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Abstract— We consider the joint estimation of channel impulse
response (CIR) and frequency offset (FO) for a multiple-input
multiple-output (MIMO) frequency selective fading channel. We
average the joint likelihood function of the CIR and the FO
over the distribution of CIR and maximize the resulting marginal
likelihood function to estimate the FO. We also derive the design
criteria for training sequence (TS) which will maximize the
performance of our proposed estimator. Simulation results show
that the optimal TS can improve the performance of the joint
ML estimator.

I. INTRODUCTION

To cater for the increased demand for wireless high-speed
data transmission, the MIMO paradigm has been embraced
by both the academic and industrial research community,
which uses multiple antennas at both the transmitter and
receiver. It has been proven effective in combating fading
and enhancing data rates [1]. However, MIMO systems suffer
from two problems: (1) The performance is highly sensitive
to FO; (2) channel estimation becomes more complicated as
the number of antennas increases. Thus FO correction and
channel estimation (CE) are crucial to MIMO systems.

Many existing CE methods use Pilot-Symbol-Assisted
Modulation (PSAM), in which known pilot symbols are
embedded in each frame to aid CE and/or FO estimation.
Although the selection of pilot symbols or TSs is very
important to the accuracy of the estimator in PSAM systems,
only few studies address this issue. Tellambura et.al. [2] give
the optimal sequences design for channel estimation. Morelli
and Mengali [3] consider TS design for FO estimation. The
optimal TS design for joint channel and FO estimation has
been proposed in [4] using a Cramér-Rao Bound (CRB)
approach.

In this paper, for a MIMO frequency selective channel, we
derive an ML FO estimator using a Baysian approach [5].
We average the joint likelihood function over the channel
statistics and get the marginal likelihood for the FO. A ML
channel estimator is also derived. We analyze the performance
of the proposed joint FO and channel estimator and derive the
mean square error (MSE) of the estimated system parameters.

Design criteria for optimal sequences which will minimize the
MSE are derived. The CRB [6] for the estimation of FO is
also derived. Simulation results show that the optimal TS can
reduce the MSE of both the channel and FO estimation.

The rest of the paper is organized as follows. Section II
briefly reviews the basic MIMO system model. Section III
introduces the joint ML FO and channel estimation. The
analysis of the ML estimator and TS design criteria are derived
in Section IV. Computer simulation results are given in Section
V and final conclusions are made in Section VI.

Notation: Boldface letters will be used for matrices and
column vectors; (·)H will denote Hermitian (conjugate trans-
pose); IN denotes the N ×N identity matrix; diag{x} stands
for the diagonal matrix with the column vector x on its
diagonal. tr(A) =

∑N
i=1 aii is the trace of matrix A.  =√−1.

II. SYSTEM MODEL

The baseband MIMO system considered in this paper has
Nt transmit antennas and Nr receive antennas. Each channel
is frequency selective but the CIR and FO remain constant
for a data frame with K data symbols. N pilot symbols
are inserted in the front of each data frame. The transmit
symbols are at(k) ∈ Q where finite alphabet Q is a linear
modulation such as PSK or QAM. We assume the frequency
offsets between different transmit-receive antenna pairs are
the same, and denoted by ∆fq. The case of different FO’s
will be considered in the full journal version of this paper.
The received signal samples at receive antenna q, sampled at
symbol rate fs = 1/Ts, can be expressed by

rq(k) =
Nt∑
t=1

L−1∑
l=0

at(k − l)ej2πvqkht,q(l) + w(k) (1)

where k = 0, 1, . . . , N − 1, q = 1, 2, . . . , Nr, vq = ∆fqTs is
the normalized FO; ht,q(l) is the response of the equivalent
channel, baseband pulse shape and the matched filter; w(n)
is a zero mean Gaussian additive noise with variance σ2

n.
In each data frame, a preamble of TS is inserted to estimate

the channel and FO. The TS is sent every K symbols.
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The estimates are used to demodulate the remaining data
symbols in the frame. We assume N +L−1 training symbols
at(n),−L + 1 ≤ n ≤ N − 1 are transmitted at each transmit
antenna. We assume that at(−L + j) = at(N − L + j)
for 1 ≤ j ≤ L − 1. Dropping the first L − 1 samples
(precursors), we define the received vector at q receive antenna
rq = [rq(0), rq(1), · · · , rq(N −1)]T that corresponding to the
TS and ht,q = [ht,q(0), ht,q(1), · · · , ht,q(L − 1)] the channel
vector between the t-th transmit antenna and the q-th receive
antenna, which are i.i.d. Gaussian random variables with zero
mean and variance σ2

