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Abstract— We develop blind and semi-blind joint estimators
of the channel impulse response (CIR) and data symbols for
Orthogonal Frequency Division Multiplexing (OFDM) systems
over a frequency selective fading channel. Using the maximum
likelihood (ML) criterion, we derive two estimators for the
transmit data symbols that require minimizing a complex,
integer quadratic xT Gx∗ where x is a data vector and the
matrix G characterizes each estimator. Avoiding computationally
prohibitive exhaustive search, we use both sphere decoding (SD)
and V-BLAST algorithms. We also modify SD algorithm to our
complex OFDM system to handle any M -PSK and incorporate
a reduced complexity SD into OFDM system. The quadratic
for the blind estimator suffers from rank deficiency. We give
an efficient solution to the rank deficiency problem. Simulation
results confirm good performance of our proposed estimators.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
used for high data rate wireless local area network (WLAN)
standards, such as Hiperlan and IEEE 802.11a, providing
data rates of up to 54Mbit/s, and considered for the fourth-
generation (4G) mobile wireless systems and beyond [1].
Pilot-symbol-aided channel estimation for OFDM has been
widely investigated [2], [3]. In the wireless standards such as
the IEEE 802.16a and IEEE 802.11a, the cyclic prefix (CP)
and pilot tones together constitute a significant overhead or
bandwidth loss, which has motivated the development of blind
techniques for OFDM. They exploit statistical or deterministic
properties of the transmit and receive signals.

Blind channel estimators that exploit the redundancy intro-
duced by the CP and pilot subcarriers are developed in [4].
Reference [5] develops a blind subspace approach exploiting
the CP-induced cyclostationarity. A blind channel estimator by
exploiting the finite alphabet property of modulation symbols
is proposed in [6]. Subspace-based blind channel estimator
using virtual carriers (VC) has been derived in [7]. In [8],
a sufficient condition for blind channel estimation is given.
Joint estimation of CIR and data symbols for OFDM has
not been investigated extensively. An ML joint blind channel
and data estimator [9] exploits the finite alphabet property of
modulation symbols and the presence of VCs. In [10] an ML
joint estimator is derived which requires pilot symbols for an
initial estimate of the channel.

In this paper, we derive two joint estimators for CIR and
data symbols making use of the finite alphabet and constant
modulus properties of transmit signals. The first one is a
blind estimator. We derive the other (referred to as semi-blind)
assuming that the receiver knows the channel autocorrelation
matrix and the noise variance. Both the estimators are obtained
by posing the problem of the joint estimation of channel
and data as a mixed discrete and continuous LS optimization
problem. By eliminating the channel from it, we obtain a
discrete integer LS problem (which has the same form for both
the estimators) for the data symbols. Since exhaustive search
is computationally prohibitive, we use both SD [11] and V-
BLAST [12] to solve these quadratic optimization problems.

The rest of the paper is organized as follows. Section II
reviews the basic baseband OFDM system model. Section
III introduces two joint ML estimators. In Section IV, we
apply both V-BLAST and SD to solve the joint estimators.
Furthermore, a novel approach to solve the rank deficiency
problem in SD is also presented. Section V gives computer
simulation results and Section VI concludes the paper.

Notation: Bold symbols denote matrices or vectors.
(·)T , (·)H and (·)† denote transpose, conjugate transpose
and Moore-Penrose pseudo-inverse respectively. For M -ary
phase shift keying (MPSK), the signal constellation Q =
{ej2πk/M , k = 0, 1, · · · ,M − 1} and all MPSK N × 1
vectors are denoted by QN and the cardinality of Q is denoted
by |Q|. If x and y are Gaussian random variables (RV)
with mean µx, µy and variance σ2, z = x + jy (where
j =

√−1) is a complex Gaussian random variable (CGRV)
and is denoted by z ∼ CN (µx+jµy, σ2). The discrete Fourier
transform (DFT) matrix is given by F = 1/

√
N [e−j 2π

N kl],
k, l ∈ 0, 1, · · · , N − 1.

