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Abstract— Despite the importance of the Rician fading model in
describing microcellular, picocellular and mobile satellite channels,
few theoretical results are known about the performance of
selection combining (SC) and equal gain combining (EGC) in cor-
related Rician fading channels. In this paper, we develop a novel
approach for performance analysis of L-branch diversity systems
in equally correlated Rician fading channels. This approach
involves transforming a set of equally correlated branch gains
into a set of conditionally independent branch gains, analyzing
the performance for the independent case and averaging the
conditional results. Consequently, we derive novel expressions
for the average error rates of various digital modulations and
the output moments for both SC and EGC. We find that the
performance of diversity systems in correlated Rician fading
channels can be worse than that in correlated Rayleigh fading
channels, which has never been observed for the independent
fading case.

Keywords: Diversity, equal gain combining, Rician fading, se-
lection combining.

I. INTRODUCTION

This paper derives novel analytical results for the L-branch
SC and EGC performance in correlated Rician fading channels.
The Rician distribution for the fading amplitudes of received
signals where line-of-sight (LOS) propagation exists [1]–[4] can
be used to model both microcellular channels and mobile satel-
lite channels. The performance of SC and EGC in independent
Rician fading channels are available [5]–[7] in the literature.
For example, Abu-Dayya and Beaulieu [5] investigate the EGC
performance in independent Rician fading channels using an
infinite series approximation for the probability density function
(pdf) of its output signal-to-noise ratio (SNR). Annamalai et
al. [6], [7] use the Parseval theorem to evaluate the error rate
performance of EGC.

However, the fading among several diversity branches may
not be independent for many real-life applications [8], [9].
Residual correlations among diversity branches may exist due
to insufficient antenna spacing. Hence, quantitative analysis of
diversity gain loss due to correlated fading is important from a
theoretical and practical standpoint. While comprehensive theo-
retical performance results for maximal ratio combining (MRC)
systems in various correlated fading channels are available, by
comparison, they are scarce for L-branch (L > 2) SC and
EGC. Indeed, not many published papers consider the SC and
EGC performance in correlated Rician fading. Accordingly,

in the extensive list of papers dealing with SC and EGC,
we have been able to find only one paper that addresses L-
branch SC in correlated Rician fading channels. Zhang and
Lu [10] derive a general approach to analyze the L-branch
SC performance in correlated fading, an approach using L-
dimensional integration. The basic idea behind this approach is
to express the joint pdf as an L-dimensional inverse integral of
the joint characteristic function (chf). For large L (> 3), this
method is fairly complicated. To the best of our knowledge, no
results have ever been reported for the L-branch coherent EGC
performance in correlated Rician fading channels.

Constant correlation model has been studied for L-branch
MRC in Nakagami-m fading channels by Aalo [11]. This model
may be valid for a set of closely placed antennas and be used
as a worst-case benchmark or as a rough approximation by
replacing every ρjk (j �= k) in the correlation matrix with the
average value of ρjk (j �= k). Recently, Chen and Tellambura
[12], [13] have developed a new approach for performance
analysis of diversity combiners in equally correlated Rayleigh
fading channels. They transform a set of equally correlated
Rayleigh random variables (RVs) into a set of conditionally
independent Rician RVs using a novel representation of the
channel gains. In this paper, we generalize their results [12],
[13] to equally correlated Rician fading channels. We evaluate
the error rate performance and the output moments of L-branch
SC and EGC receivers using this approach. Numerical and
semi-analytical simulation results show that the performance
of diversity systems in correlated Rician fading channels can
be worse than that in correlated Rayleigh fading channels.

This paper is organized as follows. Section 2 develops a
new channel gain representation for the equally correlated
Rician fading. Section 3 evaluates the average error rates of
a wide class of digital modulations with SC and EGC. Section
4 derives the moments of the SC and EGC output SNRs.
Section 5 presents numerical results for the performance of
SC and EGC in equally correlated Rician fading channels and
concludes this paper.

