PEP curves are less steeper than the curves of PEP with
1% NFO. When NFO is 20%, the PEP reduces slightly even
SNR increases largely. The PEP performance reaches a floor
at SNR is about 22 dB. This symptom is more serious for low
DO systems, where the floor level is higher than that of higher
DO systems.

Fig. 3 presents the performance of the SF coding scheme
proposed in [6] (SC1) and our modified scheme (SC2) with
the same DO, r = 2, K = 64, M = 2, N = 1. SC2 with
integrated ICI self-cancellation mechanism performs very well
when E0 = 10%. Performance of SC2 is always better than
SC1. At PEP = 10−3, when E0 = 0 and 10%, SC2 provides
0.5 dB and 1.5 dB improvement respectively. More important,
SC2 lowers the error floor level extensively even at high FO
E0 = 20.

VII. CONCLUSION

We analyzed PEP performance of SF codes with FO.
Through the PEP upper bound expression of SF codes with
FO, we showed that the code design criteria remained valid.
The effect of FO is more severe for low DO SF codes. To
minimize the effects of FO, we proposed an enhanced ICI
self-cancellation scheme using SF codes. Finally we conclude
that diversity not only improves the performance of OFDM
systems in the dispersive channels, but also makes the system
robust to the effects of FO.

2 4 6 8 10 12 14 16 18 20 22
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−3

10
−2

10
−1
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d = 2, NFO = 0
d = 2, NFO = 1%
d = 2, NFO = 10%
d = 2, NFO = 20%
d = 2, NFO = 0
d = 2, NFO = 1%
d = 2, NFO = 10%
d = 2, NFO = 20%

Fig. 1. Performance SF codes with K = 64, constant FO for the two-path
channel model.
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Fig. 2. Performance of SF codes with K = 64, constant FO for the six-path
COST207 typical urban channel model.
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Fig. 3. Performance SF codes with K = 128, r = 2, two-path channel
model with and without ICI self-cancellation

APPENDIX

We calculate σ2
Im

as follows:

σ2
Im

= E
[
|Im(k)|2

]

= E

⎡
⎣

∣∣∣∣∣
(

K−1∑
p=0

cm(p)Hm,n(p)Sm,n(p − k)

)∣∣∣∣∣
2
⎤
⎦

− E
[
|cm(k)Hm,n(k)Sm,n(0)|2

]

=
K−1∑
p=0

E
[
|cm(p)|2

]
E

[
|Hm,n(p)|2

]
E

[
|Sm,n(p − n)|2

]

− E
[
|cm(k)|2

]
E

[
|Hm,n(k)|2

]
E

[
|Sm,n(0)|2

]
(28)

In (28), the term E
[
|cm(k)|2

]
is the signal power, it is

normalized to 1. The second term is the average of the channel
power, and it is also normalized to 1, (27) becomes

σ2
Im

=
K−1∑
p=0

E
[
|S(p − k)|2

]
− S

2

0 (29)

It is found in [8] that the sum
K−1∑
p=0

E
[
|S(p − k)|2

]
= 1.

Substitute the sum into (28) completes the proof.
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