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Abstract __ The ability to capture significant amount of trans-
mitted signal energy present in the resolvable multipaths using
only a modest number of rake fingers (correlators) is an impor-
tant receiver design consideration for ultra-wideband (UWB)
and wideband CDMA communication systems. This, however,
is achieved at the expense of rake receiver performance. Moti-
vated by this need, several suboptimal hybrid receiver struc-
tures have been proposed in the literature. The study on
generalized selection diversity combining with normalized
threshold test per branch ( ) is also important
from a theoretical standpoint because this model encapsulates
both the traditional selection diversity and maximal-ratio com-
bining (coherent detection) or post-detection equal-gain com-
bining (noncoherent detection) schemes as limiting cases.
However, mathematical analysis for  has been
limited to i.i.d Rayleigh fading channels. This paper derives
simple to evaluate formulas for the moment generating function
(mgf) of  output SNR with  resolvable multi-
paths. In addition to providing new results for many cases that
heretofore had resisted solution in a simple form, our approach
also also allows some of the previously obtained results to be
simplified both analytically and computationally. 

I. INTRODUCTION
Even though the MRC-rake receiver solution (i.e., combin-
ing all the L resolvable multipaths using maximal-ratio com-
bining technique) is optimum from a performance
standpoint, it is not be desirable for practical implementation
when a large number of multipaths are available for several
obvious reasons. To reduce the receiver complexity and total
power consumption of handheld portable units, several sub-
optimal hybrid rake receiver structures have been proposed
in the literature including generalized selection diversity
combining and partitioned diversity schemes [1]-[7]. 
Recognizing that the relative diversity improvement dimin-
ishes with increasing diversity order, it seems reasonable to
combine only a few “strongest” multipaths to achieve the
desired level of performance. This is the main motivation
behind the development of suboptimal coherent generalized
selection combining ( ) technique [1] in which a
subset of  paths with highest signal-to-noise ratios
(SNRs) are optimally weighted and summed. For noncoher-
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ent and differentially coherent communications, the need for
noncoherent  is further emphasized owing to the
noncoherent combining loss phenomenon inherent in the
post-detection equal-gain combining (hereafter, referred to
as PDEGC-rake) receiver [2]. In this case, there exists an
optimum  which minimizes the error probability perfor-
mance for a given average SNR/bit and . 
While  has a fixed processing complexity (since
N is decided a priori), it suffers from the fact that it poten-
tially discards from combination of many paths which may
significantly improve the receiver performance or alterna-
tively, includes some “weak” paths at the expense of
increased total processing power consumption. In [5], Suly-
man and Kousa suggested a threshold-based generalized
selection diversity receiver, , which alleviates
the above-mentioned problem by combining only the paths
that has normalized SNR (ratio of the instantaneous SNR of
each branch to that of the best branch) greater than 
( ). An analytical framework for analyzing such a
receiver is provided in [6]. Nevertheless, the results are lim-
ited to Rayleigh fading with independent and identically dis-
tributed (i.i.d) diversity paths. In this paper, we develop a
mathematical framework for analyzing both the coherent and
noncoherent  receiver performance over prac-
tical wireless channels. The key to our solution is the trans-
formation of multivariate nested integrals that arise in the
computation of mgf of SNR and  into a product
form of univariate integrals. 

II.  COMBINER OUTPUT STATISTICS
A. Independent and Identical Fading Statistics
Suppose  are i.i.d fading SNR random variables
having pdf , cumulative distribution function (cdf) 

and marginal mgf . If the instantaneous

SNRs are arranged in the increasing order of magnitude, we
also have  as the order statistics. Then the
instantaneous  output SNR is given by 
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where  is the  combiner output

SNR,  and . 