II. OFDM BASEBAND MODEL

In an OFDM system, the source data are grouped and/or
mapped into the multi-phase symbols from a MPSK constel-
lation Q, which are modulated by inverse DFT (IDFT) on
N parallel subcarriers. Note that X(k), k = 0, 1, . . . , N − 1
are called modulation symbols or transmit data symbols. The
term ”OFDM block” is used to denote the entire IDFT output
{x(0), x(1), · · · , x(N − 1)}. The input symbol duration is
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Ts and the OFDM block duration is NTs. These samples
are appropriately pulse shaped to construct the time domain
signal x(t) for transmission. We assume that the composite
CIR which includes transmit and receive pulse shaping and
the physical channel response between the transmitter and
receiver may be modelled as [13, p.802]

h(t) =
L−1∑
l=0

hlδ(t − τl) (1)

where hn ∼ CN (0, E[h2
n]) and τl is the delay of the lth tap.

Typically, it is assumed that τl = lTs and this results in a finite
impulse response filter with an effective length L. Assuming
that the channel remains constant during each OFDM block,
but it varies between OFDM blocks, and the cyclic prefix is
sufficiently long (Ng > L), the post-DFT received samples
Y (k) are given as follows:

Y (k) = H(k)X(k) + W (k), 0 ≤ k ≤ N − 1 (2)

where H(k) = H(j2πk/N) is the complex channel frequency
response at subcarrier k, H(jω) is the Fourier transform of
the CIR and W (k) k = 0, 1, · · · , N − 1 are independent and
identically distributed (i.i.d) CGRV’s, each of which has zero
mean and variance σ2

n. Assuming τl = lTs, we find H =
FLh, where H = [H(0),H(1), · · · ,H(N − 1)]T , h ∈ CL

is the CIR and FL is a N × L submatrix of DFT matrix F,
which corresponds to each channel path. We can vectorize (2)
as

Y = XDFLh + W (3)

where XD = diag{X(0),X(1), · · · ,X(N −1)} is a diagonal
matrix. Note that (3) is the basis of our joint channel and data
estimators.

III. ML JOINT CHANNEL ESTIMATION AND DATA

DETECTION

Using ML principles, we next derive blind and semi-blind
joint estimators of CIR and data symbols. The semi-blind
estimator is derived by assuming the availability of the exact
knowledge of channel correlation matrix and noise variance.

A. Blind estimator

Since the noise vector W in (3) is i.i.d Gaussian, the ML
estimator of the CSI (h) and transmitted symbols (XD) is
given by

(ĥ, X̂D) = arg min
h̃∈CL,X̃D∈QN

‖Y − X̃DFLh̃‖2. (4)

The minimization in (4) is a complex LS problem for ĥ
and an integer LS problem for X̂D. Given X̂D (we assume
that X̂D = XD) the channel response ĥ that minimizes (4)
is given by the LS estimate

ĥ =
[
(X̂DFL)H(X̂DFL)

]−1

(X̂DFL)HY. (5)

Substituting (5) into (4), we obtain

X̂D = arg min
XD

∥∥∥[
IN − XDFL

(
FH

L FL

)−1
FH

L XH
D

]
Y

∥∥∥2

(6a)

= arg min
XD

YHXD

[
IN − FL

(
FH

L FL

)−1
FH

L

]
XH

DY (6b)

= arg min
x

xT YH
D

[
IN − FL

(
FH

L FL

)−1
FH

L

]
YDx∗ (6c)

where YD = diag{Y (0), Y (1), · · · , Y (N − 1)} and x ∈ QN

is the vector whose elements are the diagonal elements of
matrix XD. Eq. (6a) is due to the use of the constant modulus
constellation MPSK; Eq. (6a) follows from the fact that
the matrix IN −XDFL

(
FH

L FL

)−1
FH

L XH
D is an orthogonal

projection matrix onto null(XDFL) and the projection matrix
has the property P 2

⊥ = P⊥ and PH
⊥ = P⊥.

The rank of the matrix B = YH
D (IN −FLFH

L )YD is only
N −L. Note that B can be QR factorized as B = QR, where
Q and R are unitary and upper-triangular, respectively. Since
the last L rows of R are zero, both the standard V-BLAST
and SD algorithms fail in this case. We next modify (6c) so
that both SD and V-BLAST can be applied.

