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Abstract— For optimizing pilot sequences for general wide-
band direct-sequence (DS) code division multiple access (CDMA)
systems in a slow fading Rayleigh channel, we derive a design
criterion by minimizing the mean square error (MSE) of the
channel estimate. We analyze the effects of imperfect channel
estimation (CE) on CDMA system based on maximal ratio
combining (MRC) RAKE receiver in both Uniform Power Delay
Profile (UPDP) and Non-uniform Power Delay Profile (NPDP)
channels. Published results on the effect of CE errors hold only
for UPDP channels. We therefore use a characteristic function
method to derive new closed-form expressions for the BER of
RAKE receivers in NPDP channels. Constraining the energy per
data frame to be constant, we optimize the length of the pilot
symbols by minimizing the bit error rate (BER) of the MRC
receiver. We show an elegant result that the optimal number of
pilot symbols is equal to the square root of the frame length for
UPDP channels and for NPDP in high SNR region.

I. INTRODUCTION

Wideband direct-sequence (DS) code division multiple ac-
cess (CDMA) with pilot-assisted coherent detection has been
proposed for next generation cellular systems [1]. A coherent
system requires channel estimation that can track time-varying
mobile radio channels. For this purpose, pilot symbols are
transmitted along with data symbols. If the frame energy
is constant, power allocation to pilot symbols reduces the
power available for data symbols, which may increase the
BER. However, increased pilot symbol energy improves the
accuracy of the channel estimates and thereby improves the
BER. These two counteracting tendencies ensure that there is
an optimal allocation of energy for the pilot symbols.

Many proposed RAKE receivers in the literature employ
coherent detection with MRC, or differential detection with
equal gain combining. It is well known that coherent detection
of binary phase-shift keying (BPSK) provides a 3dB gain over
differential detection in flat fading channels. Hence, coherent
detection with maximal ratio combing is preferable if accurate
CE is possible. However, the CE accuracy is limited by
the pilot symbols to the noise power ratio. The effects of
CE errors on the performance of MRC systems have only
been analyzed in UPDP channels. In [2], [3], the effect of
Gaussian estimation errors on MRC, which are independent
of the additive channel noise, is investigated. Proakis [4,
p.954] derives the BER of M-ary phase-shift keying (MPSK).
Singh et al. [5] analyze a Rake case in which CE errors are

not independent of the additive noise. To the best of our
knowledge, the effects of CE errors on the performance of
MRC systems in NPDP channels have not been studied. Thus
the BER in NPDP channels is of great practical and theoretical
importance.

We analyze the RAKE receiver with MRC and imperfect
channel estimation in NPDP channels. The well-known results
on the impact of CE errors on the BER due to Proakis [4,
p.949] hold only for UPDP channels. We derive a novel
closed-form expression for the BER with a different approach
from [4]. Finally, by assuming the energy is constant within
each data block, we optimize the pilot symbols’ length by
minimizing the BER in both the UPDP and NPDP channels.

The rest of the paper is organized as follows. In Section
II, we briefly overview the basic system model. The analysis
of the NPDP channel is derived in Section III. We optimize
the pilot symbols length in section IV. Computer simulation
results are given in Section V and final conclusions are made
in Section VI.

Notation: If x and y are Gaussian random variables (RV)
with mean µx, µy and variance σ2/2, the z = x + jy has
a Complex Gaussian distribution. We write z ∼ CN (µx +
jµy, σ

2) (where j =
√−1) in this case.

II. SYSTEM MODEL

A. Transmitter

The transmitter performs spreading and chip pulse shaping.
Each data bit is chosen from the alphabet {0,1}. Each data
bit is mapped to -1 or +1 (BPSK). In this paper, we consider
serial multiplexing of pilot symbols with the data. A frame
consists of P BPSK pilot symbols followed by N BPSK
data symbols. The pilot symbols are reserved for channel
estimation and are not spread via a spreading sequence. Only
data symbols are spread by spreading sequence cn, which has
ideal autocorrelation properties. The resulting frame passes
though a pulse shaping filter p(t), modulates a RF frequency
f0 and is transmitted through the channel (Fig. 1). The
transmitted signal is denoted by x(n). We assume all data
symbols have the same energy Eb and all the pilot symbols
have the same energy Ep.

