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Abstract—The Weibull distribution is a flexible statistical model
for describing multipath fading channels in both indoor and out-
door radio propagation environments. A new closed-form expres-
sion is derived for the moment generating function of the Weibull
distribution, valid when its fading parameter assumes integer val-
ues. The performance of digital linear modulations operating on
Weibull channels is studied. Expressions for the signal outage and
average symbol error rate are derived for single-channel reception
and multi-channel diversity reception operating on Weibull fading
channels.

I. INTRODUCTION

This paper presents new performance results for digi-
tal modulation transmission on Weibull fading channels.
A study of Weibull fading is motivated for the following
reasons. The Weibull distribution is useful for model-
ing multipath fading signal amplitude. Recall that the
Rayleigh distribution is commonly used to model the
multipath fading in an urban environment where there are
a large number of received radio wave paths. Hence, the
Rayleigh model is derived theoretically by using a central
limit theorem (CLT) argument. However, when the num-
ber of incoming radio paths is limited, the Rayleigh dis-
tribution may not be an appropriate fading model since
the conditions for validity of the CLT may not hold.
Some evidence indicates that the signal amplitude can
be well described by a Weibull distribution in this situ-
ation. Experimental data supporting the appropriateness
of the Weibull model was reported in [1] and Hashemi
considered its use as a model for indoor fading chan-
nels in [2]. Recent measurements by Babich and Lom-
bardi have revealed that the Weibull distribution gives
the best fit to a path-loss model of a narrow-band digital
enhanced cordless telecommunications (DECT) system
at reference frequency 1.89 GHz [3]. Based on fading
channel data obtained from a recent measurement pro-
gram at 900 MHz, Tzeremes and Christodoulou also re-
ported that the Weibull distribution can be used to model
outdoor multipath fading well in some cases [4].

The probability density function (PDF) of the Weibull
distribution is [5]

fX(x) =
mxm−1

γ
exp

[
−xm

γ

]
,m > 0, x ≥ 0 (1)

where the index m is called the Weibull fading parameter
and γ is a positive parameter related to the moments and
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the fading parameter. The Weibull fading parameter can
take values between 0 and ∞. In the special case when
m = 1, the Weibull distribution becomes an exponen-
tial distribution; when m = 2, the Weibull distribution
specializes to a Rayleigh distribution.

Theoretical analyses are facilitated by the use of the
Weibull distribution to model fading signal amplitude.
This is because the Weibull distribution has an interesting
property, That is, the kth power of a Weibull-distributed
random variable (RV) with parameters (m, γ) gives an-
other Weibull-distributed RV with parameters (m/k, γ).
This property is particularly useful in error rate analysis
of digital modulations on Weibull fading channels since
the received signal-to-noise (power) ratio (SNR) will also
have a Weibull distribution. Despite the importances
of this fading model, there exist few results pertaining
to digital communications over Weibull fading channels
with the exception of a recent paper by Alouini and Si-
mon [6]. In this work, the authors studied the output SNR
of generalized selection combining (GSC) diversity over
Weibull fading channels. However, a treatment of the er-
ror rate performance of digital modulations operating on
Weibull channels was not given in [6].

The moment generating function (MGF) method is
gaining popularity as an approach to unified error rate
analysis of digital communications in fading channels
[7],[8]. Both symbol error rates (SER’s) and outage prob-
abilities (OP’s) can be expressed in terms of the MGF
of the SNR in a single-channel receiver system and the
MGF of the SNR at the output of a diversity combiner
in a multi-channel receiver system. The MGF of the
Weibull distribution is known to exist for m ≥ 1, but its
form is not considered useful by statisticians and there-
fore, is not readily available. In this paper, we use a
Mellin transform [9] to derive a compact expression for
the MGF of a Weibull distribution. Using this novel
MGF expression, we study the signal outage and symbol
error rate performances of some important linear mod-
ulation schemes for both single-channel reception and
multi-channel diversity reception operating on Weibull
fading channels.

