Joint Channel Estimation and Data Detection for OFDM Systems via Sphere Decoding

Tao Cui and Chintha Tellambura
Department of Electrical and Computer Engineering
University of Alberta
Edmonton, AB, Canada T6G 2V4
Email: {taocui, chintha}@ece.ualberta.ca

Abstract—We develop blind and semi-blind joint estimators of the channel impulse response (CIR) and data symbols for Orthogonal Frequency Division Multiplexing (OFDM) systems over a frequency selective fading channel. Using the maximum likelihood (ML) criterion, we derive two estimators for the transmit data symbols that require minimizing a complex, integer quadratic $x^T G x$ where x is a data vector and the matrix G characterizes each estimator. Avoiding computationally prohibitive exhaustive search, we use both sphere decoding (SD) and V-BLAST algorithms. We also modify SD algorithm to our complex OFDM system to handle any M-PSK and incorporate a reduced complexity SD into OFDM system. The quadratic for the blind estimator suffers from rank deficiency. We give an efficient solution to the rank deficiency problem. Simulation results confirm good performance of our proposed estimators.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is used for high data rate wireless local area networking (WLAN) standards, such as Hiperlan and IEEE 802.11a, providing data rates of up to 54Mbit/s, and considered for the fourth-generation (4G) mobile wireless systems and beyond [1]. Pilot-symbol-aided channel estimation for OFDM has been widely investigated [2], [3]. In the wireless standards such as the IEEE 802.16a and IEEE 802.11a, the cyclic prefix (CP) and pilot tones together constitute a significant overhead or bandwidth loss, which has motivated the development of blind techniques for OFDM. They exploit statistical or deterministic properties of the transmit and receive signals.

Blind channel estimators that exploit the redundancy introduced by the CP and pilot subcarriers are developed in [4]. Reference [5] develops a blind subspace approach exploiting the CP-induced cyclostationarity. A blind channel estimator by exploiting the finite alphabet property of modulation symbols is proposed in [6]. Subspace-based blind channel estimator using virtual carriers (VC) has been derived in [7]. In [8], a sufficient condition for blind channel estimation is given. Joint estimation of CIR and data symbols for OFDM has not been investigated extensively. An ML joint blind channel and data estimator [9] exploits the finite alphabet property of modulation symbols and the presence of VCs. In [10] an ML joint estimator is derived which requires pilot symbols for an initial estimate of the channel.

In this paper, we derive two joint estimators for CIR and data symbols making use of the finite alphabet and constant modulus properties of transmit signals. The first one is a blind estimator. We derive the other (referred to as semi-blind) assuming that the receiver knows the channel autocorrelation matrix and the noise variance. Both the estimators are obtained by posing the problem of the joint estimation of channel and data as a mixed discrete and continuous LS optimization problem. By eliminating the channel from it, we obtain a discrete integer LS problem (which has the same form for both the estimators) for the data symbols. Since exhaustive search is computationally prohibitive, we use both SD [11] and V-BLAST [12] to solve these quadratic optimization problems.

The rest of the paper is organized as follows. Section II reviews the basic baseband OFDM system model. Section III introduces two joint ML estimators. In Section IV, we apply both V-BLAST and SD to solve the joint estimators. Furthermore, a novel approach to solve the rank deficiency problem in SD is also presented. Section V gives computer simulation results and Section VI concludes the paper.

Notation: Bold symbols denote matrices or vectors. $(\cdot)^T$, $(\cdot)^H$ and $(\cdot)^\dagger$ denote transpose, conjugate transpose and Moore-Penrose pseudo-inverse respectively. For M-ary phase shift keying (MPSK), the signal constellation $Q = \{e^{j2\pi k/M}, k = 0, 1, \ldots , M-1\}$ and all MPSK $N \times 1$ vectors are denoted by Q^N and the cardinality of Q is denoted by $|Q|$. If x and y are Gaussian random variables (RV) with mean μ_x, μ_y and variance σ^2, $z = x + jy$ (where $j = \sqrt{-1}$) is a complex Gaussian random variable (CGRV) and is denoted by $z \sim CN(\mu_x+j\mu_y,\sigma^2)$. The discrete Fourier transform (DFT) matrix is given by $F = 1/\sqrt{N}[e^{-j2\pi kl/N}]$, $k, l \in 0, 1, \ldots , N-1$.