Using the constant modulus property (e.g., |X(k)|2 = 1 for
X(k) ∈ Q), xT YH

DYDx∗ =
∑N−1

k=0 |Y (k)|2 is a constant.
Therefore the optimization problem (6c) is equivalent to

X̂D =arg min
x∈QN

ηxT YH
DYDx∗ + xT Bx∗

=arg min
x∈QN

xT YH
D [(η + 1)IN − FLFH

L ]YDx∗.
(7)

Since FLFH
L is positive semi-definite matrix with non-zero

eigenvalue 1, (η +1)IN −FLFH
L is a positive definite matrix

if η > 0. For simplicity, we let η = 1.
After X̂D is estimated from (7) using V-BLAST (subopti-

mal) or the SD (optimal), the LS estimate ĥ can be obtained
by substituting X̂D into (5). Both x and xejφ φ ∈ (0, 2π)
satisfy (7), which shows that the blind algorithm exhibits a
phase ambiguity. This can be solved by using a pilot tone.

B. Semi-blind estimator

This requires the knowledge of the autocorrelation matrix
Rh of the CIR h and the noise variance σ2

n. We classify it as
a semi-blind estimator. From (3), h and W are zero-mean
complex Gaussian random vectors. The received samples
Y (k) can be modelled as i.i.d. zero-mean CGRV’s via the
central limit theorem when N is large. The autocorrelation
matrix of the received signal is given by

RY = E{YYH} = XDFLRhFH
L XH

D + σ2
nIN

= XD(FLRhFH
L + σ2

nIN )XH
D .

(8)

The determinant of RY can be expressed as

det(RY ) = det(XD) det(FLRhFH
L + σ2

nIN ) det(XH
D)

= det(FLRhFH
L + σ2

nIN ).
(9)
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Note that the determinant of RY is independent of XD.
Ignoring terms that are independent of XD, the log-likelihood
function is given by

Λ(Y|XD) = −YHR−1
Y Y. (10)

As with (6c), maximizing the log likelihood function is
equivalent to solving

X̂D = arg min
x∈QN

xT YH
D (FLRhFH

L + σ2
nIN )−1YDx∗. (11)

As the matrix (FLRhFH
L + σ2

nIN )−1 is positive definite,
V-BLAST [12] and the sphere decoding algorithm [11] can
be used to solve (11). This is developed in detail in Section
V.
Remark:

• The proposed blind and semi-blind estimators can be
generalized to OFDM systems with virtual carriers and
pilot symbols. Both the estimators can be improved via
iterative decision feedback.

• The semi-blind estimator (11) needs the knowledge of
channel covariance matrix Rh and the noise variance σ2

n.
The semi-blind estimator design robust to mismatch will
be given in the full journal version of this paper.

IV. DATA DETECTION ALGORITHMS

A. V-BLAST detection

The blind estimator (7) and the semi-blind estimator (11)
can be solved via V-BLAST detection algorithm [12]. These
estimators can be written in a general form as

X̂D = arg min
x∈QN

xT Gx∗ = ‖Mx∗‖2
(12)

where G is a positive definite matrix, which can be Cholesky
factored as G = MHM. The V-BLAST ordering is to find
the permutation matrix Π such that the QR decomposition of
M′ = MΠ has the property that min1≤i≤N rii is maximized
over all column permutations. For k = N,N − 1, . . . , 1, the
algorithm chooses π(k) such that

π(k) = arg min
j /∈{π(1),...,π(k−1)}

‖(Gk)j‖2 (13)

where (Gk)j is the jth row of Gk, Gk is the pseudo inverse of
Mk and Mk denotes the matrix obtained by zeroing columns
π(1), . . . , π(k−1) of M. The QR factorization of M′ = MΠ
is denoted by QR = M′. Eq. (12) can be expressed as

X̂D = arg min
x∈QN

‖Rx∗‖2. (14)

Since R is upper triangular, the k-th element of (14) is
given by

x̂k = arg min
xk,...,xN

(rkkx∗
k +

N∑
i=k+1

rkix
∗
i )

2 (15)

where the estimate is free of interference from subcarriers
1, 2, . . . , k − 1. Thus, xk can be estimated by minimizing

(15). Proceeding in the order xN , xN−1, . . . , x1 and assuming
correct previous decisions, x can be estimated and the inter-
ference between subcarriers can be cancelled in each step.
This sequential detection suffers from error propagation even
with V-BLAST optimal ordering. More accurate detection
algorithm needs to be derived.

