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Abstract— Few theoretical results are known about the joint
distribution of three or more correlated Rayleigh random vari-
ables (RVs). Consequently, theoretical results for the performance
of 3-branch and 4-branch equal gain combining (EGC), selection
combining (SC) and generalized SC (GSC) over arbitrarily corre-
lated Rayleigh fading channels are not known. This paper derives
new infinite series representations of the joint probability density
function (pdf) and the joint cumulative distribution function (cdf)
of the tri-variate and a certain class of quadri-variate correlated
Rayleigh distribution. The new pdf and cdf expressions are
used to derive the outage probability of 3-branch SC and the
moments of the 3-branch EGC output signal-to-noise ratio (SNR)
over arbitrarily correlated Rayleigh fading. New bounds for the
complementary cdf (ccdf) of the L-branch SC output SNR are also
derived. These long-standing diversity theory problems which have
resisted a solution can now be completely solved.

Keywords: Diversity, equal gain combining, Rayleigh fading,
selection combining.

I. INTRODUCTION

The Rayleigh distribution is frequently used to model the
received signal amplitudes in urban and suburban areas [1].
The L-dimensional joint pdf of a set of L correlated Rayleigh
signals is required for some performance analysis problems,
including determining the impact of correlation on diversity
systems and modelling fading processes. Schwartz, Bennett and
Stein claim that the joint pdf for more than two correlated
Rayleigh envelopes cannot be found [2]. Consequently, many
published papers dealing with SC and EGC over correlated
Rayleigh fading are limited to the dual-branch case [2]–[5].
However, since the envelopes of multiple correlated complex
Gaussian RVs are Rayleigh distributed, the underlying joint
complex Gaussian pdf can be converted to the polar form to
give the joint pdf of amplitudes and phases and, in princi-
ple, the phase terms can be integrated out to give the joint
amplitude pdf. Following this approach, Mallik [6] derives
the joint pdf of multi-variate Rayleigh distributions, which
requires L-dimensional integration. However, an infinite series
representation for the joint pdf is also required for computation.
Miller [7] derives an infinite series of product of modified
Bessel functions for the joint pdf of three correlated Rayleigh
RVs. While this holds for arbitrary correlation models, it is
intractable to derive infinite series representations of the joint

pdf for L > 3 using this approach. Most of the available
series representations therefore deal with restricted correlation
models. For example, Blumenson and Miller [8] have derived
the joint pdf for any L with a specific constraint that the inverse
covariance matrix Φ is tri-diagonal (i.e. its element φik = 0
if |i − k| > 1). The exponential correlation model gives rise
to this particular pattern. Using Blumenson and Miller’s results
[8], Karagiannidis et al. [9] derive a joint distribution that holds
only for exponentially correlated Nakagami-m fading channels.
Notice that since the joint pdf is the inverse Fourier transform
of its characteristic function (chf), the joint pdf of L correlated
Rayleigh RVs can also be derived directly from the available
joint chf [11], [12].

In this paper, we use Miller’s result [7] to derive the infinite
series representations for the joint pdf, cdf and moments of the
tri-variate Rayleigh distribution. For four correlated Rayleigh
RVs, we generalize Blumenson and Miller’s result [8] (which
is limited to tri-diagonal inverse covariance matrices) to the
case where the inverse covariance is five-diagonal (i.e. only
φ14 needs to be zero). Our tri-variate and quadri-variate cdf
series generalize Tan and Beaulieu’s series for the bivariate
Rayleigh cdf [13]. The new pdf and cdf expressions enable
the performance analysis of 3-branch and 4-branch diversity
systems over correlated Rayleigh fading channels. Here, we
derive the moments of the 3-branch EGC output SNR, the
outage probability of 3-branch SC and the new bounds for the
ccdf of the L-branch SC output SNR over arbitrary correlated
Rayleigh channels.

This paper is organized as follows. Section 2 derives infinite
series representations for the joint pdfs and cdfs of the tri-
variate and a certain quadri-variate Rayleigh distributions. Sec-
tion 3 presents several applications of the new results. Section
4 provides some numerical results and concludes this paper.

