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Abstract—Using a circular contour integral representation for
the generalized Marcum-Q function, ( ), we derive a new
closed-form formula for the moment generating function (MGF)
of the output signal power of a dual-diversity selection combiner
(SC) in bivariate (correlated) Nakagami- fading with positive in-
teger fading severity index. This result involves only elementary
functions and holds for any value of the ratio in ( ).
As an aside, we show that previous integral representations for

( ) can be obtained from a contour integral and also derive
a new, single finite-range integral representation for ( ). A
new infinite series expression for the MGF with arbitrary is also
derived. These MGFs can be readily used to unify the evaluation
of average error performance of the dual-branch SC for coherent,
differentially coherent, and noncoherent communications systems.

Index Terms—Digital communications, diversity reception,
fading channels, wireless communications.

I. INTRODUCTION

T HE error performance of dual-diversity selection com-
biners (SCs) over correlated Rayleigh and/or Nakagami-

fading channels has been analyzed by many authors (see [1]–[4]
and references therein). In [3], the authors differentiate an
integral representation for the cumulative density to get the
probability density function (PDF). Their resulting expressions
depend on the branch power ratios and the power correlation
coefficient [3, eq. (2)]. They then use the PDF to average the
conditional error probability for different modulation formats.
Alternatively, if one derives the SC output moment generating
function (MGF) first, the performance of a broad class of
modulation formats can be obtained at once [5]. Motivated by
[5] and recognizing the fact that SC output MGF is the key to
the performance analysis, we attempted to derive closed-form
solutions for the average symbol-error probability (ASER)
of binary noncoherent and differentially coherent modulation
formats using an approach similar to that of [5], which utilizes
certain integral representations of . These closed-form
expressions take different forms depending on , , or

[6], [7] and they are omitted here for the sake of brevity.
During our attempt, we have discovered a number of related
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results which are worthy of reporting. Our results provide some
new insights and supplement [2] and [3]. Our major results and
comments are as follows.

(1) We show that the trigonometric integral representa-
tions for in [6] and [7] can be obtained di-
rectly from a circular contour integral representation
for [8] by an appropriate variable substitu-
tion. In addition, we also derive a new single integral
representation for that is valid for ,

, or .
(2) Utilizing the contour integral representation for

, we derive an exact closed-form expression
for the SC output MGF in correlated Nakagami-
fading while the fading severity index is a positive
integer. Unlike [3], the resulting formula applies
regardless of the values of the branch power ratios and
. For instance, the independent fading case can be

treated directly by setting . As such, it leads to
a compact, unified analysis of a broad class of mod-
ulation formats for dual-diversity SC in Nakagami-
fading.

II. I NTEGRAL REPRESENTATIONS FOR

Proakis [8, p. 885] provides the following contour integral
representation for the generalized Marcum-Q function

(1)

where and is a circular
contour of radius that encloses origin. The singularities of the
integrand are at and . Therefore, by Cauchy’s
theorem, we can choose any . Now if we choose

, then we need to remove the singularity at on by
suitably deforming [see Fig. 1(b)]. This representation holds
regardless of , , or , and for any positive integer

. In the following, we will show that both Helstrom’s [6] and
Simon’s [7] integral representations readily follow from (1) for
integer values of .

(1) Consider the case [see Fig. 1(a)] where the cir-
cular contour encloses origin with a radius less than unity.
Therefore, in (1) can be written as with and

. Now select , so we immediately get

(2)
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(c)

Fig. 1. Contours of a line integral. (a)r < 1. (b) r = 1. (c) r > 1.

where and is the set of positive
integers. Taking the magnitude of the integrand, we obtain the
new bound

(3)

which holds for any integer , whereas the bound due to
Simon [7, eq. (12)] holds only for .

(2) Consider the case [see Fig. 1(b)]. Now
and as shown in Fig. 1(b). Hence

(4)

where is the half-circle contour centered on with
radius . On , , and . Taking
the real value of the first integral on the right-hand side and
letting , we obtain

(5)

for . This result [i.e., (5)] is, in fact, identical to [6, p.
528] derived by Helstrom.

(3) If , is greater than unity. So we need to
consider the closed contour shown in Fig. 1(c). The inner circle

has a radius less than unity, while the outer circlehas a
radius of . Inside the closed contour, the only singularity of

the integrand occurs at . Hence, using Cauchy’s theorem,
we find

(6)
The first integral is and on . There-
fore, we get

(7)

for .
Note that (2) and (7) are identical to Helstrom’s results [6],

except the integrands are in a complex format, and hence, are
slightly more compact. Since the integrals are real valued, taking
the real parts of the integrands in (2) and (7) gives the exact same
integral representations of Helstrom.

Similarly, Simon’s results [7] are very closely related. For
instance, consider the case. As in the derivation of (2), we
can select . Note that the magnitude of is still
less than unity, i.e., . Hence, using this new substitution
in (1), we find

(8)
for . Again, this representation is very compact, yet it is
identical to [7, eqs. (7) and (10)].