II. OFDM BASEBAND MODEL

In an OFDM system, the source data are grouped and/or mapped into the multi-phase symbols from a MPSK constellation Q, which are modulated by inverse DFT (IDFT) on N parallel subcarriers. Note that $X(k), k = 0, 1, \ldots , N-1$ are called modulation symbols or transmit data symbols. The term "OFDM block" is used to denote the entire IDFT output $\{x(0), x(1), \ldots , x(N-1)\}$. The input symbol duration is

IEEE Communications Society
Globecom 2004

3656

0-7803-8794-5/04/$20.00 © 2004 Crown Copyright
Substituting (5) into (4), we obtain
\[\hat{X}_D = \arg\min_{X_D} \left\| \begin{bmatrix} I_N - \hat{X}_D F_L (F_L^H F_L)^{-1} F_L^H \hat{X}_D^H \end{bmatrix} Y \right\|^2 \]
\[= \arg\min_{X_D} \left\| Y^H \hat{X}_D \begin{bmatrix} I_N - F_L (F_L^H F_L)^{-1} F_L^H \end{bmatrix} \hat{X}_D^H Y \right\|^2 \]
(6a)
\[= \arg\min_{X} x^T Y^H \hat{X}_D \begin{bmatrix} I_N - F_L (F_L^H F_L)^{-1} F_L^H \end{bmatrix} Y^H X^* \]
(6b)
where \(Y_D = \text{diag}\{Y(0), Y(1), \ldots, Y(N-1)\} \) and \(x \in Q^N \) is the vector whose elements are the diagonal elements of matrix \(X_D \). Eq. (6a) is due to the use of the constant modulus constellation MPSK; Eq. (6a) follows from the fact that the matrix \(I_N - X_D F_L (F_L^H F_L)^{-1} F_L^H \hat{X}_D^H \) is an orthogonal projection matrix onto null(\(X_D \)). The projection matrix has the property \(P_D^2 = P_D \) and \(P_D^H = P_D \).

The rank of the matrix \(B = Y^H_D (I_N - F_L F_L^H) Y_D \) is only \(N - L \). Note that \(B \) can be QR factored as \(B = QR \), where \(Q \) and \(R \) are unitary and upper-triangular, respectively. Since the last \(L \) rows of \(R \) are zero, both the standard V-BLAST and SD algorithms fail in this case. We next modify (6c) so that both SD and V-BLAST can be applied.

Using the constant modulus algorithm (e.g., \(|X(k)|^2 = 1 \) for \(X(k) \in Q \), \(x^T Y^H_D Y_D x^* = \sum_{k=0}^{N-1} |Y(k)|^2 \) is a constant. Therefore the optimization problem (6c) is equivalent to
\[\tilde{X}_D = \arg\min_{X_D} \eta x^T Y^H D Y_D x^* + x^T B x^* \]
\[= \arg\min_{X_D} x^T Y^H D (\eta + 1) I_N - F_L F_L^H D Y_D x^* \]
(7)
Since \(F_L F_L^H \) is positive semi-definite matrix with non-zero eigenvalue 1, \((\eta + 1) I_N - F_L F_L^H \) is a positive definite matrix if \(\eta > 0 \). For simplicity, we let \(\eta = 1 \).

After \(X_D \) is estimated from (7) using V-BLAST (suboptimal) or the SD (optimal), the LS estimate \(h \) can be obtained by substituting \(X_D \) into (5). Both \(x \) and \(x e^{j\phi} \) \(\phi \in (0,2\pi) \) satisfy (7), which shows that the blind algorithm exhibits a phase ambiguity. This can be solved by using a pilot tone.

B. Semi-blind estimator

This requires the knowledge of the autocorrelation matrix \(R_h \) of the CSI and the noise variance \(\sigma_n^2 \). We classify it as a semi-blind estimator. From (3), \(h \) and \(W \) are zero-mean complex Gaussian random vectors. The received samples \(Y(k) \) can be modelled as i.i.d. zero-mean C建设工程GRV’s via the central limit theorem when \(N \) is large. The autocorrelation matrix of the received signal is given by
\[R_Y = E\{YY^H\} = X_D F_L R_h F_L^H X_D^H + \sigma_n^2 I_N \]
(8)