t,q. Eq. (1) can be written in compact
matrix form as

rq = Γ(vq)
Nt∑
t=1

Atht,q + wq (2)

where At is a N × L circulant matrix with entries

[At]i,j = at(i − j), 0 ≤ i ≤ N − 1, 0 ≤ j ≤ L − 1 (3)

and Γ(vq) is a diagonal matrix

Γ(vq) = diag
{

1, e2πvq , e4πvq , · · · , e2π(N−1)vq

}
(4)

vq is the FO for the q receive antenna. The matrix form of
(2) becomes

rq = Γ(vq)Ahq + wq (5)

where A = [A1,A2, · · · ,ANt
] and hq =

[h1,q
T ,h2,q

T , · · · ,hNt,q
T ]T .

III. FREQUENCY OFFSET AND CHANNEL ESTIMATION FOR

MIMO SYSTEM

The received symbol vector rq is Gaussian with mean Dqhq

and covariance matrix σ2
nIN . The likelihood function for the

unknown parameters hq and vq is given by

Λ(rq|hq, vq) = exp
{
− 1

2σ2
n

‖rq − Γ(vq)Ahq‖2

}
. (6)

A. Frequency offset estimation

We use the ML approach to estimate the FO. The authors in
[3] develop a method based on ML. They first fix v and find
the h(v) to maximize the likelihood function. They next fix
h and find v(h) to maximize the likelihood function. Finally,
they substitute the h(v) to v(h) and get the optimal v. Here
we take a different approach to this problem.

Since channel response can be modelled as complex Gaus-
sian process, we can compute the average of Λ(rq|hq, vq) with
respect to hq, which gives the marginal likelihood of vq. It
removes the likelihood function’s dependence on h. In this
way, we can get the FO estimator independent of CIR. The
marginal likelihood function is given by

Λ(rq|vq) =
∫

Λ(rq|hq, vq)f(hq)dhq

= c exp
{

1
2σ2

n

[
rq

HΓ(vq)GΓH(vq)rq

]} (7)

where G is

G = A(AHA + 2σ2
nR−1

hq
)−1AH . (8)

c is a constant, Rhq
= E{hqhH

q } is the autocorrelation matrix
of hq. Maximizing (7) is equivalent to maximizing

g(vq) = rq
HΓ(vq)GΓH(vq)rq (9)

(9) can be further reduced to

g(vq) =γT (vq)Rq
HGRqγ

∗(vq)

=γT (vq)Bγ∗(vq)
(10)

where B = RH
q GRq is Hermitian. In high SNR region, G ≈

A(AHA)−1AH and

v̂q = arg max
vq

rq
HΓ(vq)A(AHA)−1AHΓH(vq)rq (11)

which is the MLE#1 in [3]. This shows that our proposed
estimator has the same asymptotical property as MLE#1 in
[3].

When the FO is constant and and the pilot symbols are
the same during J data frames, the J received signals can be
combined for FO estimation. Let rq(k) denote the received
signal in the k-th frame. Since rq(k) for k = 1, 2, . . . , J are
independent, the optimal FO estimator can be readily obtained
as

v̂q = arg max
vq

J∑
k=1

rH
q (k)Γ(vq)GΓH(vq)rq(k) (12)

Remarks:

• From (9), the estimation of vq and h is decoupled, which
means that vq can be calculated and subsequently used
for estimating h. The v̂q given by this estimator is used as
the initial estimation in the channel estimator in Section
III. B.

• In the high SNR region, (9) reduces to

v̂q =arg max
vq

g(vq)

= arg max
vq

‖ΠAΓH(vq)rq‖2
(13)

where ΠA = A(AHA)−1AH is the orthogonal pro-
jection matrix on the subspace of A. Hence (13) can be
interpreted as choosing vq that can make rq orthogonal to
ΠA or equivalently parallel to the orthogonal projection
matrix on the zero space of A, Π⊥

A = I−ΠA. Therefore,
the rank of the zero space N − LNt determines the
accuracy of the estimate.

• The matrix G in (9) can be precomputed. The main
computational cost is to find v in (9). Eq. (10) can be
written as

g(vq) =
N−1∑
i=0

N−1∑
k=0

bi,ke2π(i−k)vq (14)
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which can viewed as a polynomial, where bi,k is the
(i, k)-th entry of B. As discussed in [7], the minima
of the cost function can be performed in a two-step
procedure: coarse search and fine search. Fast algorithm
can applied to find the minimum of (14) using FFT and
parabolic interpolation.

• Eq. (9) reveals that g(vq) is periodic. If vq out of the
interval −0.5 < vq ≤ 0.5, the proposed FO estimator will
give ambiguous estimates. Therefore −0.5 < vq ≤ 0.5
is the estimation range of the ML estimator.