II. SYSTEM AND CHANNEL MODEL

Consider a diversity combining system with L branches. We
assume that the channel fading at each branch is frequency non-
selective and changes slowly with equally correlated Rician
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distributed envelop statistics. The received signal at the k-th
diversity branch can be expressed as

rk = gks + nk (1)

where gk = αke−iφk is the channel gain associated with the k-
th branch, i =

√−1, s is the transmitted signal with energy per
symbol Es and nk is additive white Gaussian noise (AWGN)
with identical power spectral density N0

2 per dimension. The
noise components are independent of the signal components
and uncorrelated with each other. Hence, we may write the
output SNRs of L-branch SC and EGC receivers as

γsc =
Es

N0
max(α2

1, α
2
2, · · · , α2

L) (2a)

γegc =
Es

LN0
(α1 + α2 + · · · + αL)2. (2b)

Assuming that the Rice factors at different diversity branches
are identical, we develop a new representation for the equally
correlated Rician channel gains using a set of L complex
Gaussian RVs

Gk =
(√

1 − ρ Xk +
√

ρ X0 + m1

)
+ i
(√

1 − ρ Yk +
√

ρ Y0 + m2

) (3)

where k ∈ {1, . . . , L}, 0 < ρ < 1, m1 + im2 is the LOS
component, {Xk} and {Yk}, (k ∈ {0, 1, · · · , L}), are two sets
of independent zero-mean Gaussian RVs with identical variance
E(|Xk|2) = E(|Yk|2) = 1

2 . That is, for any j, k ∈ {0, . . . , L},
E(XkYj) = 0 and E(XkXj) = E(YkYj) = 0 for k �= j. The
validity of (3) for positive ρ only may at first seem a significant
limitation. However, the entire range for ρ is between − 1

L−1
and 1 (the lower limit follows from the positive-definiteness
constraint on the covariance matrix). For large L, we may
therefore ignore − 1

L−1 ≤ ρ < 0.

Since Gk’s are non-zero mean complex Gaussian distributed,
the amplitudes of the corresponding channel gains αk’s, i.e.,
αk = |Gk|, are Rician distributed with the Rice factor and the
mean square value given respectively by

K = m2
1 + m2

2 (4a)

Ω = E(α2
k) = 1 + K. (4b)

Hence, the average branch SNR is given by

γ̄c =
Es

N0
E(α2

k) = (1 + K)
Es

N0
(5)

The cross-correlation coefficient between any Gk and Gj (k �=
j) equals to

E{[Gk − E(Gk)][G∗
j − E(G∗

j )]}√
E[|Gk − E(Gk)|2]E[|Gj − E(Gj)|2]

= ρ (6)

where x∗ denotes conjugate of x. Eq. (6) specifies the cor-
relation (fading correlation) between two underlying complex
Gaussian samples. However, it is required to relate this to the
power correlation (i.e. the correlation between α2

k and α2
j ). For

Rician fading channels, we use [14, Eq. (2.4-9)] to obtain the

power correlation as

ρη = ρ
2K + ρ

2K + 1
. (7)

For Rayleigh fading channels (K = 0), the fading correlation
equals to the square root of power correlation [11], that is

ρη = ρ2. (8)

Eqs. (3) and (7) represent a set of equally correlated Rician
envelopes with a specified value of power correlation.

Next, we introduce a ‘trick’ that enables performance analy-
sis. We consider X0 = x0 and Y0 = y0 to be fixed in (3) and let
U =

(
X0 + m1/

√
ρ
)2 +

(
Y0 + m2/

√
ρ
)2

. Then αk becomes a
set of independent Rician RVs with the Rician factor and the
mean square value given respectively by

Kf =
ρu

1 − ρ
(9a)

Ωf = E(α2
k|u) = 1 − ρ + ρu. (9b)

Note that U is noncentral chi-square distributed with 2 degrees
of freedom and noncentrality parameter K/ρ, and its pdf is
given by [15]

p(u) = e−(K
ρ +u)I0

(
2

√
Ku

ρ

)
, u ≥ 0, (10)

where I0(x) is zero-order modified Bessel function of the first
kind.

Performance analysis can now be carried out in two steps.
First, conditional performance results are obtained for a set
of conditionally independent Rician channel gains and the
conditional results are functions of u. Second, the conditional
results are averaged over the distribution of U .