The determinant of \(R_Y \) can be expressed as
\[\det(R_Y) = \det(X_D) \det(F_L R_h F_L^H + \sigma_n^2 I_N) \det(X_D^H) \]
(9)
Note that the determinant of R_{Y} is independent of X_{D}. Ignoring terms that are independent of X_{D}, the log-likelihood function is given by

$$
\Lambda(Y|X_{D}) = - Y^{H}R_{Y}^{-1}Y.
$$

As with (6c), maximizing the log likelihood function is equivalent to solving

$$
\hat{X}_{D} = \arg\min_{x \in \mathbb{C}^{N}} x^{T}Y_{D}(F_{L}R_{k}F_{L}^{H} + \sigma_{n}^{2}I_{N})^{-1}Y_{D}x^{*}.
$$

As the matrix $(F_{L}R_{k}F_{L}^{H} + \sigma_{n}^{2}I_{N})^{-1}$ is positive definite, V-BLAST [12] and the sphere decoding algorithm [11] can be used to solve (11). This is developed in detail in Section V.

Remark:
- The proposed blind and semi-blind estimators can be generalized to OFDM systems with virtual carriers and pilot symbols. Both the estimators can be improved via iterative decision feedback.
- The semi-blind estimator (11) needs the knowledge of channel covariance matrix R_{k} and the noise variance σ_{n}^{2}. The semi-blind estimator design robust to mismatch will be given in the full journal version of this paper.

IV. DATA DETECTION ALGORITHMS

A. V-BLAST detection

The blind estimator (7) and the semi-blind estimator (11) can be solved via V-BLAST detection algorithm [12]. These estimators can be written in a general form as

$$
\hat{X}_{D} = \arg\min_{x \in \mathbb{C}^{N}} x^{T}Gx^{*} = \|Mx^{*}\|^{2}
$$

where G is a positive definite matrix, which can be Cholesky factored as $G = M^{H}M$. The V-BLAST ordering is to find the permutation matrix P such that the QR decomposition of $M' = M_{P}$ has the property that $\min_{1 \leq i \leq N} r_{ii}$ is maximized over all column permutations. For $k = N, N-1, \ldots, 1$, the algorithm chooses $\pi(k)$ such that

$$
\pi(k) = \arg\min_{j \not\in \{\pi(1), \ldots, \pi(k-1)\}} \| (G_{k})_{j} \|^{2}
$$

where $(G_{k})_{j}$ is the jth row of G_{k}, G_{k} is the pseudo inverse of M_{k} and M_{k} denotes the matrix obtained by zeroing columns $\pi(1), \ldots, \pi(k-1)$ of M. The QR factorization of $M' = M_{P}$ is denoted by $QR = M'$. Eq. (12) can be expressed as

$$
\hat{X}_{D} = \arg\min_{x \in \mathbb{C}^{N}} \| Rx^{*}\|^{2}.
$$

Since R is upper triangular, the k-th element of (14) is given by

$$
\hat{x}_{k} = \arg\min_{x_{k}, \ldots, x_{N}} (r_{kk}x_{k}^{*} + \sum_{i=k+1}^{N} r_{ki}x_{i}^{*})^{2}
$$

where the estimate is free of interference from subcarriers 1, 2, \ldots, $k-1$. Thus, x_{k} can be estimated by minimizing (15). Proceeding in the order $x_{N}, x_{N-1}, \ldots, x_{1}$ and assuming correct previous decisions, x can be estimated and the interference between subcarriers can be cancelled in each step. This sequential detection suffers from error propagation even with V-BLAST optimal ordering. More accurate detection algorithm needs to be derived.

B. Sphere decoding algorithm

The sphere decoding [11], [14] is an efficient method to find an optimal solution to an integer least-squares problems. This is the problem of finding the closest lattice point in N-dimensions to a given point $x \in \mathbb{C}^{N}$. In our case, the search space has M^{N} lattice points so the exhaustive search is only possible for small N only. To the best of the authors’ knowledge, the SD has not been applied for joint channel estimation and data detection in OFDM systems.

