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Performance of Digital Linear Modulations on Weibull Slow-Fading Channels
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Abstract—A closed-form expression is derived for the mo-
ment-generating function of the Weibull distribution, valid
when its fading parameter assumes integer values. Expressions
for average signal-to-noise ratio, signal outage, and average
symbol-error rate are derived for single-channel reception and
independent multichannel diversity reception operating on flat
Weibull slow-fading channels.

Index Terms—Error analysis, fading channels, Laplace trans-
forms, Weibull distributions.

I. INTRODUCTION

THE Weibull distribution is a flexible statistical model
for describing multipath fading channels for both indoor

and outdoor propagation environments. Experimental data
supporting the Weibull fading model was reported by Shepherd
[1], and Hashemi considered its use as a model for indoor
fading channels in [2]. Based on fading-channel data obtained
from a recent measurement program at 900 MHz, Tzeremes
and Christodoulou also reported that the Weibull distribution
can be used to model outdoor fading well in some cases
[3]. The IEEE Vehicular Technology Society Committee on
Radio Propagation also recommended the use of a Weibull or
a Nakagami model for theoretical studies to introduce slope
changes in the tail of the model distribution, to compensate
some shortcomings of the Rayleigh distribution [4]. A large
body of literature has been devoted to the study of digital
communications over Nakagami channels. However, with the
exception of [5] and [6], there exist few results pertaining to
transmission over Weibull fading channels.

The moment-generating function (MGF) method is gaining
popularity as an approach to unified error-rate analysis of
digital communications over fading channels [7]. Both average
symbol-error rates (ASERs) and outage probabilities (OPs) can
be expressed in terms of the MGF of the signal-to-noise ratio
(SNR) in a single-channel receiver system, and the MGF of the
SNR at the output of a diversity combiner in a multichannel
receiver system. A tractable and useful expression for the MGF
of the Weibull distribution is not known. A closed-form ex-
pression for the Weibull MGF is derived in this letter, and used
with the MGF method for a unified performance evaluation. A
power-series expansion is known for the MGF, but the series
does not always converge. Further, the power series may con-
verge theoretically, but not in practical computation, because
the terms oscillate between very large positive and negative
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values before becoming ultimately decreasing. In this letter, we
derive a closed-form expression for the MGF of a Weibull dis-
tribution in terms of a known hypergeometric function. Using
this MGF expression, we study the outage and symbol-error rate
(SER) performances (for uncoded systems) of some important
linear modulation schemes in both single-channel reception and
independent multichannel diversity reception on flat Weibull
slow-fading channels.

II. WEIBULL MGF

The probability density function (PDF) of the Weibull distri-
bution is

(1)

where the index is called the Weibull fading parameter and
is a positive scale parameter. The root-mean-square (rms) value
of the Weibull fading amplitude is , where

is the Gamma function. The Weibull fading parameter can
take values between 0 and . In the special case when ,
the Weibull distribution becomes an exponential distribution;
when , the Weibull distribution specializes to a Rayleigh
distribution.

The MGF1 of the Weibull distribution is

(2)

where is used to explicitly denote the dependence of
the MGF on . In this letter, we assume that takes only in-
teger values and this condition is required for our mathematical
solution. Then approximate results for OP or ASER for nonin-
teger values of can be obtained using interpolation of the final
results obtained for integer values. We present a closed-form ex-
pression for the MGF of the Weibull distribution in terms of a
confluent hypergeometric function. To show this, we define an
integral2 as

(3)

1In this letter, the definition of the MGF differs from the conventional defini-
tion by a negative exponent, and is essentially the Laplace transform of a PDF.

2The integral (3) is called Faxen’s integral [8]. Bakhoom first suggested that
Faxen’s integral with integer r values can be expressed in terms of the general-
ized hypergeometric function [9]. However, he did not provide a solution similar
to ours.
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where is a positive integer. In the Appendix, using a Mellin’s
transform approach, we show that

(4)
where is the Meijer’s function [10, eq. (9.301)]. The
Meijer’s function is widely available in many scientific soft-
ware packages, such as Mathematica and Maple. Applying (4)
to (2), we obtain the MGF for the Weibull distribution as

(5)

Two special cases of the Weibull distribution can be used to
test the correctness of (5). When , from (5), the MGF
becomes

(6)

It is known that [11]

(7)

From (6) and (7), we obtain , which
is the Laplace transform of the exponential PDF, as expected.
When , from (5), the MGF becomes

(8)
It is known that [11]

(9)

where is the Whittaker function [10]. Applying (9)
to (8) and using [10, eqs. (3.381), (8.350), and (8.356)], one
can show where

, which is the Laplace transform
of the Rayleigh PDF, as expected.

It is well known that the th power of a Weibull-distributed
random variable (RV) with parameters gives another
Weibull-distributed RV with parameters . We note
here, for use in the following, that if is the MGF of
a Weibull RV , the MGF of is .