II. TRI-VARIATE AND QUADRI-VARIATE DISTRIBUTIONS

Infinite series representations for the joint pdf and the joint
cdf of the tri-variate Rayleigh distribution and a certain quadri-
variate Rayleigh distribution, which is more general than pre-
vious results [9], are next derived. The joint moments of the
tri-variate Rayleigh distribution are also derived.
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A. Pdf and Cdf of the Tri-Variate Rayleigh Distribution

Let g = {g1, g2, g3} be jointly complex Gaussian distributed
with zero means and positive definite covariance matrix Ψ
whose element is defined as ψik = E(gig∗k). We may write
gk in terms of polar coordinates as

gk = rk exp(jθk), k = 1, 2, 3, (1)

where j =
√−1 and rk = |gk| is the amplitude of gk. Thus,

r = {r1, r2, r3} is a set of Rayleigh RVs and θ = {θ1, θ2, θ3}
is a set of jointly distributed phases. The joint pdf fr,θ(r, θ) can
be readily related to the density fg(g) of g. Hence, the marginal
density fr(r) can be obtained by integrating out fr,θ(r, θ) over
θ. This approach yields [7]

fr(r) = 8 det(Φ)r1r2r3 exp[−(r21φ11 + r22φ22 + r23φ33)]

×
∞∑
m=0

εm(−1)m cos(mχ)Im(2r1r2|φ12|)

× Im(2r2r3|φ23|)Im(2r3r1|φ31|)

(2)

where χ = χ12 + χ23 + χ31, det(X) is the determinant of
matrix X, εm is the Neumann factor (ε0 = 1, εm = 2 for m =
1, 2, · · · ), Im(x) is the m-th order modified Bessel function of
the first kind, and Φ is the inverse covariance matrix of the
underlying complex Gaussian RVs g

Φ = Ψ−1 =


φ11 φ12 φ13

φ∗12 φ22 φ23

φ∗13 φ∗23 φ33


 (3)

where x∗ denotes the complex conjugate of x and φik =
|φik|ejχik is the (i, k)-th element of Φ. We use Ψ and Φ in
(3) to characterize the correlation among Rayleigh RVs.

Replacing the modified Bessel function by an infinite series
[14, Eq. (9.6.10)], we obtain an infinite series representation
for the joint pdf as

fr(r) = 8 det(Φ) exp[−(r21φ11 + r22φ22 + r23φ33)]

×
∞∑
m=0

εm(−1)m cos(mχ)
∞∑

i,k,l=0

|φ12|2i+m|φ23|2k+m
i!k!(i+m)!(k +m)!

× |φ31|2l+m
l!(l +m)!

r
2(i+l+m)+1
1 r

2(i+k+m)+1
2 r

2(k+l+m)+1
3 .

(4)

Integrating (4) and using the definition of the incomplete
gamma function γ(a, x) [14, Eq. (6.5.2)], we obtain the cor-
responding infinite series representation for the joint tri-variate
cdf as

Fr(λ) =
det(Φ)

φ11φ22φ33

∞∑
m=0

εm(−1)m cos(mχ)

×
∞∑

i,k,l=0

ν
i+m

2
12 ν

k+m
2

23 ν
l+m

2
31

γ(i+ l +m+ 1, λ2
1φ11)

i! (l +m)!

× γ(i+ k +m+ 1, λ2
2φ22)γ(k + l +m+ 1, λ2

3φ33)
k! l! (i+m)! (k +m)!

(5)

where λ = {λ1, λ2, λ3} and νik = |φik|2
φiiφkk

will be used
throughout this paper. The joint cdf (5) holds for any arbitrary
3 × 3 correlation matrix. Let us consider two commonly used
spatial correlation models.