Globecom 2004 1056 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 22, 2009 at 16:10 from IEEE Xplore.  Restrictions apply. 

ctlabadmin
2004



Transmit
Filter

Receive
Filter

Slow fading
channel

RAKE
receiver

Channel

Estimator

Spread
with  cn

xn

Information

bits d n

Pilot
symbols

rn

d
n

hn

^

^

Fig. 1. Block diagram of the pilot symbol assisted communication system

B. Channel Model

The mobile radio channel is modelled as a frequency
selective Rayleigh-fading channel [4]. For convenience, it is
assumed that L resolvable propagation paths exist. The low-
pass impulse response for a time-invariant frequency selective
channel is given by [4, p.841]

h(τ ; t) =
∞∑

k=−∞
hk(t)δ(τ − k/W ). (1)

For a total multipath spread of Tm and bandwidth W , this
tapped delay line model can be truncated at L = �TmW �+1.
At the receiver input, white Gaussian noise w(n) with variance
σ2

n = N0/2 is added, which may model both thermal noise
and interference from other users. The channel output is given
by

r(n) =
L−1∑
k=0

x(n− k)hk + w(n) (2)

where the L channel taps hk = hk(t), k = 0, 1, · · · , L−1 are
hk ∼ CN (0, σ2

k). For brevity, we consider two power delay
profiles: the uniform power delay profile (UPDP) and expo-
nential power delay profile (EPDP). They can be expressed
as

σ2
k = E

[|hk|2
]

=

{
C UPDP

Ce
− τ0
τrms

k
EPDP

(3)

where τ0 is the time duration between two consecutive discrete
taps, τrms is the rms delay spread value and C is a constant
term that normalizes the power. However, our analytical
results developed in Section IV can handle arbitrary NPDP
channels.

C. Receiver

The receiver (Fig. 1) comprises a coherent channel esti-
mator and a RAKE demodulator. The receiver is assumed
to have perfect frequency synchronization. The channel re-
sponses including delay estimation are estimated by the
channel estimator via the pilot symbols. We assume that the
spreading sequences have ideal correlation properties so that
the interference from other users can be ignored and the
multipath signals are resolvable.

The decision variables for coherent detection of the binary
signals in RAKE receiver can be expressed as [4, p.843]

Um = Re

[
L−1∑
k=0

ĥ∗k

∫ T

0

r(t)cn(t− k/W )dt

]
, m = 1, 2

(4)

where cn(t) = (2cn−1)g(t−n/W ) is the signature waveform
of the nth user. g(t) represents a pulse of duration 1/W and
arbitrary shape.

III. RAKE RECEIVER BER FOR CDMA WITH IMPERFECT

CHANNEL ESTIMATION

The pilot-aided channel estimate ĥ differs from the true
channel by a complex Gaussian error. Therefore ĥl can also
be modelled as complex Gaussian with variance σ2

l + ησ2
n,

where η is the scaling factor determined by pilot symbols. In
this section, we derive the BER in both UPDP channels and
NPDP channels.

A. UPDP channels

The BER of the output SNR, γ, of a MRC with Gaussian
distributed weighting errors for BPSK in UPDP has been
derived by Proakis [4, p.955] and given by

P (µ) =
1
2

[
1 − µ

L−1∑
k=0

(
2k
k

) (
1 − µ2

4

)k
]

(5)

where L is the length of mobile channel, and µ is the cross-
correlation coefficient of the receiver correlator output samples
and the channel estimates derived from the pilot symbols.

We denote Yk as ĥk and Xk as

Xk = 2εhksn +Nk, n = 1, 2 (6)

where sn = exp[jπ(n− 1)].
The output of the RAKE receiver can be expressed as

z =
L−1∑
k=0

Xkĥ
∗
k =

L−1∑
k=0

XkY
∗
k (7)

Then µ is given by [4, p.952]

mxx = E(|Xk|2),myy =E(|Yk|2),mxy = E(XkY
∗
k )

µ =
mxy

mxxmyy

(8)

Eq. (5) is derived assuming all pairs (Xk, Yk) are in-
dependent and identically distributed. The method was due
to Proakis [4, p.952]. He derives the joint characteristic
function (chf) of the real and imagine parts of XkY

∗
k and

raises the chf to power L, Fourier transforms the results,
converts rectangular to polar form and finally integrates over
the amplitude variable. The result is the pdf of the decision
phase variable. However, this approach does not work when
(Xk, Yk) are distributed non-identically.