III. AVERAGE ERROR RATE PERFORMANCE

Using the channel gain representation (3), we evaluate the
error rate performance of SC and EGC in equally correlated
Rician fading channels.

A. Selection Combiner

When X0 = x0 and Y0 = y0 are fixed, {α2
k} is a set

of independent noncentral chi-square distributed RVs with 2
degrees of freedom and noncentrality parameter ρu, whose
cumulative distribution function (cdf) is given by [15, Eq. (2-
1-145)].

First, evaluating the cdf of the SC output SNR for a fixed(
x0 + m1/

√
ρ
)2 +

(
y0 + m2/

√
ρ
)2 = u, we obtain the condi-

tional cdf as

Fγsc|U (y |u) =

[
1 − Q

(√
2ρu

1 − ρ
,

√
2(1 + K)y
γ̄c(1 − ρ)

)]L

(11)

where Q(a, b) is the first order Marcum Q-function defined as
[16, Eq. (1)].

Secondly, averaging the conditional cdf (11) over the distri-
bution of U (10), we obtain the output cdf of SC in equally
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correlated Rician fading as

Fγsc
(y) =e−(K

ρ )
∫ ∞

0

[
1 − Q

(√
2ρu

1 − ρ
,

√
2(1 + K)y
γ̄c(1 − ρ)

)]L

× e−uI0

(
2

√
Ku

ρ

)
du. (12)

As expected, when K = 0, (12) reduces to [12, Eq. (13)] for
equally correlated Rayleigh fading case.

The average error rates of various digital modulations with
a certain diversity combining system can be obtained directly
from its output cdf as [17]

P̄s =
∫ ∞

0

Fγout
(γ)H(γ) dγ (13)

where Fγout
(γ) is the output cdf of the diversity combiner and

H(γ) = −dPs(γ)
dγ is the negative derivative of the conditional

error probability (CEP), which can be found in [17].
Using (12) with (13), we may evaluate the average error rates

of various modulations with L-branch SC as a two-fold integral
of well-known functions. For example, the average bit error rate
(BER) of differential binary phase-shift-keying (DBPSK) can
be obtained as

P̄b =
e−

K
ρ

2

∫ ∞

0

∫ ∞

0

[
1 − Q

(√
2ρu

1 − ρ
,

√
2(1 + K)γ
γ̄c(1 − ρ)

)]L

× e−(u+γ)I0

(
2

√
Ku

ρ

)
du dγ (14)

which can be readily evaluated by common mathematical
software such as Matlab.

B. Equal Gain Combiner

Recall that when X0 = x0 and Y0 = y0 are fixed, {αk}
is a set of independent Rician RVs. Here we use the chf-
based approach to evaluate the error rate performance of L-
branch EGC [6]. The CEP for a fixed

(
x0 + m1/

√
ρ
)2 +(

y0 + m2/
√

ρ
)2 = u can be evaluated using [6]

Ps(u) =
2
π

∫ π/2

0

Ψ(tan ζ|u)
sin(2ζ)

dζ (15)

where Ψ(ω) = Re[ωG(ω)φ∗
x(ω)] and Re(x) denotes the real

part of x. G(ω) is the Fourier transform of generic conditional
error probability which can be found [6, Eqs. (11,13,16,17,19)]
for various digital modulations and φx(ω) is the chf of the
square root of the output SNR (x = √

γegc ) given by [6]

φx(ω|u) =

[
e−

ρu
1−ρ

π

∫ π

0

e

(
i

ωξk
2 +

√
ρu

2(1−ρ) cos θ
)2

×D−2

(
−iωξ −

√
2ρu

1 − ρ
cos θ

)
dθ

]L
(16)

where ξ =
√

(1−ρ)γ̄c

2L(1+K) and D−2(x) is parabolic cylinder
function defined as [18, Eq. (9.240)].

Averaging the conditional error rates (15) over the distribu-
tion of U (10), we obtain the average error rates as

P̄s =
2e−

K
ρ

π

∫ ∞

0

e−uI0

(
2

√
Ku

ρ

)

×
∫ π/2

0

Ψ(tan ζ|u)
sin(2ζ)

dζ du.