Clearly, the sum  is a random variable and

. As such, this scheme may be viewed as a conven-
tional  receiver whose number of paths being
combined  is random rather than fixed. 
Now consider the following cases: 
(a) If , we obtain ;
(b) If  but , we have ;
(c) If  but , we have ; 
and so on. 
Obviously,  and  correspond to
the classical MRC and SDC schemes respectively. 
By now it should be apparent that once  is deter-
mined, the pdf, cdf and the mgf of  output
SNR can be expressed as a weighted sum of the traditional

 output SNR statistics. For an example, the mgf
of  output SNR is given by 

(2)

where  may be computed efficiently using [7]

(3)

in a variety of fading channel models (including Rayleigh,
Rician, Nakagami-m fading models). Closed-form formulas
for the pdf, cdf and the marginal mgf for the above channel
models can be found in [7]. 
For , we know that  and .
From this definition, we have

 (4)

which is a product of separable but nested integral, and
. Eq. (4) can be simplified as 

(5)

using the integral identity

 (6)

which transforms the multivariate integral into a product of
univariate integrals. A proof for (6) is provided in [9] using
the principles of mathematical induction. 
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In [9], we also provide an alternative derivation for (5),
which exploits the knowledge of the joint pdf of

 instead of using (4). 
For the special case of Rayleigh fading, (5) reduces into 

(7)
which is in perfect agreement with [6]. However, note that
our derivation is much more general yet concise. 
B. Independent and Nonidentical Fading Statistics
Suppose  are independently distributed,  hav-
ing cdf , pdf  and marginal mgf . In this
case,  can be evaluated as [8] 

(8)

where  is the set of all permutations of integers
 and  denotes the specific function

 which permutes the integers
. The cardinality of  is equal to . The pro-

cess of constructing all members of  is recursive and most
mathematical packages have explicit commands for this pur-
pose. For instance,  is constructed by the command
perms([1,2,...,n]) in MATLAB. 
Using (A.1) and (A.2), (8) can be simplified into 

(9)

or alternatively, as 

(10)

where . 

The construction of all permutations in the group  can be
automated using only four command lines in MATLAB. It
should also be emphasized that  can be evaluated
efficiently using (9) for  and (10) while

. This is because the complexity of (9) is

mainly dictated by the time required to compute 
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one-dimensional integrals while (10) involves the complex-

ity of evaluation of  one-dimensional integrals.

For the special case of i.i.d fading, (9) reduces to (3), as
expected. It is also not very difficult to show that 

(11)

which may be rewritten concisely as 

(12)

with the aid of (A.1). Substituting (12) and (9) (or (10)) into
(2), we obtain an expression for the mgf of 
output SNR with i.n.d diversity paths. This mgf can used to
unify the performance evaluation of a broad range of digital
modulation/detection schemes in practical wireless channels.
Details can be found in [9]. 

III. COMPUTATIONAL RESULTS AND REMARKS
From (2), we immediately obtain a generic expression for
the average symbol error rate (ASER) with : 

(13)

Similarly, the outage probability can be calculated as 

(14)

For the purpose of illustrating our generic results for ASER
and outage probability numerically, we shall focus primarily
on the i.i.d fading case. Fig. 1 shows the ASER variation for
QPSK with coherent  in Rician channels when
the average SNR/symbol/path is fixed at 10 dB. The curves
for  and  coincide with the plots obtained for

 and  respectively. These curves also
provide upper and lower bounds for other threshold values.
Not only does the ASER decreases in the presence of a stron-
ger specular component (i.e., a higher K value), the rate at
which the ASER decays also increases with smaller  val-
ues. Thus, lowering  significantly improves the receiver
performance in less severely faded environments. For exam-
ple, as the threshold changes from  to , the
ASER decreases from  to  (approximately
two order of magnitude) at  and by almost three order
of magnitude at . 
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Fig. 1. ASER of QPSK plotted as as function of Rice factor for a
coherent  receiver with i.i.d diversity paths when
the average SNR/symbol/path is 10 dB. 

Fig. 2. ABER performance of DQPSK in a Nakagami-m channel
(fading index ) in conjunction with both coherent and
noncoherent  (for ) receiver
implementations. 

Fig. 2 illustrates the ABER performance of DQPSK in con-
junction with coherent and noncoherent 
receivers in a Nakagami-m channel (fading index

). The difference between the coherent and nonco-
herent  performance curves diminishes as the
average SNR/bit/branch increases particularly for .
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This trend can be attributed to the weight contribution for
each of the possible diversity orders as depicted in Fig. 3.
Also recall that for a fixed average SNR/bit/branch , the
difference in the ABER performance for DQPSK between
the coherent and noncoherent classical  receivers
is smaller at higher  and for smaller N values [7]. From Fig.
2, we can conclude that there is not much benefit that can be
realized from using a coherent  receiver over a
noncoherent  receiver if we are operating at
high branch SNRs and high  levels. 