1. Exponential Correlation Model
The exponential correlation model may be used to describe
the correlation among equally-spaced linear antenna arrays.
The normalized covariance matrix of this model is described
as ψik = ρ|i−k|, where 0 ≤ ρ < 1. It can be shown that
φ31 = φ13 = 0. Thus the joint cdf (5) can be simplified
considerably to

Fr(λ) =
1 − ρ2

1 + ρ2

∞∑
i,j=0

(
ρ2

1+ρ2

)i+j
(i!)2 (j!)2

γ

(
i+ 1,

λ2
1

1 − ρ2

)

× γ

(
i+ j + 1,

(1 + ρ2)λ2
2

1 − ρ2

)
γ

(
j + 1,

λ2
3

1 − ρ2

) (6)

which is equivalent to [9, Eq. (6)].
2. Constant Correlation Model

The constant correlation model is valid for a set of closely-
placed antennas. The normalized covariance matrix of this
model is ψik = ρ for i �= k and ψii = 1, where − 1

2 ≤ ρ < 1.
It can be shown that χ = χ12 + χ23 + χ31 = 3π. Thus, the
joint cdf (5) reduces to

Fr(λ) =
(1 − ρ)(1 + 2ρ)2

(1 + ρ)3

∞∑
m=0

εm

∞∑
i,k,l=0

(
ρ

1 + ρ

)β

×
γ
(
i+ l +m+ 1, (1+ρ)λ2

1
1+ρ−2ρ2

)
γ
(
i+ k +m+ 1, (1+ρ)λ2

2
1+ρ−2ρ2

)
i! k! l! (i+m)! (k +m)! (l +m)!

× γ

(
k + l +m+ 1,

(1 + ρ)λ2
3

1 + ρ− 2ρ2

)
(7)

where β = 2(i+ k + l) + 3m.
The convergence rate of the cdf series (5) depends on the

correlation matrix Ψ. Considering a worst-case situation, we
investigate the convergence property of the cdf series for the
constant correlation model. For simplicity, we let λ1 = λ2 =
λ3 = λ in (7). Table 1 lists the number of terms required in
each sum of (7) to achieve six significant figure accuracy for
different values of ρ and λ. The total number of terms required
is equal to M×I×K×L, where M , I , K, L denote the number
of terms required in the variables m, i, k and l, respectively.
We find that the cdf series (7) converges much faster as the
correlation ρ or λ decreases.

TABLE I

THE NUMBER OF TERMS NEEDED IN (7) TO ACHIEVE SIX SIGNIFICANT

FIGURE ACCURACY.

λ = 1 λ = 2
ρ = 0.2 M = 2, I = K = L = 3 M = I = K = L = 4
ρ = 0.5 M = 3, I = K = L = 4 M = 5, I = K = L = 7
ρ = 0.8 M = 5, I = K = L = 7 M = 12, I = K = L = 13
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B. Pdf and Cdf of the Quadri-Variate Rayleigh Distribution

Blumenson and Miller [8] derive the joint pdf and the
joint cdf for multi-variate Rayleigh distribution. However, their
expression is only valid for a distribution with a banded inverse
covariance matrix Φ in which φik = 0 for |i− k| > 1 (i.e. for
the matrix in (8), both φ13 and φ24 would be zero). For quadri-
variate Rayleigh distribution, we consider a more general case
in which the inverse covariance matrix is given by

Φ = Ψ−1 =



φ11 φ12 φ13 0
φ∗12 φ22 φ23 φ24

φ∗13 φ∗23 φ33 φ34

0 φ∗24 φ∗34 φ44


 (8)

where φik = |φik|ejχik is the (i, k)-th element of Φ. It can
be shown that the joint pdf of the quadri-variate Rayleigh
distributed RVs r = {r1, r2, r3, r4} with positive definite
covariance matrix Ψ and its inverse covariance matrix Φ
satisfying (8) is given by

fr(r) = 16 det(Φ)r1r2r3r4 exp[−h(r)]
∞∑
m=0

∞∑
n=−∞

(−1)m+n

× εm cosϑIm(2r1r2|φ12|)Im(2r1r3|φ13|) (9)

× In(2r2r4|φ24|)In(2r3r4|φ34|)Im+n(2r2r3|φ23|)
where h(r) = r21φ11+r22φ22+r23φ33+r24φ44 and ϑ = m(χ12+
χ23 +χ31)+n(χ23 +χ34 +χ42). We omitted detail derivations
here. To the best of our knowledge, (9) is a novel result which
allows evaluation of several 4-branch diversity systems over
correlated fading. Eq. (9) reduces to previous results for two
special cases. Notice that since the inverse covariance matrix of
the constant correlation model does not satisfies (8), the joint
pdf (9) is not valid for the constant correlation case.