(17)

Therefore, we may evaluate the average error rates of digital
modulations with L-branch EGC using [6, Eq. (11)] and (16)
with (17). For example, the BER of DBPSK can be obtained
as

P̄s =
2e−

K
ρ

π

∫ ∞

0

e−uI0

(
2

√
Ku

ρ

)∫ π/2

0

Re

{
tan ζ

2

[√
π

2

×e−
tan2 ζ

4 + iF

(
tan ζ

2

)]
φ∗

x(tan ζ|u)
}

dζdu

sin(2ζ)
. (18)

where φx(ω|u) is given by (16) and F (x) denotes the Dawson
integral [19].

IV. OUTPUT MOMENTS

As an alternative to error rate analysis, performance measures
based on the moments of a combiner output SNR can be used.
However, only the mean output SNR is not sufficient and the
higher order moments can furnish additional information for
system design [20]. For example, the Chebyshev inequality
yields Pr(|X − µ| > t) < σ2

X/t2 where E(X) = µ. Thus,
if X is taken to be the output of a diversity combiner, a large
variance indicates that the output is more likely to fade away
from the mean. In this section, we derive the moments of the
SC and EGC output SNRs in equally correlated Rician fading
channels.

A. Selection Combiner

Differentiating the output cdf of SC (12) yields the corre-
sponding output pdf as

pγsc
(y) =

L(1 + K)
γ̄c

e−(K
ρ +

(1+K)y
γ̄c(1−ρ) )

∫ ∞

0

e−u

× I0

(
2

√
Ku(1 − ρ)

ρ

)
I0

(
2

√
(1 + K)ρyu

γ̄c(1 − ρ)

)

×
[
1 − Q

(√
2ρu,

√
2(1 + K)y
γ̄c(1 − ρ)

)]L−1

du.

(19)

When K = 0, (19) is equivalent to the previous result [12, Eq.
(16)].

The moments of the output SNR can then be determined as

E(γn
sc) =

∫ ∞

0

ynpγsc
(y) dy

=
(

γ̄c

1 + K

)n

L(1 − ρ)n+1e−K/ρ

∫ ∞

0

yne−y

×
∫ ∞

0

e−uI0(2
√

Ku(1 − ρ)/ρ)I0(2
√

ρyu )

× [1 − Q(
√

2ρu,
√

2y )]L−1 du dy.

(20)
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Using (20), we can readily derive some useful measures such
as skewness, kurtosis [21] and the amount of fading [22]. For
brevity, we do not develop such results here.

B. Equal Gain Combiner

Using the multinomial expansion, the moments of the EGC
output SNR can be written as

E(γn
egc) =

(
Es

LN0

)n

E[(α1 + α2 + . . . + αL)2n]

=
( γ̄c

L

)n 2n∑
k1,...,kL=0

k1+...+kL=2n

(2n)!∏L
j=1 kj !

E


 L∏

j=1

α
kj

j


 .

(21)

The joint moments E(αk1
1 . . . αkL

L ) are required here. Unfor-
tunately, these are not known when αk’s are correlated. Our
approach (9) appears to be the only way of evaluating these
moments. Evaluating the moments of the EGC output SNR
for a fixed

(
x0 + m1/

√
ρ
)2 +

(
y0 + m2/

√
ρ
)2 = u and then

averaging the conditional results over the distribution of U ,
we obtain the moments of the EGC output SNR in equally
correlated Rician fading channels as

E(γn
egc) =

(
γ̄c(1 − ρ)
(1 + K)L

)n

(2n)!
2n∑

k1,...,kL=0
k1+...+kL=2n

[
e−

K
ρ

×
L∏

j=1

(
Γ(1 + kj/2)

kj !

)∫ ∞

0

I0

(
2

√
Ku

ρ

)
(22)

×
L∏

j=1

Φ
(
−kj

2
, 1;− ρu

1 − ρ

)
du




where Γ(x) is the gamma function and Φ(a, c; z) is the con-
fluent hypergeometric function defined as [18, Eq. (9.210)].

For equally correlated Rayleigh fading channels (K = 0),
using [7, Eq. (C.1)], (22) can be simplified as

E(γn
egc) =

(
γ̄c(1 − ρ)

L

)n

(2n)!

