A Construction for Binary Sequence Sets with Low Peak-to-Average Power Ratio

Matthew G. Parker¹ Dept. of Informatics, University of Bergen 5020 Bergen, Norway matthew@ii.uib.no, http://www.ii.uib.no/~matthew/

Abstract — Complementary Sequences (CS) have Peak-to-Average Power Ratio (PAR) ≤ 2 under the one-dimensional continuous Discrete Fourier Transform (DFT₁^{∞}). Davis/Jedwab [1] constructed binary CS (DJ Set) for lengths 2^n described by $s = 2^{\frac{-n}{2}}(-1)^{p(\mathbf{x})}, p(\mathbf{x}) = \sum_{j=0}^{L-2} x_{\pi(j)} x_{\pi(j+1)} + c_j x_j + k, \quad c_j, k \in \mathbb{Z}_2$. Hamming Distance, D, between sequences in this set satisfies $D \geq 2^{n-2}$. However the rate of the DJ set vanishes for $n \to \infty$, and higher rates are possible for PAR $\leq O(n)$ and D large. We present such a construction which generalises the DJ set. These codesets have PAR $\leq 2^t$ under all Linear Unimodular Unitary Transforms (LUUTs), including all one and multi-dimensional continuous DFTs, and $D \geq 2^{n-d}$ where d is the maximum algebraic degree of the chosen subset of the complete set.

Let $\mathbf{l} = (l_0, l_1, \dots, l_{r^n-1})$ be a length r^n complex sequence. **l** is unimodular if $|l_i| = |l_j|, \forall i, j$, unitary if $\sum_{i=0}^{r^n-1} |l_i|^2 = 1$, and r-linear if $\mathbf{l} = r^{\frac{-n}{2}} \bigotimes_{i=0}^{n-1} (a_{i,0}, a_{i,1}, \dots, a_{i,r-1})$ where \otimes , the 'left tensor product', satisfies $\mathbf{A} \otimes (B_0, B_1, \dots) =$ $(B_0\mathbf{A}, B_1\mathbf{A}, \ldots)$. For r prime, r-linear is called linear. $\mathbf{L}_{\mathbf{r},\mathbf{n}}$ is the infinite set of length r^n complex r-linear, unitary, unimodular sequences. A $r^n \times r^n$ r-Linear Unimodular Unitary Transform (r-LUUT) matrix $\mathbf L$ has rows $\in \mathbf L_{\mathbf r,\mathbf n}$ such that $\mathbf{L}\mathbf{L}^{\dagger}=\mathbf{I_{r^n}},$ where \dagger means conjugate transpose, and $\mathbf{I_{r^n}}$ is the $r^n \times r^n$ identity. When r is prime, r-LUUT is called LUUT. q-LUUTs are a subset of r-LUUTs iff q|r. Example LUUTs are the $2^n \times 2^n$ Walsh-Hadamard (WHT) and Negahadamard (NHT) Transform matrices, $\bigotimes_{i=0}^{n-1} \mathbf{H}$, and $\bigotimes_{i=0}^{n-1} \mathbf{N}$, respectively, where $\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{N} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$, and $i^2 = -1$. DFT₁^{∞} is an infinite subset of $2^n \times 2^n$ LUUTs, the union of whose rows form a subset of $\mathbf{L}_{2,\mathbf{n}}$ where each row satisfies $a_{i,0} = \frac{1}{\sqrt{2}}, a_{i,1} = \frac{\omega^{ik}}{\sqrt{2}}$ for any k, and ω a complex root of unity. We define PAR as, r-PAR(s) = $r^n \max_{\mathbf{l}}(|\mathbf{s} \cdot \mathbf{l}|^2)$ = $r^n \max_{\mathbf{l}}(|\sum_{i=0}^{r^n-1} s_i l_i^*|^2)$ where $\mathbf{l} \in \mathbf{L}_{\mathbf{r},\mathbf{n}}$, \cdot means inner product', and $\overline{}$ means complex conjugate. When r is prime, r-PAR is termed PAR. For l any row of a fixed unitary transform, **U**, $PA(\mathbf{s}) = r^n \max_1(|\mathbf{s} \cdot \mathbf{l}|^2)$. The rows of an $R \times R'$ matrix, **A**, form a **complementary set** of R sequences under the $R' \times R'$ unitary transform matrix, \mathcal{T} , if $\mathbf{A}\tau_{\mathbf{i}}^{\mathbf{T}}$ is unitary, where $\tau_{\mathbf{i}}$ is the ith row of \mathcal{T} , and the rows of **A** are unitary. Consequently, each row, $\mathbf{a}_{\mathbf{i}}$, of \mathbf{A} satisfies $PA(\mathbf{a}_{\mathbf{i}}) \leq R$ wrt \mathcal{T} .