II. WEIBULL MOMENT GENERATING FUNCTION

If X is a random variable (RV) distributed (In this
work, we assume that m only takes integer values and
this condition is required for our mathematical solution.)
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according to (1), its MGF is given by

MX(s) =
∫ ∞

0

e−sxfX(x)dx. (2)

In order to evaluate the integral in (2), it is required to
evaluate an integral of the type

I =
∫ ∞

0

xp−1e−zx−αxr

dx α, z, p > 0 (3)

where r is a positive integer. In Appendix A, we show
that

I = (2π)
1−r
2 rp− 1

2 z−p

× Gr,1
1,r

(
zr

αrr

∣∣∣∣ 1
p/r, . . . , (p + r − 1)/r

) (4)

where Gm,n
p,q (·) is the Meijer’s G function [10, (9.301)].

Applying (4) to (2) we obtain the MGF for the Weibull
distribution as

MX(s) =
(

m

γ

)
(2π)

1−m
2 m(m− 1

2 )s−m

× Gm,1
1,m

(
γ
( s

m

)m
∣∣∣∣ 1

1, . . . , 1 + (m − 1)/m

)
.

(5)

III. SYSTEM MODEL

We consider signal transmission over slow, frequency-
nonselective Weibull fading channels. The received sig-
nal can be written as

so =
L∑

i=1

wi[si + ni] (6)

where si is the signal component and it is assumed to
have unity power, i.e., E[s2

i ] = 1. In this paper, two
diversity combining methods are considered. When se-
lection combining (SC) is employed, the weighting fac-
tors become wj = 1, wi = 0, ∀i �= j, i, j = 1, . . . , L
where max{X2

i } = X2
j , and when maximal ratio com-

bining (MRC) is employed, the weighting factors be-
come wi = Xie

−jαi , i = 1, . . . , L where Xi is the
ith branch fading amplitude and αi is the ith branch fad-
ing phase, and they are both assumed to be perfectly esti-
mated. We further assume that the background noise has
unity power, i.e., E[n2

i ] = 1. Under these assumptions,
the SNR per symbol on the ith diversity branch becomes
X2

i .

IV. SNR AND OUTAGE PROBABILITY

A. Single Channel Reception

Let Y denote the combiner output SNR. Under the as-
sumptions of our system model, the output SNR at the
receiver is Y = X2. One can show that the PDF of Y is

fY (y) =
(m

2 )ym/2−1

γ
exp

[
−ym/2

γ

]
(7)

where E[Y ] = E[X2] = γ2/mΓ(1 + 2/m). The outage
probability of single channel reception can be calculated
as

Pout(ξ) =
∫ ξ

0

fY (y)dy

= 1 − exp
[
−ξm/2

γ

]
.

(8)

B. Selection Combining Diversity Reception

The outage probability for SC is given by

Pout,sc(ξ) =
[
1 − exp

[
−ξm/2

γ

]]L

. (9)

To obtain the average SNR at the output of the SC,
SNRo,sc, we first note that the outage probability com-
puted in (9) is essentially the cumulative distribution
function (CDF) of SNRo,sc, i.e, Pr(SNRo,sc < ξ) =
F (ξ). One can then show that the average output SNR is
given by

SNRo,sc =
∫ ∞

0

ξdF (ξ)

= Lγ2/m
L−1∑
k=0

(−1)k

(
L − 1

k

)
Γ
(

2
m + 1

)
(k + 1)

2
m +1

.

(10)

In the special case of Rayleigh fading (m = 2), it can
be shown that (10) reduces to the well-known result
SNRo,sc =

∑L
k=1 1/k [11].

C. Maximal Ratio Combining Diversity Reception

In maximal ratio combining, the output SNR, denoted
by SNRo,mrc, is equal to the sum of the branch SNR
values. Therefore,

SNRo,mrc = E[X2
1 +X2

2 +. . .+X2
L] = LE[X2

i ] (11)

where
E[X2

i ] = γ2/mΓ(1 + 2/m). (12)

The outage probability for MRC is given by

Pout,mrc(ξ) = Pr

(
L∑

i=1

SNRi < ξ

)
(13)

which can be calculated using the MGF method. The
MGF of the MRC output SNR can be written as

MY (s) = [MX(s,m/2)]L. (14)

Since the outage probability is just the inverse Laplace
transform of MY (s)/s evaluated at a threshold ξ, and
one has