The original SD can only handle real systems. Complex systems can be decoupled to formulate real systems. The complex problem (12) can be transformed into the real matrix equation

$$
\tilde{X}_{D} = \arg\min_{\tilde{x} \in \mathbb{C}^{N}} \tilde{x}^{T}\tilde{M}^{T}\tilde{M}\tilde{x}
$$

where

$$
\tilde{x} = \begin{bmatrix} \text{Re}\{x^{T}\} \\ \text{Im}\{x^{T}\} \end{bmatrix} \quad \tilde{M} = \begin{bmatrix} \text{Re}\{M^{T}\} & -\text{Im}\{M^{T}\} \\ \text{Im}\{M^{T}\} & \text{Re}\{M^{T}\} \end{bmatrix}
$$

and $A = \{ \text{Re}(Q), \text{Im}(Q) \}$. Thus (16) can be solved via SD. For example, if x belongs to 4QAM, each entry of \tilde{x} belongs to BPSK. Any M-QAM can be decoupled similarly. Thus, (12) can be reduced to a real system (16).

Since the matrix $M^{T}\tilde{M}$ is positive definite, Cholesky factorization of it yields $\tilde{M}^{T}\tilde{M} = R^{T}R$, where R is an upper triangular matrix with r_{ii} real and positive. We then have

$$
\tilde{s}^{T}R^{T}\tilde{R}s = \sum_{i=1}^{N} r_{ii}s_{i}^{2} + \sum_{j=i+1}^{N} r_{ij}s_{i}s_{j}^{*} \leq r^{2}.
$$

where $s = [\text{Re}\{x^{T}\}, -\text{Im}\{x^{T}\}]^{T}$. The SD algorithm searches the lattice inside a hypersphere of radius r instead of searching the whole lattice. Substituting $q_{ii} = r_{ii}^{2}$ for $i = 1, \ldots, N$ and $q_{ij} = r_{ij}/r_{ii}$ for $j = i + 1, \ldots, N$, starting from s_{N} and working backwards, the lower and upper bounds of s_{i} can be obtained as $L_{i} = [-A - B], U_{i} = [A - B]$, where

$$
A = \sqrt{r^{2} - \sum_{l=i+1}^{N} q_{ll} s_{i}^{2} + \sum_{j=l+1}^{N} q_{lj}s_{i}s_{j}}
$$

$$
B = \sum_{j=i+1}^{N} q_{ij}s_{j}.
$$

$[\cdot]$ denotes the smallest integer greater than or equal to its argument. $\lfloor \cdot \rfloor$ denotes the largest integer less than or equal to
its argument. Therefore \(s_i \) is selected from

\[
s_i \in [L_i, U_i] \bigcap Z
\]

(20)

The SD continues with the same process for \(s_{i-1} \) and so on. If there is no lattice point within the region say \(s_n \), the SD comes back to \(s_{m+1} \) and chooses another candidate value within the bounds. When SD reaches \(s_1 \), it generates a candidate lattice point say, \(s' \), inside the hypersphere of radius \(r \). The SD computes the value of \(C = s'^T R_T R s' \). If this value is less than \(r^2 \), the radius \(r \) is updated to \(\sqrt{C} \). This process continues until no further lattice points is found within the hypersphere. The lattice point that achieves the smallest value of (18) within the hypersphere is the ML solution.

However not all M-PSK constellations can be decoupled into real systems (e.g., 8-PSK). Hochwald and Brink [15] show a modified SD to handle complex constellations. But this involves the computationally inefficient \(\cos^{-1} \) operation, which will slow down the SD. We address here the decouple algorithm can still be used to handle M-PSK. Reorder the elements of \(\hat{x} \) to formulate \(s \) as

\[
s = [\text{Re}(x_1), \text{Im}(x_1), \ldots, \text{Re}(x_N), \text{Im}(x_N)]^T.
\]

(21)

And \(\bar{M} \) is rearranged as \(\bar{M}' \) accordingly. If \(\text{Re}(x_i) \) is selected, the candidates for \(\text{Im}(x_i) \) are limited by the constellation. Take 8-PSK for example, the constellation set \(Q_8 = \{0.9239 + 0.3827j, 0.3827 + 0.9239j, -0.9239 + 0.3827j, -0.3827 + 0.9239j, -0.9239 - 0.3827j, -0.3827 - 0.9239j, 0.9239 - 0.3827j, 0.3827 - 0.9239j\} \). The candidate set for \(\text{Re}(x_i) \) is \(Q_R = \{0.9239, 0.3827, -0.9239, -0.3827\} \). If \(\text{Re}(x_i) \) chooses one element of \(Q_R \) within the bounds (19), for example \(\text{Re}(x_i) = 0.3827, \text{Im}(x_i) \) can only be chosen from \(Q'_j(\text{Re}(x_i)) = \{0.9239, -0.9239\} \) due to the constraint on constellation, where \(Q'_j(\text{Re}(x_i)) \) means the candidate set for \(\text{Im}(x_i) \) depends on \(\text{Re}(x_i) \). \(Q'_R \) is the same for all \(x_i \) and we omit superscript \(i \). Therefore \(s_i \) is selected from

