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Abstract— A generalized selection combiner (GSC) ranks the L
available diversity paths and then combines a subset of M paths
with the highest signal-to-noise ratios (SNRs). The cumulative
distribution function (cdf) and moment generating function (mgf)
of a linear sum of ordered random variables are therefore
needed for computing the outage probability and error rates
of a GSC receiver. Unfortunately, except for simple cases, these
functions are either not known in closed form or exist only as
multidimensional integrals. Consequently, an exact performance
analysis is extremely difficult and time-consuming for many
fading environments (including mixed-fading case) specifically
when L is large. This paper therefore derives new upper and
lower bounds for the cdf of GSC output SNR over generalized
fading channels. These bounds are either derived in closed-form
or as single integral expressions. These bound are then used
to derive new bounds for the average symbol error rates for a
multitude of binary and M-ary digital modulation schemes in
a variety of fading channel models that heretofore had resisted
simple solutions.

I. INTRODUCTION

The GSC diversity scheme has received much attention
recently (see [1]–[9] among many others). The ability to
capture significant amount of transmitted signal energy present
in the resolvable multi-paths using only few rake fingers
(correlators) is an important receiver design consideration for
wideband CDMA and ultra-wideband communication systems.
Even though the MRC-rake receiver solution (i.e., combining
all the L resolvable multipaths using maximal-ratio combining
technique) is optimum, it may not be desirable for practi-
cal implementations for several reasons. For instance, MRC
receiver complexity is dependent on the physical channel
characteristics (i.e., the channel length L may vary with oper-
ating environment as well as time), and therefore undesirable.
When additional factors such as channel estimation errors and
complexity-performance trade-off for MRC implementation
with a large number of multipaths are taken into account,
it is reasonable to combine only a few strongest multipaths.
This fact motivates the development of suboptimal coherent
generalized selection combining (GSC(N,L)) technique [4] in
which a subset of N ≤ L paths with highest signal-to-noise
ratios (SNRs) are optimally weighted and summed. A GSC

receiver can be analyzed in terms of order statistics. Suppose
γk (1 ≤ k ≤ L) are random variables (RVs) representing the
SNRs of L diversity branches. If the RVs are rearranged in
ascending order and then written as γ(1) ≤ γ(2) ≤ · · · ≤ γ(L),
we shall denote a receiver GSC(M,L) (where 1 ≤ M ≤ L)
as a linear combiner operating on the M best possible paths
(ie γ(L−M+1), . . . , γ(L)). Clearly, GSC(1, L) and GSC(L,L)
are simply the well-known selection combining (SC) and
classical maximal-ratio combining (MRC) receivers. With the
emergence of ultra wideband (UWB) systems and other high
capacity systems, there is a need for system designers to
evaluate the performance of GSC receivers for large L (say
20 or more) over a wide variety of fading models.

In this paper, we derive new upper and lower bounds for
the outage and average error probability for GSC receivers.
Interestingly, these bounds are not based upon the conventional
Chernoff bound approach. Several factors motivate the deriva-
tion of bounds. Despite many recent papers on performance
analysis for GSC receivers, simple analytical results exist only
when the diversity branches experience independent and iden-
tically distributed (iid) Rayleigh-fading (for example, outage
expressions have been published for this case only [10]). The
mgf of the GSC output can be used to obtain the average
error rates. The outage also in principle can be obtained from
the mgf. A simple closed-form expression for the mgf exists
only for the iid Rayleigh case1. Even for independent, non
identically distributed (ind) Rayleigh fading statistics, the mgf
expression is rather complex [10]. Although for iid Nakagami-
m statistics (where m is limited to a positive integers), a
closed-form mgf expression can be derived [11], it is again
rather complex. A novel technique derived in [12], [13] allows
the mgf to be expressed as a single integral for any common
fading models such as Rice, Weibull and others. However, the
outage which is in fact the cumulative density function (cdf)
can not readily be obtained analytically as a Laplace inversion