Pout,mrc(ξ) =
1

2πj

∫ σ+j∞

σ−j∞

[MX(s,m/2)]L

s
esξds

(15)
where σ is a constant properly chosen in the region of
convergence in the complex s plane.
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V. BER AND SER OF LINEAR MODULATIONS

A. CBPSK, CBFSK, and M -PAM

The conditional BER or SER for coherent binary phase
shift keying (CBPSK), coherent binary frequency shift
keying (CBFSK), and M -ary pulse amplitude modula-
tion (M -PAM) can be written in a compact form as [12]

Pe(γt) = aQ(
√

2bγt) (16)

where the Gaussian Q-function is defined as

Pe(γt) =
a

π

∫ π/2

0

exp
(
− bγt

sin2 φ

)
dφ. (17)

and where γt is the total output SNR per symbol. Eqn.
(16) is valid for CBPSK when a = 1 and b = 1; for
CBFSK when a = 1, and b = 1/2; and for symmetric
M -PAM when a = 2(M − 1)/M and b = 3/(M2 − 1).
Using an alternative Q-function representation [7], the
conditional error rate can be written as

Pe(γt) =
a

π

∫ π/2

0

exp
(
− bγt

sin2 φ

)
dφ. (18)

Averaging over the PDF of the received SNR, the average
error rate becomes

Pe =
a

π

∫ π/2

0

Mγt

(
b

sin2 φ

)
dφ (19)

where in the case of single channel reception, Mγt
(s) =

MX(s,m/2), which is the MGF of a Weibull with fad-
ing parameter m/2. In the case of SC, in order to calcu-
late the MGF of γt, the SNR at the output of the SC, we
can utilize the derivative property of the Laplace trans-
form and relate the MGF of a RV to its CDF as

MZ(s) = s

∫ ∞

0

exp(−sz)FZ(z)dz. (20)

For our problem, the CDF of the SNR at the SC output
can be shown to be

Fγt
(γt) =

[
1 − exp

(
−γ

m/2
t

γ

)]L

=
L∑

n=0

(−1)n

(
L

n

)
exp

[
−nγ

m/2
t

γ

]
.

(21)

Using (20) and (21), one can show that the MGF of the
SC output SNR is

Mγt
(s) = 1 + (2π)

1
2−m

4

√
m

2

L∑
n=1

(
L

n

)
(−1)n

× G
m/2,1
1,m/2

((γ

n

)(2s

m

)m/2 ∣∣∣∣ 1
2/m, 4/m, . . . , 1

)
.

(22)

In the case of MRC, the total output SNR is equal to the
sum of the independent branch SNR’s. Therefore, the
MGF of γt becomes

Mγt
(s) = [MX(s,m/2)]L , (23)

and the error rate is given by

Pe,mrc =
a

π

∫ π/2

0

[
MX

(
b

sin2 φ
,m/2

)]L

dφ. (24)

B. M -PSK

The average SER of M -PSK for L-branch MRC di-
versity reception can be derived as

Pe,mrc =
1
π

∫ (M−1)π/M

0

[
MX

(
gPSK

sin2 φ
,m/2

)]L

dφ

(25)
where gPSK = sin2(π/M). For single channel recep-
tion, substituting L = 1 into (25), we obtain

Pe =
1
π

∫ (M−1)π/M

0

MX

(
gPSK

sin2 φ
,m/2

)
dφ. (26)

When SC combining is used, the SER of MPSK is given
by

Pe,sc =
1
π

∫ (M−1)π/M

0

Mγt

(
gPSK

sin2 φ

)
dφ (27)

where Mγt
(s) is the MGF of the SC output SNR given

in (22).

C. M -QAM

When M -QAM is employed in Weibull channels, us-
ing the MGF method, it can be shown that in the case of
MRC reception, the average SER is given by

Pe,mrc =
4
π

(
1 − 1√

M

)

×
∫ π/2

0

[
MX

(
gQAM

sin2 φ
,m/2

)]L

dφ

− 4
π

(
1 − 1√

M

)

×
∫ π/4

0

[
MX

(
gQAM

sin2 φ
,m/2

)]L

dφ;

where gQAM = 3/(2(M − 1)); and in the case of SC
reception, the average SER is given by