B. NPDP channels

In this subsection, we derive the BER of RAKE receiver
in NPDP channels with a different approach from the UPDP
case given by Proakis. We still use the above defined symbols.
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Assuming s1 is transmitted, the error probability of BPSK
RAKE receiver is the probability that P (D < 0), where

D =Re

{
L−1∑
k=0

XkY
∗
k

}

=
L−1∑
k=0

XkY
∗
k +X∗

kYk.

(9)

This is a special case of the general quadratic form

D =
L−1∑
k=0

(A|Xk|2 +B|Xk|2 + CXkY
∗
k + C∗X∗

kYk) (10)

when A = 0, B = 0 and C = 1, Xk and Yk are a pair of
correlated complex Gaussian random variables. The L pairs
{Xk, Yk} are mutually statistically independent.

From [4, p.943], the probability of error is given by

Pb = P (D < 0) =
∫ 0

−∞
p(D)dD

= − 1
2πj

∫ +∞+jε

−∞+jε

ψD(jv)
v

dv

(11)

where ψD(jv) is the characteristic function of D; ε is a
small number to move the path of integration away from the
singularity at v = 0.

Since D is the sum of L non-identically distributed in-
dependent variables, the characteristic function of D can be
factored into the product of L characteristic functions. Define
random variable dk as

dk = XkY
∗
k +X∗

kYk, k = 0, 1, · · · , L− 1 (12)

Since the means of Xk and Yk are equal to zero, the
characteristic function of dk is given by [4, p.944]

ψdk
(jv) =

vk1vk2

(v + jvk1)(v − jvk2)
(13)

where the parameters vk1 and vk2 depend on mxkxk
, mykyk

and mxkyk
similar to (8), which are not identical for different

k, and we get

vk1 =

√
w2

k +
1

4(mxkxk
mykyk

−m2
xkyk

)
− wk > 0

vk2 =

√
w2

k +
1

4(mxkxk
mykyk

−m2
xkyk

)
+ wk > 0

wk =
mxy

2(mxkxk
mykyk

−m2
xkyk

)

(14)

The characteristic function of D is therefore

ψD(jv) =
L−1∏
k=0

ψdk
(jv). (15)

To evaluate the error probability in (11), we derived a partial
fraction expansion of ψD(jv)/v as

ψD(jv)
v

=
L−1∏
k=0

ψdk
(jv)

=
1
v

+ (−1)L
L−1∑
k=0

vk2

vk1 + vk2

×
L−1∏

l=0,l �=k

vl1vl2

(vk1 − vl1)(vk1 + vl2)
1

v + jvk1

+ (−1)L
L−1∑
k=0

vk1

vk1 + vk2

×
L−1∏

l=0,l �=k

vl1vl2

(vk2 + vl1)(vk2 − vl2)
1

v − jvk2

(16)

From complex variable theory [6], it follows that∫ +∞+jε

−∞+jε

1
v
dv = 0,

∫ +∞+jε

−∞+jε

1
v + jvk1

dv = 0

∫ +∞+jε

−∞+jε

1
v − jvk2

dv = 2πj.
(17)

The error probability of (11) can be therefore evaluated as

Pb = − 1
2πj

∫ +∞+jε

−∞+jε

ψD(jv)
v

dv

=(−1)L+1
L−1∑
k=0

vk1

vk1 + vk2

×
L−1∏

l=0,l �=k

vl1vl2

(vk2 + vl1)(vk2 − vl2)

(18)

Remarks
• Eq. (18) also gives the BER for MRC with no CE errors

in NPDP channels. Fig. 2 shows that the theoretical
BER given by (18) is consistent with the simulation
results when the PDP have different ρ = τ0/τrms.
The circle in the figure denotes the simulation results,
which is obtained by semi-analytic simulation method.
With the increase of ρ, the performance of MRC will
degrade due to the severe frequency selective fading.
When ρ approach zero, (18) gives the same results as (2).
With the increase of the diversity order, the performance
degradation due to frequency selectivity becomes more
severe.

• Fig. 3 shows the performance loss due to the channel
estimation error when L = 4 under different ρ and η. The
BER can be degraded severely by the channel estimation
error. When η = 0.5, the performance loss can be as
large as 3dB.