1That is, the branch SNRs are iid exponential sample. The general problem
of the mgf for any linear sum of ordered statistics remains an open prob-
lem even within the wider mathematical statistics community, where order
statistics have been researched since 1930s.
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of the mgf and numerical Laplace inversion essentially leads
to two-dimensional numerical integration. Since the Chernoff
bounding approach requires the mgf, it also fails to be of use
for a unified analysis. Our new outage bounds overcome these
difficulties in that they can be applied to any fading model and
can handle both iid and ind statistics. As well, it is extremely
time-consuming to evaluate performance of GSC systems for
a large number for multipath components (say in the order of
20 or more) and for ind fading environments such as in ultra
wideband communications. This problem can be circumvented
by our approach.

The paper is organized as follows. Section II summarizes
both pdf fγ(x) and cdf Fγ(x) of the received SNR per branch
for several multipath fading distributions. Section III develops
a set of simple bounds for the outage. Section IV develops
a set of improved bounds for the outage. Section V develops
average error rate bounds from the outage bounds. Section VI
provides numerical results and concludes the paper.

We will adopt the following notational conventions. For
any random variable ξ, the pdf, cdf and mean are denoted
by fξ(x), Fξ(x) and ξ respectively. For ind multichannel
reception, fγ,i(x) and Fγ,i(x) denote the pdf and cdf of the
i-th branch SNR, with the parameters of the fading model
being denoted as γi, mi and so on. We assume L diversity
branches available for processing and they are independently
distributed (uncorrelated). A generalized fading channel im-
plies two cases: fγ,i(x)’s all emanate from the same fγ(x) but
have different average powers (ie, γi varies with i), or more
generally fγ,i(x)’s come from different distribution families
(mixed fading).

II. FADING MODELS

A. Rayleigh Fading

Fading signal amplitudes in large cells (macro-cellular en-
vironments) in the absence of a direct line of sight component
or tropospheric and ionospheric propagation based on reflec-
tion and refraction are usually modeled as Rayleigh random
variables. In macro-cellular environments, fading appears as
Rayleigh distributed, because the transmitted field is heavily
scattered between the transmitter and the receiver. The pdf and
cdf of the instantaneous branch SNR are given by

fγ(x) =
1
γ

exp
(

−x

γ

)
, x ≥ 0

Fγ(x) = 1 − exp
(

−x

γ

)
, x ≥ 0

(1)

where γ = E[x] denotes the average SNR/symbol/branch.

B. Rician Fading

In micro-cellular (e.g., urban and suburban land mobile
radio communications) and pico-cellular (local area networks
and indoor communications) environments, there usually exist
a dominant line of sight path in addition to numerous diffused
multipath components between the transmitter and receiver.
Line-of-sight or main paths are more likely to exist in such
cells because cell size is smaller and the user is nearer to

base stations. Thus, indoor fading is often expected to be
Rice distributed. Experimental results at several frequencies
support the Rician model. Fading signal amplitudes in this
case follow the Rician distribution with the ratio between the
specular and diffused components denoted by the Rice factor
K. The pdf of instantaneous branch SNR (a noncentral chi-
square distribution) and the corresponding cdf is given by

fγ(x) =
1 + K

γ
exp
[
−K − (1 + K)x

γ

]

× I0

[
2

√
K(K + 1)x

γ

]
, x ≥ 0

Fγ(x) = 1 − Q

[
√

2K,

√
2(K + 1)x

γ

]
, x ≥ 0

(2)

where Q
(√

2a,
√

2b
)

=
∫∞

b
exp(−t − a)I0(2

√
at)dt is the

first order Marcum Q-function, I0(.) is the modified Bessel
function of the first kind and K ≥ 0 is the Rice factor. For
the limiting case of K = 0, the Rician distribution reduces to
the Rayleigh distribution.