Case 1: Independent fading
The covariance matrix Ψ for independent distribution is diag-
onal. Thus, the inverse covariance matrix Φ is also diagonal
where φik = 0 for i �= k and φii = 1/ψii, (i, k = 1, · · · , 4).
Therefore, our new expression (9) can be simplified to

fr(r) =
16r1r2r3r4
ψ11ψ2ψ33ψ44

e
−
(

r21
ψ11

+
r22
ψ22

+
r23
ψ33

+
r24
ψ44

)
. (10)

As expected, (10) is the product of four independent Rayleigh
pdfs [16, Eq. (2-1-128)].

Case 2: Exponentially correlated fading
The inverse covariance matrix of the exponential correlation
model is tri-diagonal [9]. Substituting φ24 = φ13 = 0 into (9),
we obtain the joint pdf for the exponentially correlated quadri-
variate Rayleigh distribution

fr(r) =
16r1r2r3r4
(1 − ρ2)3

exp
[
−
(
r21 + r24
1 − ρ2

+
(1 + ρ2)(r22 + r23)

1 − ρ2

)]

× I0

(
2r1r2ρ
1 − ρ2

)
I0

(
2r3r4ρ
1 − ρ2

)
I0

(
2r2r3ρ
1 − ρ2

)
(11)

where ρ = ψ12 = ψ23 is the correlation between two adjacent
elements. Eq. (11) is equivalent to the previous result [9, Eq.
(3)].

Expanding the Im(x) in series and integrating (9) yield an
infinite series for the joint cdf of this kind of quadri-variant
Rayleigh distribution

Fr(λ) =
det(Φ)∏4
i=1 φii

∞∑
m=0

∞∑
n=−∞

(−1)m+nεm cosϑ

×
∞∑

i,k,l,u=0

ν
i+m

2
12 ν

k+m
2

13 ν
l+

|n|
2

24 ν
u+

|n|
2

34

γ(i+m+ k + 1, λ2
1φ11)

i! k! (i+m)! (k +m)!

× γ(u+ |n| + l + 1, λ2
4φ44)

l!u! (u+ |n|)! (l + |n|)!
∞∑
v=0

ν
v+

|m+n|
2

23

v! (v + |m+n|
2 )!

(12)

× γ(i+ l + v + τ + 1, λ2
2φ22)γ(k + u+ v + τ + 1, λ2

3φ33)

where λ = {λ1, λ2, λ3, λ4} and τ = (|m+n|+ |n|+m)/2. We
observe that both (4) and (9) are series of the product of several
modified Bessel functions. For brevity, we only discuss the tri-
variate Rayleigh distribution and its applications in this paper.
Similar results can be obtained for the special quadri-variate
Rayleigh distribution.

C. Joint Moments

Moments can also be used to characterize the RVs. Using the
infinite series representation for the joint tri-variate pdf (4), we
derive the joint moments of r = {r1, r2, r3}. If α, β, θ > −2,

E(rα1 r
β
2 r
θ
3) =

det(Φ)

φ
1+α

2
11 φ

1+ β
2

22 φ
1+ θ

2
33

∞∑
m=0

εm(−1)m cos(mχ)

×
∞∑

i,k,l=0

ν
i+m

2
i ν

k+m
2

23 ν
l+m

2
31

Γ
(
i+ l +m+ α

2 + 1
)

i! (l +m)!

×
Γ
(
i+ k +m+ β

2 + 1
)

Γ
(
j + l +m+ θ

2 + 1
)

k! l! (i+m)! (k +m)!
(13)

where Γ(x) is the gamma function and E(x) denotes the
average of x.

III. APPLICATIONS

The new results developed in Section 2 enable the per-
formance analysis of several 3-branch and 4-branch diversity
systems over correlated Rayleigh fading channels. Due to
length limitation, we here present only three applications.