• The generalization to the M -PSK and 2-dimensional
RAKE receiver will be given in the journal version of
this paper.
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Fig. 2. The BER versus SNR with different ρ = τ0/τrms

IV. OPTIMIZING PILOT SYMBOL LENGTH

In practical systems, the transmit power within each data
frame is fixed and we assume fixed information bit energy to
noise ratio Eb/N0. Eb is the energy per information bit, which
is the frame energy divided by the number of information bits.
The symbol energy Es relates to Eb as Es = EbN/(N +P ).
For a given fixed Eb/N0 and channel length, an optimal P
exists. This is due to the fact that an increase in P increase
the channel estimation accuracy and, thus, decrease the output
error probability. On the other hand, given fixed information
energy, an increase of the pilot symbol length will decrease the
effective symbol SNR and thus, the output error probability
will increase.

A. UPDP channels

Following the derivation of Proakis [4], we can derive the
µ for our LS channel estimator, given by

µ =
1√

(1 +R−1
s )(1 + R−1

p

P )
(19)

where Rs is the average output SNR per channel, Rp is the
average output SNR per pilot bit.

From (2) we can see that the BER monotonically decreases
with respect to µ. Therefore, minimizing the BER for BPSK
is achieved by maximizing the cross-correlation coefficient µ.

Let Rb = EbE(|hk|2)/N0 is the fixed information symbol
energy to noise ratio. Then the average output SNR on each
Rake receiver branch is given by γ̄c = RbN/(N + P ) which
is same for all branches. The average output SNR per pilot
bit Rp is also RbN/(N + P ). Then (19) can be written as

µ =
1√

(1 + N+P
NRb

)(1 + N+P
PNRb

)
(20)
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Fig. 3. The BER versus SNR with different ρ = τ0/τrms and η

By maximizing (20) with respect to P , we find the optimal
pilot length to be

P = N

√
Rb

NRb + 1
�

√
N (21)

B. NPDP channels

Like the UPDP channels case, the fixed information symbol
average signal-to-noise ratio is defined as

Rb =
Eb

N0L

L−1∑
k=0

E(|hk|2) (22)

The average output SNR of Rake receiver is given by γ̄c =
RbN/(N + P ). Unlike the UPDP case, the average SNR on
each Rake receiver branch is different and given by

γ̄k =
EbN

N0(N + P )
E(|hk|2) (23)

Unfortunately, as (18) is complicated, a closed-form expres-
sion for the optimal pilot symbol length can not be derived.
Instead, we find the optimal pilot length from simulation.

V. SIMULATION RESULTS

The optimal pilot length versus the number of data symbols
N for a 3 paths UPDP channel with different information
symbol SNR is given in Fig. 4. Fig. 5 shows the BER versus
the information symbol SNR when using the optimal number
of pilot symbols for each value of SNR and when using P=6
and 50, with data length N=200 and 3 paths EPDP channel.

Next, we investigate the optimal pilot length for NPDP
frequency selective channels. Our channel model has an
exponential power delay profile as (3). Fig. 6 shows the
optimal pilot length versus the number of data symbols N
for a 3 paths EPDP channel with different information symbol
SNR. The optimal pilot length is still

√
N in high SNR region

while it is not true in low SNR. Fig. 7 shows the BER versus
the information symbol SNR when using the optimal number
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of pilot symbols in 15dB for each value of SNR and when
using P=6 and 50, with data length N=200, 3 paths EPDP
channel. This figure clearly shows that the optimal pilot length
in high SNR is not optimal in low SNR.

VI. CONCLUSION

We have investigated the optimization of pilot sequences for
general DS-CDMA systems in slow fading frequency selective
Rayleigh channel. The effects of imperfect CE have been
analyzed for a MRC RAKE receiver in both UPDP and NPDP
channels. We derive the closed-form of the BER for RAKE
receiver in NPDP channels through a different approach from
Proakis [4]. In a practical system, the energy within each data
frame is constant. Thus, we optimize the length of the pilot
symbols by minimizing the bit error probability of the MRC
receiver. We find the optimal length of the pilot symbols is the
square root of the information data length in UPDP channels
and this relation is only true for NPDP channels in high SNR.
The results of the paper is useful to design a pilot-symbol-
assisted modulation system.
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