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Abstract — Complementary Sequences (CS) have
Peak-to-Average Power Ratio (PAR) < 2 under the
one-dimensional continuous Discrete Fourier Trans-
form (DFT{?). Davis/Jedwab [1] constructed bi-
nary CS (DJ Set) for lengths 2" described by s =
272 (—1)P), p(x) = YL Ta(yTagany He TR, ik €
Z>. Hamming Distance, D, between sequences in this
set satisfies D > 2""2, However the rate of the DJ
set vanishes for n — oo, and higher rates are possi-
ble for PAR < O(n) and D large. We present such
a construction which generalises the DJ set. These
codesets have PAR < 2 under all Linear Unimodular
Unitary Transforms (LUUTS), including all one and
multi-dimensional continuous DFTs, and D > 2*7¢
where d is the maximum algebraic degree of the cho-
sen subset of the complete set.

Let I = (lo,l1,...,lrm—1) be a length ™ complex sequence.

. . . .o . . r—1
1 is unimodular if |I;] :_]lj|, Vi, §, unitary if 37 L2 =1,
and r-linear if 1= = ®?=_01 (@4,0,8i,1, .., air—1) Where

®, the ’left tensor product’, satisfies A ® (Bo,Bi1,...) =
(BoA,B1A,...). For r prime, r-linear is called linear. Ly n
is the infinite set of length r™ complex r-linear, unitary, uni-
modular sequences. A r™ x r™ r-Linear Unimodular Unitary
Transform (r-LUUT) matrix L has rows € Ly such that
LL'" = Y,n, where t means conjugate transpose, and L is the
r™ x r™ identity. When r is prime, r-LUUT is called LUUT.
g-LUUTs are a subset of r-LUUTs iff gJr. Example LUUTSs
are the 2" x 2" Walsh-Hadamard (WHT) and Negahadamard
(NHT) Transform matrices, ®?:_01 H, and ®::01 N, respec-
tively, where H = %( P4 ), N= %( 1 ), and
i? = —1. DFT$® is an infinite subset of 2" x 2® LUUTS, the
union of whose rows form a subset of L2, where each row
satisfies a; 0 = %, a1 = % for any k, and w a complex root
of unity. We define PAR as, r-PAR(s) = r"max(|s-1]*) =
r"max (| E::O_l s:17|%) where 1 € Ly », - means 'inner prod-
uct’, and * means complex conjugate. When r is prime, r-PAR,
is termed PAR. For 1 any row of a fixed unitary transform,
U, PA(s) = r"maxy(|s - 1|2). The rows of an Rx R’ matrix, A,
form a complementary set of R sequences under the R’ x R’
unitary transform matrix, 7, if AT is unitary, where 7; is the
ith row of 7, and the rows of A are unitary. Consequently,
each row, a;, of A satisfies PA(a;) < R wrt 7.
Construction 1: Let N =" R = rt. Let E; and Aj,
0<j < L,be RxRand Rx R’*! complex matrices, resp., E;
a unitary, unimodular matrix with rows e; ;, A; with unitary,
unimodular rows, ajj, and Ao = Eo. Let «; and 6; permute

/

ZRr, and EJf, with rows ej ;, be the row/column permutation
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of Ej, specified by y; and 8;, resp.. Then Aj; is formed as,
ai; = (a0,-1la1,j-1] ... [ar-1,-1) © (1 @ ej;)

where x Oy = {(zoyo, T1Y1,- -+, TRi_1Yri_1), 1 is the length

R’ all-ones vector, and /| means concatenation.

Theorem 1 Lets be a length N = R row of ArL—1. Then
7r(s) satisfies r-PAR(rr(s)) < R under all N x N r-LUUTs,
where 7, is any r-symmetric permutation of s.

Construction 2: (special case of Construction 1). Let r = 2
and all Ej be 2* x 2 WHTs. Let x = {zo,%1,...,Zn-1} ben

binary variables. Then s = 277 (—l)p("), where,

L-2 L—-1
p(x) =Y 0 ()7 (xs) + > %)
=0 =0

where 6; and +; are any. permutations: Z§ — Z& x; =
{Zrt9) Txs41)s -+ Treg+1)-1}, © = Lt, 7 permutes Zn,
and g; is any t-variable function.

Corollary 1 The length N = 2" sequences, s, of Construc-
tion 2, satisfy PAR(s) < 2" under all N x N LUUTs.

Example: For t = 3, w the identity, L = 2, let yg and 6y be quadratic

permutations of zg. Then s is a length 64 quartic sequence. For instance,

p(x) = 0235, 0245, 023, 025, 1235, 1245, 0234, 0235, 0245, 1234, 1235, 1245,
123, 125, 035, 045, 134, 145, 134, 135, 145, 234, 235, 245, 03, 05, 14, 15

where, e.g., 0235, 0245 means cozgz3es + ToTax4s. In this case s has PAs 6.25,

3.25, and 3.74 under WHT, NHT, and DFTS®, resp. For all LUUTs, PAR < 8.
Theorem 2 For fized t, let P be the subset of p(x) of degree
2 or less, generated using Construction 2. Then D > 2772
and,
n_ t_t—1\ 2

Pl po WPl 0

o+l = 7 2t!
where T’ = H;;é(?t - 99 = |GL(t,2)|. (GL is the General
Linear Group). (Fort=1 or L < 2 the bound is exact).

The table enumerates quadratic coset leaders for t = 2 (PAR
< 4.0) using Constr. 2, comparing with (1) and the DJ set.

n 3 6 8 10
B 72 | 12960 | 4354560 | 2351462400
|P|/2™+T 36 9240 | 4086096 | 2317593600
|DJj/2”FT 112 360 20160 1814400

The full paper describes how to generate the quadratic sub-
set of Construction 2 using 'Bruhat’ decomposition, also inves-
tigates higher degree subsets, and generalises Constructions 1
and 2 to v;, 6;, many-to-one and one-to-many mappings.
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