C. Nakagami-m Fading

The Nakagami-m distribution with fading severity index
m ≥ 1/2 is a versatile statistical model as it models signals
that experience either less or more severe fading that that of
Rayleigh fading. It sometimes fits experimental data (channel
measurements in urban and indoor propagation environments)
much better than Rayleigh or Rician distributions [14], [15].
The model also includes the one-sided Gaussian (m = 1/2)
and Rayleigh (m = 1) distributions as special instances, and
closely approximates the Rician distribution via relationship
m = (K+1)2/(2K +1) [16]. The instantaneous branch SNR
is a Gamma variate and its pdf and cdf are given by:

fγ(x) =
1

Γ(m)

(
m

γ

)m

xm−1 exp
(

−mx

γ

)
, x ≥ 0

Fγ(x) = 1 − 1
Γ(m)

Γ
(
m,

mx

γ

) (3)

where Γ(a, x) =
∫∞

x
exp(−t)ta−1dt denotes the complemen-

tary incomplete Gamma function and m ≥ 0.5 is the fading
severity index. If the fading index m assumes a positive integer
value, this may be simplified as

Fγ(x) = 1 − exp
(

−mx

γ

)m−1∑

k=0

[mx/γ)]k

k!
(4)

D. Nakagami-q Fading

Fading signal amplitudes in satellite links that are subject
to strong ionospheric scintillation tend to follow Nakagami-q
distribution (also known as Hoyt distribution). In this case, the
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pdf of instantaneous branch SNR and its cdf are given by:

fγ(x) =
1

γ
√

1 − b2
exp
[

−x

(1 − b2)γ

]
I0

[
bx

(1 − b2)γ

]
, x ≥ 0

Fγ(x) = Ie

[
b, x(1 − b2)γ

]

(5)

where −1 ≥ b = (1 − q2)/(1 + q2) ≤ 1, 0 ≤ qk ≤ ∞, is
the fading parameter and Rice’s Ie-function is related to the
first-order Marcum Q-function as

Ie(V/U,U) =
U

W

[
Q
(√

U + W,
√
U − W

)

− Q
(√

U − W,
√
U + W

)] (6)

while W =
√
U2 − V 2. The above model also includes the

one-sided Gaussian (b = 1) and Rayleigh (b = 0) distributions
as special instances.

E. Weibull fading

While this distribution is not widely used as others, recent
experimental results have confirmed its validity for certain
environments. For example, [17] presents a statistical analysis
of data obtained by measuring narrow-band path loss at
DECT (digital enhanced cordless telecommunications) fre-
quency (1.89 GHz) in an indoor environment. The best fitting
distribution to the data is Weibull. The pdf and cdf of SNR
which is Weibull distributed are given by

fγ(x) =
mxm−1

βm
exp
[
−
(
x

β

)m]
, x ≥ 0

Fγ(x) = 1 − exp
[
−
(
x

β

)m] (7)

where β = γ/Γ(1 + 1/m) and m is the fading index or the
shape parameter. For m = 1, this reduces to the Rayleigh
distribution for the fading amplitude.

III. BOUNDS ON THE OUTAGE FOR GSC IN ARBITRARY

FADING CHANNELS

A. Some basic results

Here we list some basic results regarding order statistics
without proofs. The interested reader is referred to [18]. Let
X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistics obtained
from a random iid sample of size n with pdf f(x) and cdf
F (x). Then the density function of X(r) is given by [18]

fX(r)
(x) =

n!
(r − 1)!(n − r)!

[F (x)]r−1 [1 − F (x)]n−r
f(x)

(8)
for 1 ≤ r ≤ n. The joint pdf of X(r) and X(s) (1 ≤ r < s ≤
n) is given by [18]

fX(r),X(s)
(x, y) =

n!
(r − 1)!(s − r − 1)!(n − s)!

× [F (x)]r−1[F (y) − F (x)]s−r−1

× [1 − F (y)]n−sf(x)f(y)

(9)

for −∞ ≤ x < y < ∞.