B. Channel estimation

In this subsection, an ML channel estimator based on the
likelihood function and the above estimated FO v̂q is derived.
We assume that the FO estimate is perfect, v̂q = vq.

If FO vq is known, the least squares (LS) estimate of hq is
given by

ĥq =(AHA)−1AHΓH(vq)rq. (15)

Note that AHA and AHA are assumed to be invertible. The
LS estimate relates to the true CIR by

ĥq =hq + (AHA)−1AHΓH(vq)wq. (16)

That is, the LS estimate is equal to the true CIR perturbed by
additive noise. The variance of the noise is determined by the
TS and FO.

IV. PERFORMANCE ANALYSIS AND OPTIMAL TRAINING

SEQUENCE DESIGN

We now derive the MSEs of the FO estimation and LS
channel estimation. Optimal TS design criteria based on these
MSEs are also derived. The optimal TS design has been
considered in [4] using the CRB. The TS is designed by
minimizing the trace of the CRB matrix which is equivalent
to minimizing the weighted sum of FO CRB and CE CRB.
However, it is impossible to minimize the CRB’s for FO and
CE individually. Instead of CRB, we use the MSE criterion
to design TS.

A. Training sequence for channel estimation

From (16), the MSE of the LS channel estimator can be
readily obtained as

MSE(ĥq) =
σ2

n

LNt
tr{(AHA)−1}. (17)

Note that the MSE in (17) is independent of FO vq. Hence,
the optimal TS design is decoupled. Our goal is to design
optimal TS to minimize the MSE of ĥq. Following the same
deduction as in [8], the MSE of the ML channel estimator is
minimized if matrix A satisfies AHA = PILNt

, where P is
the power dedicated for training. The minimum MSE is given
by

MSE(ĥq) =
σ2

n

P . (18)

Therefore we have the following design criterion:
Criterion 1. The optimal training sequences for channel
estimation must satisfy AHA = PILNt

.
Remarks

• Criterion 1 implies that the TS’s of different transmitted
antennas must be orthogonal to each other regardless of
the FO. Furthermore, each TS should be orthogonal to
its circular shifted sequence, (i.e. ideal autocorrelation).
If zero signal is allowed in the MIMO system, A can be
chosen that in each column only one entry is non-zero
and the zero position is different in different columns.
Hence, at any time, only one transmit antenna is active.

• In practice, if zero signal is not allowed, TS must satisfy
AHA = PILNt

, which is very difficult to find with long
length. Note that similar condition arises in the selection
of spreading sequence for CDMA systems. The theory of
spreading code design can be applied here. This suggests
the use of m-sequences and gold sequences.

B. Training sequence for frequency offset estimation

The performance analysis of the ML FO estimator is hard.
However, using [3], we can find the expectation and variance
of the ML estimator (9) in the high SNR region as

E[v̂q] ≈ vq − E[ġ(vq)]
E[g̈(vq)]

, var[v̂q] ≈ E{[ġ(vq)]2}
E2[g̈(vq)]

(19)

where ġ(vq) and g̈(vq) denote the first and second derivatives
of g(v̂q) at v̂q = vq. The estimate is asymptotically unbiased
or E[v̂q] = vq and

var[v̂q] =
σ2

n

8π2tr
{
AHMH (IN − A(AHA)−1AH)MARhq

}
(20)

where M is a diagonal matrix given by

M = diag{0, 1, 2, · · · , N − 1}. (21)

Furthermore, the Cramér-Rao Bound (CRB) [6] for the esti-
mation of vq is

CRB = − σ2
n

4π2tr
(
AHD(2)ARhq

) (22)

where
D(2) = 2MGM − GM2 − M2G. (23)

Eqs. (20) and (22) show that the variance and the CRB are
equal, which suggests that our proposed FO estimator satisfies
the asymptotic efficiency property of the ML estimator. From
(20) the MSE depends only on the TS and Rhq

, which
suggests a second design criterion. In a MIMO system, the
optimal TSs must be designed by minimizing the average
var[v̂q] over all the receive antennas, which means the optimal
TS must achieve the minimum average MSE. This leads to
the following design criterion
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Criterion 2. The optimal training sequences for frequency
offset estimation must satisfy

A =arg max
A

1
Nr

Nr∑
q=1

tr

{
AHMH

(
IN − 1

N
AAH

)
MARhq

}

(24)

Remarks

• Since it is impossible to maximizing the MSEs of FO
estimation and CE at the same time, the optimal TS’s for
joint FO and CIR estimation can be found by searching
the TS’s that meet Criterion 1 first, and then choosing
the TS’s that meet (24).