B. Sphere decoding algorithm

The sphere decoding [11], [14] is an efficient method to
find an optimal solution to an integer least-squares problems.
This is the problem of finding the closest lattice point in
N -dimensions to a given point x ∈ CN . In our case, the
search space has MN lattice points so the exhaustive search
is only possible for small N only. To the best of the authors’
knowledge, the SD has not been applied for joint channel
estimation and data detection in OFDM systems.

The original SD can only handle real systems. Complex
systems can be decoupled to formulate real systems. The
complex problem (12) can be transformed into the real matrix
equation

X̃D = arg min
x̃∈A2N

x̃T M̃T M̃x (16)

where

x̃ =
[

Re{xT } −Im{xT } ]
M̃ =

[
Re{MT } −Im{MT }
Im{MT } Re{MT }

]
(17)

and A = {Re(Q), Im(Q)}. Thus (16) can be solved via SD.
For example, if x belongs to 4QAM, each entry of x̃ belongs
to BPSK. Any M -QAM can be decoupled similarly. Thus,
(12) can be reduced to a real system (16).

Since the matrix M̃T M̃ is positive definite, Cholesky
factorization of it yields M̃T M̃ = RT R, where R is an upper
triangular matrix with rii real and positive. We then have

sT RT Rs =
N∑

i=1

∣∣∣∣∣∣riisi +
N∑

j=i+1

rijsj

∣∣∣∣∣∣
2

≤ r2. (18)

where s = [Re{xT },−Im{xT }]T . The SD algorithm searches
the lattice inside a hypersphere of radius r instead of searching
the whole lattice. Substituting qii = r2

ii for i = 1, · · · , N and
qij = rij/rii for j = i + 1, · · · , N , starting from sN and
working backwards, the lower and upper bounds of si can be
obtained as Li = �−A − B�, Ui = �A − B	, where

A =

√√√√r2 − ∑N
l=i+1 qll

∣∣∣sl +
∑N

j=l+1 qljsj

∣∣∣2
qii

B =
N∑

j=i+1

qijsj .

(19)

�·� denotes the smallest integer greater than or equal to its
argument. �·	 denotes the largest integer less than or equal to
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its argument. Therefore si is selected from

si ∈ [Li, Ui]
⋂

Z (20)

The SD continues with the same process for si−1 and so
on. If there is no lattice point within the region say sm,
the SD comes back to sm+1 and chooses another candidate
value within the bounds. When SD reaches s1, it generates a
candidate lattice point say, s′, inside the hypersphere of radius
r. The SD computes the value of C = s′T RT Rs′. If this value
is less than r2, the radius r is updated to

√
C. This process

continues until no further lattice points is found within the
hypersphere. The lattice point that achieves the smallest value
of (18) within the hypersphere is the ML solution.

However not all M -PSK constellations can be decoupled
into real systems (e.g., 8-PSK). Hochwald and Brink [15]
show a modified SD to handle complex constellations. But
this involves the computationally inefficient cos−1 operation,
which will slow down the SD. We address here the decouple
algorithm can still be used to handle M -PSK. Reorder the
elements of x̃ to formulate s as

s = [Re(x1), Im(x1), . . . , Re(xN ), Im(xN )]T . (21)

And M̃ is rearranged as M̃′ accordingly. If Re(xi) is selected,
the candidates for Im(xi) are limited by the constellation. Take
8-PSK for example, the constellation set Q8 = {0.9239 +
0.3827j, 0.3827 + 0.9239j,−0.3827 + 0.9239j,−0.9239 +
0.3827j,−0.9239 − 0.3827j,−0.3827 − 0.9239j, 0.3827 −
0.9239j, 0.9239 − 0.3827j}. The candidate set for Re(xi)
is Qi