B. Simple Bounds for the outage

Suppose γ(1) ≤ γ(2) ≤ . . . γ(L) represent the order statistics
obtained by arranging the instantaneous SNRs γ1, γ2, . . . , γL

in increasing order of magnitude. As GSC collects the best M
paths and combines them coherently, the GSC output SNR is

γgsc =
L∑

k=L−M+1

γ(k). (10)

Outage is the probability that the output SNR falls below a
given threshold that depends on the modulation type and other
system design requirements. The outage may be defined as

Pout = Fγgsc(γth) = Pr(γgsc ≤ γth). (11)

As mentioned before, this outage is fairly difficult to compute
in some cases and analytical expressions exist only for limited
cases. Furthermore, we would like to bound the outage and
error rates without using the mgf of the GSC output. For
this reason, we adapt a result by Slimane [19], who develops
bounds for a sum of independent lognormal random variables
by using the cdf of the maximum.

In order to derive the outage bounds that do not require
mgf, we note that

γ(L) ≤ γgsc ≤ Mγ(L), (12)

which results in

Pr(Mγ(L) < γth) ≤ Pr(γgsc ≤ γth) ≤ Pr(γ(L) < γth). (13)

To evaluate these upper and lower bounds, we need the
distribution of γ(L), which is well known. For the iid case,
the cdf of the maximum is readily obtained from (8) as
Fγ(L)(x) = [Fγ(x)]L. Thus, these bounds can be evaluated
as

[F (γth/M)]L ≤ Pout ≤ [F (γth)]L . (14)

This is exact if M = 1 and the bounds should be tight where
M � L (since the lower bound tends to be quite close to the
”exact” curve). Note that these bounds can be applied to any
fading model such as Rician, Nakagami, Weibull and others.
When M is not very small in comparison to L, then the above
upper bound can be loose. This may improved by noting that

Mγ(1) ≤ γgsc ≤ Mγ(L). (15)

This leads to the following bounds:

Pr(Mγ(L) < γth) ≤ Pr(γgsc ≤ γth) ≤ Pr(Mγ(1) < γth).
(16)

To evaluate these upper bound, we need the distribution of
γ(1), which is well known. For the iid case, the cdf of the
minimum is readily obtained from (8). Thus, we have

[F (γth/M)]L ≤ Pout ≤ 1 − [1 − F (γth/M)]L . (17)

For the case of non identical fading, the bounds (14) and
(17) can be readily generalized as

L∏

i=1

Fi(γth/M) ≤ Pout ≤
L∏

i=1

Fi(γth) and (18)
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L∏

i=1

Fi(γth/M) ≤ Pout ≤ 1 −
L∏

i=1

[1 − Fi(γth/M)] (19)

where Fi() denotes the cdf of the i-th branch.

IV. IMPROVED BOUNDS FOR OUTAGE

The above bounds are simple, but may not be tight enough
for some purposes. We note that

γ(L) + γ(L−1) ≤ γgsc ≤ γ(L) + (M − 1)γ(L−1) for M ≥ 2.
(20)

This leads to

I(M − 1, γth) ≤ Pr(γgsc ≤ γth) ≤ I(1, γth). (21)

where both the lower and upper bounds are special cases of
I(α, ε) = Pr(γ(L) + αγ(L−1) ≤ ε). We next derive I(α, ε) as
a single integral of the pdf and cdf of the fading model for iid
fading. For this purpose, we need the joint pdf of γ(L−1) and
γ(L). This can be obtained from (9). We thus have

I(α, ε) =
∫ ε/(1+α)

0

∫ ε−αx

x

f(x, y)dydx

=
L!

(L − 2)!

∫ ε/(1+α)

0
[Fγ(x)]L−2

× {Fγ(ε − αx) − Fγ(x)}fγ(x)dx.

(22)

Hence, (21) can be evaluated in terms of a single integral.
For some fading models, I(α, ε) can be derived in closed-
form. However, this can also computed readily for any fading
model via numerical integration. These tighter bounds can be
useful for many performance studies.