A. Yet Another Simple Integral Representation for

While the contour in Fig. 1(b) is used for the case, it
can also be used when . Therefore, if we use in
(1) along with the contour in Fig. 1(b), we may obtain a new
integral representation for the generalized Marcum-Q function.
Now .
Hence

(9)

Taking the real value of the first integral on the right-hand side
and letting , we obtain

(10)

where ,
, and . To the best of our knowledge,
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the above expression isnew, and it holds for , ,
or . Also notice that if , (10) reduces to (5), as
anticipated.

III. D ERIVATION OF THE MGF OF SNR AT THE

OUTPUT OFDUAL-BRANCH SC COMBINER

The PDF of the signal envelope at the output of SC combiner
is [4]

(11)

where ,
, is introduced for ease of notation. Now, the desired

MGF may be evaluated as

(12)

A. Integer Fading Severity Index

Clearly, the solution to the definite integral (13) is required to
solve our problem on hand

(13)

where . Now substituting (1) into (13) and performing
the integration with respect tofirst (changing the order of in-
tegration is valid because both the integrals are convergent), we
find

(14)

where and . The denom-
inator of the integrand in (14) has two positive roots. It can be
easily shown that one root is inside the unit circle and the other is
outside. Therefore, applying the residue theorem and invoking
Liebnitz’s differentiation rule [9, (0.42)] and after simplifica-
tions, we obtain a closed-form solution for

(15)

where and

Obviously, (15) holds only for integer . Besides, we would
like to point out that (15) is equivalent to [2, eq. (6)], but simpler
than the latter. Therefore, the MGF of SNR at the SC combiner
output in bivariate Nakagami fading can be conveniently evalu-
ated using

(16)

where
and

.

B. Non-Integer Fading Severity Index

If the fading severity index is not an integer value, then the
methods discussed thus far are no longer applicable because the
trigonometric integrals for given in [6], [7], and (10)
are restricted to positive integeralone, and we cannot simplify
the contour integral (1) through the use of residue theorem. In
this case, we can utilize [2, eq. (6)] to get

(17)

where and are as defined in (16), the Gauss hy-
pergeometric series

is convergent for , and notation
denotes the Pochhammers symbol. To the best of our

knowledge, the expression (17) is new and holds for arbi-
trary values. This MGF can be used to unify the
performance evaluation of various modulation formats in
Nakagami- fading with arbitrary parameters.

IV. ASER OF BINARY AND -ARY MODULATION FORMATS

WITH DUAL-BRANCH SC DIVERSITY

This section presents the use of the new MGFs for a unified
analysis of a broad class of modulation formats employing dual-
branch SC in Nakagami fading with arbitrary parameters. Using
Craig’s results [10], it is not difficult to show that the conditional
error probability for the binary and -ary signaling constella-
tions (coherent, differentially coherent, and noncoherent modu-
lation formats) can be expressed as an exponential function of
the SNR or an integral thereof [5]. Thus, the average error rate
can be expressed in terms of only the MGF. In the following,
two examples illustrate this process.
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If the conditional error probability is in the exponential form,
, then we have a closed-form expres-

sion for the ASER. For instance, the average bit-error rate per-
formance for binary differential phase-shift keying (DPSK) and
noncoherent frequency-shift keying (FSK) with dual-branch SC
is given by

(18)

where for binary DPSK and
for binary orthogonal FSK. As well, when

(Rayleigh fading), we get

(19)

where and are as defined in (16). [5, eqs. (31) and (32)]
follow at once from (16). Also notice that (16) (unlike [5, eq.
(32)]) is independent of the ratio between the arguments of the
generalized Marcum-Q function even when . Similarly,
for integer and , [5, eq. (57)] follows at once from (16).

If the conditional error probability is of the form
(e.g., coherent binary PSK or FSK), then the ASER

can be expressed as

(20)

It is clear that the evaluation of (20) only involves a single in-
tegral with finite integration limits since we have a closed-form
solution for the MGF. Unlike the development of [5, eq. (59)],
no further manipulations are necessary. Following this tech-
nique, many other modulation schemes can be analyzed at once.

V. CONCLUSION

This letter makes several contributions: (a) a closed-form
expression is derived for the MGF for integer; (b) a Hy-

pergeometric series-based expression is derived for the MGF
for noninteger ; and (c) a new, single-integral representation
is derived for (with finite integration limits) that is
valid for , , or . To enable the error analysis,
we derive the required MGF for both cases of identical and
dissimilar mean received signal strengths. The evaluation for
the independent fading case can be directly obtained by setting
the power correlation coefficient to zero in our expressions.
These closed-form formulas can be directly used to determine
the error performance of a broad class of modulation formats
with dual-diversity SC over independent and correlated Nak-
agami- and Rayleigh fading channels.
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