Construction 1: Let $N = r^n$, $R = r^t$. Let \mathbf{E}_j and \mathbf{A}_j , $0 \le j < L$, be $R \times R$ and $R \times R^{j+1}$ complex matrices, resp., \mathbf{E}_j a unitary, unimodular matrix with rows $\mathbf{e}_{i,j}$, \mathbf{A}_j with unitary, unimodular rows, $\mathbf{a}_{i,j}$, and $\mathbf{A}_0 = \mathbf{E}_0$. Let γ_j and θ_j permute Z_R , and \mathbf{E}'_j , with rows $\mathbf{e}'_{i,j}$, be the row/column permutation

Chintha Tellambura Comp. Sci. and Software Eng., Monash University, Clayton, Victoria 3168, Australia

chintha@mail.csse.monash.edu.au

of $\mathbf{E}_{\mathbf{j}}$, specified by γ_j and θ_j , resp.. Then $\mathbf{A}_{\mathbf{j}}$ is formed as,

$$\mathbf{a}_{\mathbf{i},\mathbf{j}} = (\mathbf{a}_{0,\mathbf{j}-1} | \mathbf{a}_{1,\mathbf{j}-1} | \dots | \mathbf{a}_{\mathbf{R}-1,\mathbf{j}-1}) \odot (\mathbf{1} \otimes \mathbf{e}_{\mathbf{i},\mathbf{j}}')$$

where $\mathbf{x} \odot \mathbf{y} = (x_0y_0, x_1y_1, \dots, x_{R^j-1}y_{R^j-1})$, **1** is the length R^j all-ones vector, and '|' means concatenation.

Theorem 1 Let s be a length $N = R^L$ row of A_{L-1} . Then $\pi_r(\mathbf{s})$ satisfies r-PAR $(\pi_r(\mathbf{s})) \leq R$ under all $N \times N$ r-LUUTs, where π_r is any r-symmetric permutation of s.

Construction 2: (special case of Construction 1). Let r = 2and all $\mathbf{E}_{\mathbf{j}}$ be $2^t \times 2^t$ WHTs. Let $\mathbf{x} = \{x_0, x_1, \dots, x_{n-1}\}$ be *n* binary variables. Then $\mathbf{s} = 2^{\frac{-n}{2}}(-1)^{\mathbf{p}(\mathbf{x})}$, where,

$$p(\mathbf{x}) = \sum_{j=0}^{L-2} \theta_j(\mathbf{x_j}) \gamma_j(\mathbf{x_{j+1}}) + \sum_{j=0}^{L-1} g_j(\mathbf{x_j})$$

where θ_j and γ_j are any permutations: $Z_2^t \to Z_2^t$, $\mathbf{x}_j = \{x_{\pi(tj)}, x_{\pi(tj+1)}, \ldots, x_{\pi(t(j+1)-1)}\}, n = Lt, \pi$ permutes Z_n , and g_j is any t-variable function.

Corollary 1 The length $N = 2^n$ sequences, s, of Construction 2, satisfy $PAR(s) \leq 2^t$ under all $N \times N$ LUUTs.

Example: For t = 3, π the identity, L = 2, let γ_0 and θ_0 be quadratic permutations of Z_{3}^{2} . Then s is a length 64 quartic sequence. For instance,

 $\begin{array}{lll} p(\mathbf{x}) = & 0235, 0^{2}45, 023, 025, 1235, 1245, 0234, 0235, 0245, 1234, 1235, 1245, \\ & 123, 125, 035, 045, 134, 145, 134, 135, 145, 234, 235, 245, 03, 05, 14, 15 \\ \end{array}$ where, e.g., 0235, 0245 means $x_{0}x_{2}x_{3}x_{5} + x_{0}x_{2}x_{4}x_{5}$. In this case s has PAs 6.25,

Theorem 2 For fixed t, let **P** be the subset of $p(\mathbf{x})$ of degree 2 or less, generated using Construction 2. Then $D \ge 2^{n-2}$ and

3.25, and 3.74 under WHT, NHT, and DFT^{∞}₁, resp. For all LUUTs, PAR ≤ 8 .

$$\frac{|\mathbf{P}|}{2^{n+1}} \le B = \frac{\left(\frac{\Gamma}{t!}\right)^{\frac{n}{t}-1} n! (2^{2^t-t-1})^{\frac{n}{t}}}{2t!} \tag{1}$$

where $\Gamma = \prod_{i=0}^{t-1} (2^t - 2^i) = |GL(t, 2)|$. (GL is the General Linear Group). (For t = 1 or $L \leq 2$ the bound is exact).

The table enumerates quadratic coset leaders for t = 2 (PAR ≤ 4.0) using Constr. 2, comparing with (1) and the DJ set.

n	4	6	8	10
В	72	12960	4354560	2351462400
$ P /2^{n+1}$	36	9240	4086096	2317593600
$ DJ /2^{n+1}$	12	360	20160	1814400

The full paper describes how to generate the quadratic subset of Construction 2 using 'Bruhat' decomposition, also investigates higher degree subsets, and generalises Constructions 1 and 2 to γ_j , θ_j , many-to-one and one-to-many mappings.

References

 Davis, J.A., Jedwab, J.: Peak-to-mean Power Control in OFDM, Golay Complementary Sequences and Reed-Muller Codes. IEEE Trans. Inform. Theory 45. No 7,2397-2417, Nov (1999)

¹Funded by NFR Project Number 119390/431

^{0-7803-7501-7/02/\$17.00©2002} IEEE.