R = {0.9239, 0.3827,−0.3827,−0.9239}. If Re(xi)
chooses one element of QR within the bounds (19), for
example Re(xi) = 0.3827, Im(xi) can only be chosen from
Qi

I(Re(xi)) = {0.9239,−0.9239} due to the constraint on
constellation, where Qi

I(Re(xi)) means the candidate set for
Im(xi) depends on Re(xi). Qi

R is the same for all xi and we
omit superscript i. Therefore si is selected from

si ∈
{

[Li, Ui] ∩QR

[Li, Ui] ∩QI(si−1)
. (22)

Since QI(s) can be pre-computed for each s from QR and
be stored in memory, additional computational complexity is
avoided and the former SD algorithm is not changed much.
This idea can be used to handle any constellations. The
decoupling for M -QAM can be viewed as a special case of
the new generalization in that QI(s)’s are the same for any s
from QR and QR = QI .

V. SIMULATION RESULTS

Simulation results are given for the proposed blind and
semi-blind estimators. We consider a frequency-selective slow
Rayleigh fading channel with L = 3 Gaussian complex
coefficients hl with mean power of σ2

l = E[|hl|2] = σ2
0e−l/5

for l = 1, · · · , L. An OFDM system with N=32 subcarriers
and binary phase shift keying (BPSK) are simulated. The
carrier frequency is 5GHz and the data rate is 3MHz. A

training symbol is transmitted at the N th subcarrier to solve
the scaling ambiguity.

Both estimators are tested on OFDM systems with the
above simulation parameters under different SNR. Fig. 1
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Fig. 1. NMSE of the joint ML CIR estimation versus SNR

shows the normalized mean square error (NMSE) of channel
estimation which is defined as

NMSE =
E{∑L

l=1 |hl − ĥl|2}∑L
l=1 E{|hl|2}

. (23)

Both estimators with SD have almost the same NMSE per-
formance in all SNR region. The performance of semi-blind
with V-BLAST is 2.5dB better than that of blind with V-
BLAST but is 2dB worse than the two estimators with SD
at NMSE=10−2. The BER performance of the OFDM system
is compared with that of the ideal case, where the channel
parameters are exactly known at the receiver (Fig. 2). The
performance of one-tap equalization is used as benchmark.
Both estimators with SD are within 0.2dB of the ideal case in
the high SNR region. The performance of V-BLAST detection
for semi-blind estimator is comparable to that of SD in high
SNR region. Even in low SNR region, the gap between SD and
V-BLAST is within 1dB. This result seems to be contradict the
results given in [16], where great performance improvement
is achieved by using SD in MIMO systems. The reason for
such contradiction may be that the order of the constellation
is not very high. The computational complexity as a function
of the SNR is given in Fig. 3. Note that the complexity of
the exhaustive search is 1.81 × 1013 flops while even for an
SNR of 0dB all estimators’ complexity are within 106 flops
by using SD. The complexity of both the estimators increase
with the increase of SNR. At 0dB, the semi-blind estimator
is 15 times faster than the blind estimator while at 20dB it
is more than 31 times faster. The blind estimator has higher
complexity than the semi-blind estimator. This is possibly due
to the inherent rank-deficiency in (6c) while the complexity is
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Fig. 2. Bit error rate of the joint ML estimation algorithm versus SNR
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Fig. 3. The computational complexity versus SNR

significantly reduced compared with the exhaustive search in
the first N − L variables in semi-blind estimator. The semi-
blind estimator is preferable when the channel statistics are
known at the receiver.

VI. CONCLUSION

We have developed novel blind and semi-blind joint esti-
mators for channel and data in OFDM systems. Two detection
algorithms based on V-BLAST detection and sphere decoding
have been developed to efficiently solve the resulting integer
LS optimization problems. We generalize the original sphere
decoder to handle any M -PSK constellations and to achieve
reduced complexity. Further, the minimization problem for the
blind estimator suffers from rank deficiency. We derive an
efficient solution to the rank deficiency problem. Simulation
results show that our proposed estimators perform fairly close
to the ideal case. The estimators proposed in this paper may
also be extended to MIMO-OFDM systems and OFDM over

fast fading channels. These applications are currently being
investigated.
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