An alternative, interesting proof of (22) is also possible.
This proof uses a certain Markov property of order statistics.
It is well known that γ(L) conditioned on γ(L−1) = x is a
random variable with cdf

F (y) =
Fγ(y) − Fγ(x)

1 − Fγ(x)
for y ≥ x. (23)

As a result, the quantity I(α, ε) can be expressed as the
expectation of a conditional cdf: ie,

I(α, ε) = E

{
Fγ(ε − αx) − Fγ(x)

1 − Fγ(x)

}
(24)

where E() denotes the average over the pdf of x. Using (8)
with n = r+1 = L, we find that x is distributed with the pdf

L!
(L − 2)!

[F (x)]L−2[1 − Fγ(x)]fγ(x). (25)

Therefore, we readily obtain (22).
We now illustrate the closed-form evaluation of (22) for iid

Rayleigh fading. Using (1), we can readily show that

I(α, εγ) = c

∫ ε/(1+α)

0
(1 − e−x)L−2{e−x − e−[ε−αx]}e−xdx

= c
L−2∑

r=0

(−1)r

(
L − 2

r

)[(
1 − e−(r+2)ε/(1+α)

r + 2

)

− e−ε

(
1 − e−(r+1−α)ε/(1+α)

r + 1 − α

)]

(26)

where c = L!/(L − 2)!.
We note that (22) can readily be generalized for ind fading

environments. We can show that

J(α, ε) = Pr(γ(L) + αγ(L−1) ≤ ε)

=
∫ ε/(1+α)

0

∫ ε−αx

x

f(x, y)dydx

=

L∑

r=1

L∑

s=1

∫ ε/(1+α)

0

L∏

t=1,t�=r,s

Fγ,t(x)

× {Fγ,r(ε − αx) − Fγ,r(x)}fγ,s(x)dx.

(27)

For the iid case, Fγ,∗(x) = Fγ(x) and this collapses to (22).
This leads to

J(M − 1, γth) ≤ Pr(γgsc ≤ γth) ≤ J(1, γth). (28)

V. ERROR RATE BOUNDS FROM THE OUTAGE BOUNDS

The average error rate is obtained by integrating the con-
ditional error probability, Pe(γ) over the pdf of γgsc. We
however express the average error probability in terms of the
cdf of γgsc. This can readily be done as

P e =
∫ ∞

0
Pe(γ)fγgsc(γ) dγ

=
∫ ∞

0
−P ′

e(γ)Fγgsc(γ) dγ
(29)

where P ′
e(γ) denotes the derivative of the conditional error

rate. Eq. (29) is obtained by integration by parts method.
Combining this with (14), we find
∫ ∞

0
−P ′

e(γ)
[
F
( γ

M

)]L
dγ ≤ P e ≤

∫ ∞

0
−P ′

e(γ)[F (γ)]L dγ.

(30)
This can now be applied to any modulation format and any
fading model (Section 2). Several derivatives of the conditional
error probability expressions are shown in Table 1.

For example, let us illustrate the use of (30) for bounding the
error rates of NCFSK and DPSK in Rayleigh fading. Using
the corresponding derivative in Table 1 and the cdf (1), we
have

I1(α) =
a

2

∫ ∞

0
(1 − e−αx/γ)Le−axdx

=
a

2

L∑

r=0

(−1)r

(
L

r

)(
1

a + αr/γ

)
.

(31)

Thus the average error rates for the two modulation techniques
can be bounded as

I1

(
1
M

)
≤ P e ≤ I1(1). (32)

We next illustrate the use of (30) for bounding the error rates
of BPSK and CFSK in Rayleigh fading.

I2(α) =
1
2

√
a

π

∫ ∞

0
(1 − e−αx/γ)Le−axx− 1

2 dx

=
√
a

2

L∑

r=0

(−1)r

(
L

r

)(
1√

a + αr/γ

)
.