III. PERFORMANCE ANALYSIS OF DIGITAL

MODULATIONS ON WEIBULL CHANNELS

A. Single-Channel Reception

Let denote the channel-output SNR for single-channel re-
ception or the combiner-output SNR for multichannel diversity
reception. Assuming that noise variance in each channel is unity,
the output SNR becomes , where is the Weibull
fading amplitude. The th moment of is given by

(10)

In the special case when , we have the average output SNR
for a single Weibull channel as

.
The outage probability at outage threshold for single-

channel reception can be calculated as

(11)

Using (5), the ASERs for many digital linear modulations op-
erating on Weibull channels with single-channel reception can
be straightforwardly calculated using the MGF method [7]. The
details are omitted here, as they are well documented elsewhere.

B. Selection Combining (SC)

Using the single-channel OP, one can show that the OP for
-branch independent SC is

(12)

From (12) and [10, eq. (3.381)], one can show the th moment
of SC combiner-output SNR is

(13)

When , we obtain the average output SNR as
.

To calculate the ASER using SC reception, it is required to
calculate the MGF of , the SNR at the output of the SC. By
using the derivative property of the Laplace transform, one can
relate the MGF of a RV to its cumulative distribution function
(CDF) as

(14)

For our problem, the CDF of the SNR at the SC output can be
shown to be

(15)

Using (14) and (15), one can show that the MGF of the SC
output SNR is

(16)

where in obtaining (16), we have used the integral identity (4).
Using (16) and (5), the ASERs of SC for many digital linear
modulations can be readily evaluated via the MGF method [7,
Ch. 9].

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 22, 2009 at 16:17 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 8, AUGUST 2004 1267

Fig. 1. Average output SNR normalized to the first-branch average output SNR
versus the Weibull c parameter for single-channel reception and multichannel
diversity reception, with L = 2 and L = 4.

C. Maximal Ratio Combining (MRC)

The th moment of the output SNR for MRC is

(17)

where is the multinomial coeffi-
cient. When , the first moment of gives the average
output SNR for MRC as

.
The OP for MRC diversity reception is given by

(18)

or

(19)

where and is a constant chosen in the region of the
convergence of the complex plane.

Calculations of ASERs of MRC for many digital linear mod-
ulations on Weibull channels are direct extensions of the MGF
method for other fading channels [7, Ch. 9].

IV. NUMERICAL RESULTS AND DISCUSSIONS

Fig. 1 shows the average output SNR (normalized to the av-
erage output SNR of the first branch) versus the Weibull pa-
rameter for single-channel and multichannel diversity reception.
The two horizontal lines at 3 and 6 dB indicate the diversity
order of MRC at and , respectively. The nor-
malized output SNR for SC approaches 0 dB when the channel
becomes static ( goes to infinity). This is expected since when

Fig. 2. OP versus average SNR per branch for single-channel reception, SC
reception, and MRC reception at outage threshold � = 10 dB when c = 4.

Fig. 3. Average BER versus average SNR per branch for CBFSK with
single-channel reception, SC reception (L = 2), and MRC reception (L = 2)
on Weibull fading channels when c = 2 and c = 4.

the channel becomes static, the performance of SC will be iden-
tical to that of single-channel reception. For comparison pur-
poses, we have also included the normalized output SNR for
equal-gain combining (EGC) reception. As expected, when the
channel becomes less faded, the SNR performance of EGC ap-
proaches that of MRC. It is also of interest to note that the SC
can have better SNR performance than EGC when the channel
is severely faded, i.e., . While this may, perhaps, seem
surprising upon first inspection, we note that the discussion in
[12, Sec. VII] provides useful insight into the possibility of this
observation.

Fig. 2 shows the OP versus average branch SNR for single-
channel reception and diversity reception with outage threshold

dB for diversity orders and . As expected,
the outage performance improves when the diversity order in-
creases, and the outage performance of MRC reception outper-
forms that of SC reception with the same level of fading severity.
Fig. 3 shows the average BER performance for coherent binary
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Fig. 4. ASER versus average SNR per branch for 8-PSK with single-channel
reception, SC reception (L = 2), and MRC reception (L = 2) on Weibull
fading channels when c = 2 and c = 4.

frequency-shift keying (CBFSK) with single-channel reception
and dual-diversity reception. As we expect, the BER perfor-
mance of diversity reception outperforms single-channel recep-
tion, and a lightly faded Weibull fading channel has a better BER
performance than another Weibull fading channel with stronger
fading. Similar observations can be made for the ASER perfor-
mance of 8-ary phase-shift keying (PSK) in Fig. 4.

APPENDIX

DERIVATION OF (4)

In this appendix, we derive the integral identity in (4)
using a Mellin transform approach.3 The Mellin transform of

, with respect to the complex parameter , is defined as
, and the inverse Mellin transform

is given by , where is a
suitably chosen number.

Putting , the Mellin transform of becomes

(20)

Therefore, from the definition of inverse Mellin transform, we
have

(21)

3A reviewer has pointed out an alternative derivation of (4), based on using
the relation between Fox’sH-function [13], [14] and theG-function [14], [15].

where and are two suitably chosen constants. Substituting
(21) into (3) and integrating with respect to , we get

(22)

Since is assumed to be integer, the Gauss multiplication for-
mula [10, eq. (8.335)] allows us to write

(23)

From (23) and (22), we can write

(24)

Now comparing (24) with the definition of Meijer’s function
[10, eq. (9.301)], we obtain (4) as desired.
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