Fig. 3. Variation of the weighting probability  with the
threshold factor  in a Nakagami-m channel ( ). 

Fig. 4. Investigation on the effect of diversity order L on the ABER
performance of BPSK that employs  in a Ricean
channel ( ) and average SNR/bit/branch of 10 dB. 

γ

GSC N 5,( )
γ

T GSC µ L,( )–

T GSC µ L,( )–

µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold Factor

P
r(N

 =
 k

)

k = 1
k = 2
k = 3
k = 4
k = 5

m = 1.75 

Pr N k={ }
µ m 1.75=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Threshold factor

A
ve

ra
ge

 b
ir 

er
ro

r 
pr

ob
ab

ili
ty

L = 1
L = 2
L = 3
L = 4
L = 5
L = 6

T GSC µ L,( )–

K 2=

Fig. 4 illustrates the effect of increasing L on the ABER per-
formance of BPSK with . For a higher diver-
sity order L, the bit error probability decreases due to larger
diversity gain. Since the improvement in ABER perfor-
mance is much more pronounced at lower , we may con-
clude that increasing L is much more effective for a MRC
receiver than for a SDC receiver to improve the overall
receiver performance. It is also observed that the relative
diversity improvement diminishes with increasing diversity
order. This observation is more pronounced at a higher 
level as expected. 
Comparison between Fig. 3 and Fig. 5 reveals that as the
channel condition improves (i.e., a larger m value), the mean
of the density function for  shifts to the right. For
a specified threshold , the probability of choosing
higher number of paths (larger k) is lowered when the chan-
nel experience more severe fading. This is expected because
as the fading index decreases, the number of paths having
signal levels greater than the threshold declines due to more
frequent deep fades and wider dynamic range of received
signal amplitude variations. In other words, for a specified

, the average number of paths combined  is higher
in better channel conditions, viz., 

(15)

Fig. 5. Variation of the weighting probability  as a
function of threshold factor  in a Nakagami-m environment with
fading index . 

Fig. 6 depicts the normalized output SNR variations in Nak-
agami-m channels for different combinations of  and fad-
ing index . Even though  decreases with  for

, it increases for . This behaviour can be
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explained as follows: If  is small, the likelihood of higher order
diversities (i.e., number of diversity paths that exceed threshold) is
high; and hence weighting factors  for large  val-
ues are also high. Moreover, the likelihood of combining majority
of the available diversity paths at lower threshold levels
increases with increasing . Thus in a channel that experi-
ence severe fading (i.e., small m),  increases for lower

 but start decreasing when  gets very large. Finally, Fig. 7
shows the outage probability performance of 
receiver operating in a Ricean fading environment. 

Fig. 6. Normalized output SNR  plotted as a function fading
severity index for different threshold levels and . 

Fig. 7. Outage probability  plotted as a function
of normalized mean SNR  in a Ricean channel with . 

µ

Pr N k={ } k

m

γTgsc γ⁄
µ µ

T GSC µ 5,( )–

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fading Severity Index, m

N
or

m
al

iz
ed

 O
ut

pu
t S

N
R

µ = 0 

µ = 0.3

µ = 0.45 

µ = 0.6 

µ = 0.75 

µ = 0.9 

µ = 1 

µ = 0.15 

γTgsc γ⁄
L 5=

-6 -4 -2 0 2 4 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Normalized Average SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

µ = 0  
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8
µ = 1.0

Pout Tgsc– γ∗ µ 5, ,( )
γ γ∗⁄ K 3=

APPENDIX
In this appendix, we provide two useful integral identities
which can facilitate the transformation of multivariate nested
integrals that arise in the computation of  and

 into a product of univariate integrals: 

(A.1)

(A.2)

for any , provided  and

 are absolutely integrable for

. 

A rigorous proof for (A.1) and (A.2) are given in [8]. Using
these identities, we obtain a compact representation and
computationally efficient formula for the mgf of

 output SNR over generalized fading channels
[see (9), (10) and (12)]. 
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