(33)
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Thus the error rate can be bounded as

I2

(
1
M

)
≤ P e ≤ I2(1). (34)

Similarly for QPSK, MSK and Mc-QAM, we can show that
if

I3(α) =
L∑

r=0

(−1)r

(
L

r

){
2q

√
a

(
1√

a + αr/γ

)

− q2
√

π(a + αr/γ)
sin−1



 1√
1 + a

(a+αr/γ)








 ,

(35)

then the average error rates for the two modulation techniques
are bounded as

I3

(
1
M

)
≤ P e ≤ I3(1). (36)

Several other error bounds can also be derived. These will be
reported in a forthcoming journal paper.

The above can indeed be improved by combining (22) and
(29). Thus an improved set of bounds are derived as
∫ ∞

0
−P ′

e(γ)I (M − 1, γ) dγ ≤ P e ≤
∫ ∞

0
−P ′

e(γ)I(1, γ) dγ.

(37)
Details are omitted for brevity.

TABLE I

CEP DERIVATIVE FOR SEVERAL COMMON MODULATION SCHEMES.

Modulation/ Negative derivative
Detection −Pe(γ)

BPSK (a = 1)
CFSK (a = 1

2 ) 0.5 e−aγa√
π

√
aγ

NCFSK (a = 1
2 )

DPSK (a = 1) 1
2 e−aγa

QPSK (q = a = 1
2 )

MSK (q = a = 1
2 )

Mc-QAMa( q = 1 − 1√
Mc

)

2 qe−aγa√
π

√
aγ

− 2
q2erfc(√

aγ)e−aγa
√

π
√

aγ

CDE-BPSKb e−γ
√

π
√

γ
− 1.0

erfc(√
γ)e−γ

√
π

√
γ

MDPSK 1
π

∫ π−π/M
0 g(θ) exp [−γg(θ)] dθc

MPSK 1
π

∫ π−π/M
0 h(θ) exp [−γh(θ)] dθd

aa = 3/2/(Mc − 1).
bCoherent detection of differentially encoded BPSK.
cg(θ) = sin2(π/M)

1+cos(π/M) cos θ

dh(θ) = sin2(π/M)
sin2 θ

.

VI. NUMERICAL RESULTS AND CONCLUSION

Fig. 1 compares the tightness of the upper and lower bounds
(both simple and improved) as well as exact outage probability
for GSC(2,8) and GSC(5,8) in iid Rayleigh fading. Note that
for M = 2, the improved upper & lower bounds coincide
with the curve corresponding to the exact outage rate of error
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Fig. 1. Outage Probability for GSC(2,8) and GSC(5,8) in iid Rayleigh fading.
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Fig. 2. Simple outage probability bounds for GSC(M,30) in mixed fading.

probability of GSC(2,8) receiver. For M=5, the improved upper
bound coincides with the exact performance of GSC(2,8). It
is apparent that the lower bounds are much tighter than the
upper bounds particularly when M � L.

Fig. 2 is the outage probability in a mixed fading environ-
ment plotted as a function of normalized threshold (in dB).
The total number of multipaths is 30. GSC performance when
M=1, 2, 5, 10, 15 and 20. We assume an exponential multipath
intensity profile (MIP) with a decay factor δ = 0.7. The first 15
multipaths are Rician faded (K = 3), the next five multipaths
are Rayleigh faded (m = 1) and the remaining 10 multipaths
are Nakagami-m faded (m = 0.75).

Fig. 3 plots the ABER as a function of average SNR per bit
for BPSK with GSC in ind Nakagami-m fading (m = 0.75)
and L = 15. The exponential MIP decay factor δ = 0.7.
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Fig. 3. Simple bounds for the average bit error rate of BPSK with GSC(M,15)
receiver.

The mgf of a sum of ordered independent random variables
is needed for computing the outage probability and error
rates of a generalized selection combiner. Unfortunately, this
mgf is either not known for generalized fading channels or
does not exist in simple forms. This paper has derived new
upper and lower outage bounds for the GSC over generalized
fading channels. These bounds were further used to derive
new bounds for the bit error rate and symbol error rates. Using
these bounds, one can compute outage probability and average
error rates for GSC(M,L) in myriad of fading environments
and modulation techniques.
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