×
2n∑

k1,...,kL=0
k1+...+kL=2n


 L∏

j=1

(
Γ(1 + kj/2)

kj !

)

×
∫ ∞

0

L∏
j=1

Φ
(
−kj

2
, 1;− ρu

1 − ρ

)
du




(23)

To the best of our knowledge, (22) and (23) are new results.
Indeed, we are not aware of any published results concerning
the moments of the EGC output SNR in correlated Rician
fading channels.

V. NUMERICAL RESULTS AND CONCLUSION

In this section, some numerical results are provided to show
the impact of equally correlated Rician fading channels on
the performance of L-branch SC and EGC. Semi-analytical

simulation results are provided as an independent check for
our analytical results.
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Fig. 1. Average bit error rate of DBPSK with EGC in equally correlated
Rician fading channels; L = 4, ρ = 0, 0.5, K = 0, 3dB, 5dB, 7dB.

Fig. 1 plots the average BER of DBPSK with 4-branch EGC
in equally correlated Rician fading channels for different Rice
factors K. The case of K = 0 represents the equally correlated
Rayleigh fading channels. For independent fading (ρ = 0),
EGC always performs better in Rician fading than in Rayleigh
fading. For correlated fading, the opposite occurs at the high
SNR region. The same unexpected behavior occurs for the SC
performance in correlated Rayleigh and Rician fading channels
(see Fig. 2). These observations may be explained by using the
definition of fading correlation ρ (6). The fading correlation is
defined as the correlation between two underlying Gaussian
RVs Gk and Gj (k �= j). However, from (7) and (8), we
find that for a certain value of ρ, the power correlation ρη

of Rician fading is larger than that of Rayleigh fading, that is
the combined branches are more highly correlated in Rician
fading channels. Hence, two opposing mechanisms influence
the diversity combiner performance in Rician fading channels.
First, the LOS component improves the performance. Second,
the larger power correlation than that in Rayleigh fading chan-
nels degrades the performance. When the second mechanism
dominates, the performance in Rician fading channel can be
worse than that in Rayleigh fading channel. In fact, Chang
and McLane [23] have observed this situation for square-law
combiners.

Fig. 2 shows the impact of fading correlation ρ on the
average BER performance of DBPSK with 4-branch SC in
equally correlated Rician fading channels. The case of ρ = 0
represents independent fading. The case of ρ = 1 represents a
single branch case. As ρ increases, the SC performance in both
Rayleigh and Rician fading channels degrades. However, the SC
performance in Rician fading degrades more rapidly in the low
correlation case but more slowly in the high correlation case
than that in Rayleigh fading channels. This observation can also
be explained by the relationship between the fading correlation
ρ and the power correlation ρη . As ρ increases, compared with
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Fig. 2. Average bit error rate of DBPSK with SC in equally correlated Rician
fading channels; L = 4, ρ = 0, 0.2, 0.5, 0.8, 1, K = 0, 3dB.

Rayleigh fading case, the ρη of Rician fading increases more
rapidly when ρ is small but more slowly when ρ is large. That
is, Rician fading is more sensitive than Rayleigh fading in the
low correlation case, but less sensitive in the high correlation
case. We also find that the impact of fading correlation in both
Rayleigh and Rician fading is more pronounced at the high
SNR region.

In conclusion, a new representation for the equally correlated
Rician channel gains has been developed. The error rate per-
formance and the output moments of L-branch SC and EGC in
such channels have been derived. Quantitative analysis of EGC
is a long-standing problem dating back to 1950s [24]. Even for
independent fading channels (the distribution problem of a sum
of independent Rayleigh variables goes back to Lord Rayleigh
himself), the analytical results necessary for comprehensive
analysis of EGC with digital modulations appeared only in 1990
[25]. The state of art for L-branch (L > 2) EGC in correlated
fading is even more limited. Other than computer simulation, no
comprehensive analysis techniques have ever been developed.
The results of this paper take a modest step in solving the
EGC performance problem in correlated fading channels and a
much more challenging problem is to extend our results to other
correlation models. We also observed that the performance of
diversity combiners in correlated Rician fading channels can be
worse than that in correlated Rayleigh fading channels.
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