Pe,sc =
4
π

(
1 − 1√

M

)∫ π/2

0

Mγt

(
gQAM

sin2 φ

)
dφ

− 4
π

(
1 − 1√

M

)∫ π/4

0

Mγt

(
gQAM

sin2 φ

)
dφ

where Mγt
(s) is given in (22).
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VI. NUMERICAL RESULTS

Fig. 1 shows the outage probability versus aver-
age SNR per branch for a single channel reception and
dual diversity (L = 2) reception with outage threshold
ξ = 10 dB for two different Weibull fading parame-
ters. As expected, the outage probability performance
improves when the diversity order increases, and the out-
age performance of MRC reception outperforms the SC
reception with the same level of fading severity. As the
Weibull fading parameter increases, the outage proba-
bility curves become sharper and the performance ap-
proaches that of a nonfading situation. For example,
when the SNR = 4 dB, the system can achieve 99%
outage performance for MRC reception with dual diver-
sity branches while operating in a Weibull channel with
m = 4.

Fig. 2 shows the average BER performance for co-
herent binary frequency shift keying with single channel
reception and dual diversity reception. As we expect, the
BER performance of diversity reception outperforms that
of single channel reception, and a lightly faded Weibull
fading channel has a better BER performance than an-
other Weibull fading channel with stronger fading. Fig.
2 also shows that when the value of SNR is greater than
8 dB, CBFSK can achieves BER less than 10−3 with
dual branch MRC when m = 4. Similar observations
can be made for the symbol error rate performance of 8-
PSK (Fig. 3) and 16-QAM (Fig. 4) operating on Weibull
channels with multi-channel reception.

VII. CONCLUSION

In this paper, we have analyzed the performances of
digital communication systems on Weibull fading chan-
nels. In doing so, we have derived a novel closed-
form expression for the MGF of the Weibull distribution
when the fading parameters taking integer values. Out-
age probabilities and average output SNR expressions
have been derived for both single channel and multi-
channel SC and MRC reception. Using the MGF method,
we have also obtained exact single-integral BER and
SER expressions for some important linear modulation
schemes operating on Weibull channels. Our perfor-
mance results are valid for arbitrary numbers of indepen-
dent diversity branches.

APPENDIX

I. DERIVATION OF (4)

In this appendix, we derive the integral identity in (4).
The Mellin transform of f(x) with respect to the com-
plex parameter s is defined as [9]

M(s) =
∫ ∞

0

xs−1f(x)dx (28)

and the inverse Mellin transform is given by

f(x) =
1

2πj

∫ c+j∞

c−j∞
M(s)x−sds (29)

where c is a suitably chosen number. Putting f(x) =
e−αxr

, the Mellin transform of f(x) becomes

M(s) =
∫ ∞

0

xs−1e−αxr

dx

=
1
r
α−s/rΓ

(s

r

)
.

(30)

Therefore, from the definition of inverse Mellin trans-
form, we have

e−αxr

=
1

2πj

∫ c+j∞

c−j∞
α−sΓ(s)x−rsds (31)

where c is a suitably chosen number. Substituting (31)
into (3) and integrating over x, we get

I =
1

2πj

∫ c+j∞

c−j∞
α−szrs−pΓ(s)Γ(p − rs)ds. (32)

Since r is assumed to be integer, the Gauss multiplication
formula [13] allows us to write

Γ(p− rs) = (2π)
1−r
2 rp−rs− 1

2

r∏
k=1

Γ
(

p + k − 1
r

− s

)
.

(33)
From (33) and (32), we obtain

I =
(2π)

1−r
2 rp− 1

2 z−p

2πj

×
∫ c+j∞

c−j∞

(
zr

αrr

)s

Γ(s)
r∏

k=1

Γ
(

p + k − 1
r

− s

)
ds.

(34)

Now comparing (34) with the definition of Meijer’s G
function [10, (9.301)] we obtain (4) as desired.
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Fig. 3. Average SER versus average SNR per branch for 8-PSK with
single channel reception, SC reception (L = 2) and MRC reception
(L = 2) on Weibull fading channels when m = 2 (dashed lines)
and m = 4 (solid lines).
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Fig. 4. Average SER versus average SNR per branch for 16-QAM with
single channel reception, SC reception (L = 2) and MRC reception
(L = 2) on Weibull fading channels when m = 2 (dashed lines)
and m = 4 (solid lines).
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