A. Moments of the 3-Branch EGC Output SNR

As an alternative to the conventional error-rate analysis, the
moments of a combiner output can be used as a performance
measure. However, a single moment such as average SNR
is not sufficiently informative and the higher order moments
can furnish additional information for system design [17]. For
example, the Chebyshev inequality yields Pr(|X − µ| > t) <
σ2
X/t

2 where E(X) = µ. Thus, if X is taken to be output of a
diversity combiner, the variability of the outputs is indicated by
the variance. The new expression (13) enables us to evaluate
the moments of the 3-branch EGC output SNR over Rayleigh
fading channels. The EGC output SNR can be written as
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γegc = (r1+r2+r3)
2Es

3N0
where Es is the energy of transmitted

signal, N0
2 is the power spectral density (PSD) of the additive

white Gaussian noise (AWGN) per dimension at each branch
and rk’s are the amplitudes of the received signals whose joint
pdf is given by (4). We assume that the noise components at
different branches are independent of the signal components
and uncorrelated with each other. The moments of output SNR
can be obtained as

E(γnegc) =
(
Es
3N0

)n
E[(r1 + r2 + r3)2n]

=
(

γ̄1

3ψ11

)n 2n∑
k1,k2,k3=0

k1+k2+k3=2n

(2n)! E(rk11 rk22 rk33 )
k1! k2! k3!

(14)

where E(rk11 rk22 rk33 ) can be computed using (13) and γ̄1 is the
average SNR at the first branch given by γ̄1 = Es

N0
E(r21) =

ψ11Es
N0

. The average output SNR can be simplified as

γ̄egc =
γ̄1

3ψ11

{
3∑
i=1

ψii +
2 det(Φ)
φ11φ22φ33

∞∑
m=0

εm(−1)m cos(mχ)

×
∞∑

i,k,l=0

ν
i+m

2
12 ν

k+m
2

23 ν
l+m

2
31

i! k! l! (i+m)! (k +m)! (l +m)!

[
(k + l +m)!√

φ11φ22

× Γ
(
i+ l +m+

3
2

)
Γ
(
i+ k +m+

3
2

)
+

(i+ k +m)!√
φ11φ33

× Γ
(
i+ l +m+

3
2

)
Γ
(
k + l +m+

3
2

)
+

(i+ l +m)!√
φ22φ33

×Γ
(
i+ k +m+

3
2

)
Γ
(
k + l +m+

3
2

)]}
. (15)

This new result allows the average output SNR to be computed
for any correlation pattern among the three receiving antennas.

B. Outage Probability of 3-Branch SC

Outage probability is a standard performance measure of
diversity systems. It is defined as the probability that the output
instantaneous SNR γ falls below a certain given threshold
γth. Here, we use the joint cdf (5) of the tri-variate Rayleigh
distribution to evaluate the outage probability of 3-branch SC
over correlated fading channels.

Let γk and γ̄k denote the instantaneous and average SNR
at the k-th branch (k = 1, 2, 3). In SC, the branch with
the largest instantaneous SNR is selected as the output, i.e.,
γsc = max(γ1, γ2, γ3). Using the relationship γk = γ̄k

E(r2k)
r2k =

γ̄k
ψkk

r2k, where rk’s are the branch amplitudes whose joint cdf
is given by (5), we may obtain the outage probability as

Pout = Pr(0 ≤ γsc ≤ γth)

=Fr

(√
γthψ11

γ̄1
,

√
γthψ22

γ̄2
,

√
γthψ33

γ̄3

)
(16)

where Fr(λ1, λ2, λ3) is given by (5). Note that the covariance
matrix Ψ specifies the correlation (fading correlation) between
two complex Gaussian samples. The relationship between the
envelope correlation (i.e. the correlation between the two

Rayleigh samples) and the fading correlation can be found [18,
Eq. (1.5-26)]. Thus, the outage can be evaluated in terms of
envelope correlation and average branch SNRs.

C. Bounds for the Output Ccdf of L-Branch SC

Performance of L-branch SC is completely known for in-
dependent fading branches. If, however, branch signals are
allowed to be correlated (which is a much realistic assumption),
known theoretical results are few and far between. In [10]
and [11], the performance of L-branch SC over correlated
Rayleigh fading channel is analyzed. However, their results are
fairly complicated for large L(> 3). From a both practical and
theoretical standpoint, performance bounds for the L-branch SC
output γsc = max(γ1, γ2, · · · , γL), where γu’s (u = 1, . . . , L)
are correlated branch SNRs, are therefore desirable. We thus use
(4) to derive new bounds for the ccdf of the L-branch SC output
SNR over arbitrarily correlated Rayleigh fading channels.