\[
s_i \in \left\{ \left[L_i, U_i \right] \cap Q_R \right\}.
\]

(22)

Since \(Q'_i(s) \) can be pre-computed for each \(s \) from \(Q_R \) and be stored in memory, additional computational complexity is avoided and the former SD algorithm is not changed much. This idea can be used to handle any constellations. The decoupling for M-QAM can be viewed as a special case of the new generalization in that \(Q'_i(s) \)'s are the same for any \(s \) from \(Q_R \) and \(Q'_R = Q_1 \).

V. SIMULATION RESULTS

Simulation results are given for the proposed blind and semi-blind estimators. We consider a frequency-selective slow Rayleigh fading channel with \(L = 3 \) Gaussian complex coefficients \(h_l \) with mean power of \(\sigma_0^2 = E[|h_l|^2] = \sigma_0^2 e^{-l/5} \) for \(l = 1, \ldots, L \). An OFDM system with \(N=32 \) subcarriers and binary phase shift keying (BPSK) are simulated. The carrier frequency is 5GHz and the data rate is 3MHz. A training symbol is transmitted at the \(N \)th subcarrier to solve the scaling ambiguity.

Both estimators are tested on OFDM systems with the above simulation parameters under different SNR. Fig. 1 shows the normalized mean square error (NMSE) of channel estimation which is defined as

\[
\text{NMSE} = \frac{E\left[\sum_{l=1}^{L} |h_l - \hat{h}_l|^2\right]}{E\left[\sum_{l=1}^{L} |h_l|^2\right]},
\]

(23)

Both estimators with SD have almost the same NMSE performance in all SNR region. The performance of semi-blind with V-BLAST is 2.5dB better than that of blind with V-BLAST but is 2dB worse than the two estimators with SD at \(\text{SNR}=10^{-2} \). The BER performance of the OFDM system is compared with that of the ideal case, where the channel parameters are exactly known at the receiver (Fig. 2). The performance of one-tap equalization is used as benchmark. Both estimators with SD are within 0.2dB of the ideal case in the high SNR region. The performance of V-BLAST detection for semi-blind estimator is comparable to that of SD in high SNR region. Even in low SNR region, the gap between SD and V-BLAST is within 1dB. This result seems to be contradict the results given in [16], where great performance improvement is achieved by using SD in MIMO systems. The reason for such contradiction may be that the order of the constellation is not very high. The computational complexity as a function of the SNR is given in Fig. 3. Note that the complexity of the exhaustive search is \(1.81 \times 10^{15} \) flops while even for an SNR of 0dB all estimators’ complexity are within \(10^9 \) flops by using SD. The complexity of both the estimators increase with the increase of SNR. At 0dB, the semi-blind estimator is 15 times faster than the blind estimator while at 20dB it is more than 31 times faster. The blind estimator has higher complexity than the semi-blind estimator. This is possibly due to the inherent rank-deficiency in (6c) while the complexity is
significantly reduced compared with the exhaustive search in the first $N - L$ variables in semi-blind estimator. The semi-blind estimator is preferable when the channel statistics are known at the receiver.

VI. CONCLUSION

We have developed novel blind and semi-blind joint estimators for channel and data in OFDM systems. Two detection algorithms based on V-BLAST detection and sphere decoding have been developed to efficiently solve the resulting integer LS optimization problems. We generalize the original sphere decoder to handle any M-PSK constellations and to achieve reduced complexity. Further, the minimization problem for the blind estimator suffers from rank deficiency. We derive an efficient solution to the rank deficiency problem. Simulation results show that our proposed estimators perform fairly close to the ideal case. The estimators proposed in this paper may also be extended to MIMO-OFDM systems and OFDM over fast fading channels. These applications are currently being investigated.

REFERENCES