• For SISO systems with one transmit and one receive
antenna and frequency selective fading channels, the
second design criterion becomes

A = arg max
A

tr

{
AHMH

(
IN − 1

N
AAH

)
MARhq

}

(25)

C. Training sequence length design

The length of the TS is a critical parameter. The TS needs
to be long enough for the channel to be identified. Eq. (16)
is valid if and only if AHA is invertible. The TS matrix A
must have full column rank. Therefore we have
Identifiability: The necessary condition for A to have full
column rank and (16) to be identifiable is N ≥ LNt.

In practical systems, the transmit power within each data
frame is fixed. We assume fixed transmit energy E in each
frame. The energy allocated to information data becomes
E − P . An increase in P increase the channel estimation
accuracy and, thus, decrease the output error probability. On
the other hand, an increase of the pilot energy will decrease
the effective data SNR and thus, the output error probability
will increase. Therefore, an optimal P exists given a fixed
SNR and channel length L. The analysis of the impact of
CIR and FO estimation error on performance is beyond the
scope of this paper. Assuming all the pilots have equal power,
the optimal N can be found via simulation.

V. SIMULATION

In our simulations, we assume that the channel between
each transmit and receive antenna has the same power delay
profile and i.i.d. Gaussian. A 3-ray (L=3), exponential power
delay profile (EPDP) channel model is used, which can be
expressed as

E
[|ht,q(l)|2

]
=

1 − exp
(− 1

5

)
1 − exp

(−L
5

) exp
(
− l

5

)
(26)

where l = 0, 1, . . . , L − 1, t = 1, 2, . . . , Nt, q = 1, 2, . . . , Nr.
The TS and data symbols are both modulated by quadrature
phase-shift keying (QPSK). The performance of FO estimator
(9), denoted by MLE, is compared with the FO estimator
MLE#1 in [3], dentoed by MME. The optimal data detection

for the frequency selective SISO channel is accomplished via
the sphere decoding (SD) algorithm of [9].
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Fig. 1. The MSE of FO versus SNR with different J in a SISO channel

A. SISO Test

We test the performance of our derived sequences in SISO
system (Nt = Nr = 1). We select N = 8. By using the two
design criteria, we find there are 7 optimal TSs. We select
[1 + j,−1 − j, 1 + j, 1 + j,−1 − j, 1 + j, 1 + j, 1 + j]. We
compare the performance of optimal TS with that of randomly
selected TS. Figs. 1 and 2 show the average MSE of CIR
and FO, respectively. We find the optimal TS can have 2dB
gain over random TS at MSE=10−6 for FO estimation (Fig.
1) and 2.5dB gain at MSE=10−3 for CIR estimation (Fig.
2) with J = 2. Increasing the number of frames used for
estimation, all the estimators perform better and the thresholds
of MME [3] and MLE can be reduced. The proposed MLE
can asymptotically achieve the FO CRB. In low SNR region,
our proposed MLE is slightly better than the MME. They have
the same performance in high SNR region. From Fig. 1 we
also find the random TS has better performance than that of
optimal TS. This is because we optimize the TS by using the
asymptotical variance.

Fig. 3 compares the BER of different estimators. The
system with perfect CIR and FO is used as a benchmark.
Since the optimal TS is designed for the high SNR region, the
performance of random TS is better than that of optimal TS in
the low SNR region. The optimal TS has 0.5dB gain over the
random TS at BER=10−2 while it has 1.5dB loss compared
with the benchmark. This paper designs TS by minimizing
MSE of estimator. Such 1.5dB loss suggests optimal TS
design for the BER performance.

B. MIMO test

We select Nt = Nr = 2, L = 2 and N = 12. Similarly,
the optimal TS performs better than random TS in high SNR
region. MLE and MME have almost the same performance
in all SNR. The gap between optimal TS and random TS is
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Fig. 2. The MSE of CIR versus SNR with different J in a SISO channel
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Fig. 3. BER versus SNR with randomly selected TS and optimal TS in a
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0.3dB at MSE=10−7 for FO estimation (Fig. 4) and 0.8dB
at MSE=10−3 for CIR estimation (Fig. 5). The estimator’s
accuracy is improved in a MIMO system compared with a
SISO system.

VI. CONCLUSION

In this paper, we have addressed the FO and CIR estimation
for a MIMO frequency selective fading channel. We propose
a novel FO estimator independent of the channel response and
analyze the performance of our ML estimator. Moveover, two
design criteria are derived for TS which will minimize the
MSE of the estimated parameters. Performance results show
that the proposed TSs perform better than randomly selected
TSs in MIMO system.
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