Since the SC output SNR γsc is the maximum value of all
the branch SNRs, when at least one branch SNR exceeds x, so
does the SC output, i.e., Pr(γsc > x) = Pr

(⋃L
u=1Au

)
, where

Au denotes the event that the u-th branch SNR exceeds x, i.e.,
Au = {γu > x}. Using the Bonferroni inequalities [19], we
can derive the bounds for the output ccdf of L-branch SC as

S1 − S2 ≤ Pr(γsc > x) ≤ S1 − S2 + S3 (17)

where

S1 =
L∑
u=1

Pr(Au) =
L∑
u=1

Pr(γu > x) (18)

S2 =
L∑

u,v=1
u<v

Pr(Au ∩Av) =
L∑

u,v=1
u<v

Pr(γu > x, γv > x) (19)

can be readily evaluated using [2, Eqs. (10-4-8, A-7-1)]. Using
(4), we can readily evaluate S3, which is given by

S3 =
L∑

u,v,w=1
u<v<w

Pr(Au ∩Av ∩Aw) (20)

where

Pr(Au ∩Av ∩Aw) = Pr(γu > x, γv > x, γw > x)

=
det(Φ)

φuuφvvφww

∞∑
m=0

εm(−1)m cosm(χuv + χvw + χwu)

×
∞∑

i,k,l=0

ν
i+m

2
uv ν

k+m
2

vw ν
l+m

2
wu

Γ
(
i+ j +m+ 1, xφuuψuuγ̄u

)
i! (l +m)!

(21)

×
Γ
(
i+ k +m+ 1, xφvvψvvγ̄v

)
Γ
(
k + l +m+ 1, xφwwψwwγ̄w

)
k! l! (i+m)! (k +m)!

where Γ(a, x) is the complementary incomplete gamma func-
tion defined as [14, Eq. (6.5.3)].

Globecom 2004 3371 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 22, 2009 at 16:10 from IEEE Xplore.  Restrictions apply. 



IV. NUMERICAL RESULTS AND CONCLUSION

For brevity, few numerical results are provided here. Con-
sider an antenna array with the normalized covariance matrix

Ψ =




1.0000 0.2920 0.2998 0.1121
0.2920 0.6602 0.2031 0.1585
0.2998 0.2031 0.7625 0.1888
0.1121 0.1585 0.1888 0.6431


 . (22)

The inverse covariance matrix Φ satisfies (8). Thus, using (12),
we may evaluate the outage probability of such 4-branch SC
as is shown in Fig. 1. Our numerical results agree with the
simulation results.
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Fig. 1. Outage probability Pout of 4-branch SC versus the normalized average
SNR of the first branch γ̄1/γth over correlated Rayleigh fading channel.

Fig. 2 shows the effect of fading correlation ρ on the nor-
malized average output SNR γ̂egc = γegc/γ̄ of 3-branch EGC
in equally correlated Rayleigh fading channels. As ρ increases,
the average output SNR also increases. This contradicts the
conventional wisdom as the performance is expected to degrade
with the increasing correlation. However, the EGC performance
depends not only on the first moment of the output but also on
the higher moments. In fact, all the moments appear to increase
with correlation. This suggests that the average output SNR by
itself is not a comprehensive metric for the EGC performance.
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Fig. 2. The average output SNR of 3-branch EGC normalized by the first
branch SNR.

In conclusion, we have derived infinite series representations
for the joint pdf and the joint cdf of the tri-variate Rayleigh
distribution, which can accommodate any arbitrary 3 × 3
correlation matrix. We have also derived the joint pdf and
the joint cdf of a certain quadri-variate Rayleigh distribution
and this appears to be the most general result available for the
quadri-variate case, other than using a 4-dimensional integral
[6]. These representations pave the way for solving certain
long-standing diversity problems. For example, the performance
of 3-branch and 4-branch SC, EGC and GSC over correlated
Rayleigh fading can now be evaluated analytically.
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