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ABSTRACT - Exact error probability expressions for nonco- 
herent M-ary frequency-shift-keying (MFSK) systems that 
employ postdetection equal-gain diversity over Rayleigh, 
Rician and Nakagami-m channels are derived using a Laplace 
derivative formula. Both independent and generically corre- 
lated fading cases are considered. For independent fading, 
closed-form solutions are also derived for both Nakagami-q 
fading (either with identical or dissimilar fading statistics) and 
mixed fading cases. Previous results are shown to be specific 
instances of our general expressions. Additionally, a new con- 
cise, derivative formula is obtained for calculating the bit error 
rate of square-law detected multichannel binary differential 
phase-shift-keying (BDPSK) signals. All these expressions are 
applicable in many cases of practical interest and provide accu- 
rate predictions of the performance of both binary and M-ary 
orthogonal signalling over generalized fading channels (with 
arbitrary fading parameters). Several numerical examples are 
presented to illustrate the application of the theory, including 
the investigation into optimal diversity order in energy-sharing 
communications, characterization of block orthogonal codes 
with soft-decision decoding (i.e., MFSK may also be viewed as a 
form of repetition coding) and analysis of MFSK with space 
(antenna) diversity. 

I .  INTRODUCTION 
Noncoherent detection is a viable signalling scheme for 
wireless communications, particularly when the channel 
time variation is so rapid that it precludes an accurate esti- 
mation of the complex-valued channel parameters. How- 
ever, such an implementation will also result in an 
increased SNR per bit requirement in order to satisfy a 
quality of service contract, when compared with coherent 
detection. Diversity mechanisms may be used to recover 
this penalty, and in addition, will improve the outage error 
rate performance over fading channels. Furthermore, 
square-law combining (also known as post-detection equal 
gain combining) has a simple implementation because non- 
coherent detection circumvents the need to co-phase and 
weight the diversity branches. 
While the problem of square-law combining of MFSK sig- 
nals over fading channels has been considered by many 
researchers over the past forty years, in the context of both 
flat-fading and spread-spectrum communications, the 
closed-form average bit error rate (ABER) formulas have 
not been reported for many important practical cases such 
as nonidentical fading and correlated fading situations. 
Recently, [ 11 obtained an integral expression for the ABER 
of MFSK using square-law combining over several common 

fading channel models. A similar expression has been 
derived in [2], but it was obtained using a different mathe- 
matical approach (i.e., by exploiting the Parseval theorem to 
transform two product integrals into the frequency domain). 
In addition 'to this, finite-range integral expressio:is were 
provided for the performance analyses of BDPSK, NCFSK 
and MFSK, when employing postdetection EGC over gener- 
ically correlated Rician fading channels. Overall, previous 
studies on noncoherent MFSK, with the exception 0:- [ 11 and 
[2], have assumed an idealized channel model (i.e., :..i.d fad- 
ing statistics across the diversity branches) or consider spe- 
cific correlation models. Unfortunately, the results fcar ABER 
in generalizeid fading channel models are not in closed-form. 
This is exactly the problem that will be addressed in this 
paper. Specifically, we derive a unified derivative formula 
for the ASER of MFSK with multichannel receiver over gen- 
eralized fad-ing channels. This concise expression involves 
the evaluaticin of an L-th order derivative of the moment gen- 
erating function (MGF) of the combiner output SNR, where 
L denotes the diversity order. The generic clo:;ed-form 
expression can be further simplified into a finite polynomial 
for all common fading channel models: Rayleigh, Rician, 
Nakagami-m and Nakagami-q. Moreover, exact finite-range 
integral expressions for both MFSK and binary DPSK can be 
readily obtained from various new forms of the conditional 
error probabilities (CEPs) derived in [4]. Thus, this study 
provides the most comprehensive analysis to-date dealing 
with MFSK and DPSK modulation in conjunction with 
post-detection diversity. A by-product of this investigation 
includes the derivation of a simple, closed-form Cerivative 
formula for both square-law detected binary orthogonal FSK 
and differentially coherent PSK, over generalized fading 
channels. These exact closed-form solutions are of practical 
interest since they provide useful insights into the system 
behaviour and facilitate design parameter optimization. 
It is worth mentioning that a flurry of recent papers (e.g., [ 11) 
have shown that error rates for a multitude of digital modula- 
tion schemes can be analyzed using an MGF approach. The 
key idea is to find an exponential-type integral representa- 
tion (with linite integration limits) for the CEP, so that the 
averaging over the fading distribution can then be repre- 
sented in terms of an integral of the MGF of the combiner 
output SNFL In contrast, the performance analysis problem 
considered in this paper requires only the knowledge of the 
derivatives of this MGF. This is in fact a good news because 
derivatives are, in general, easier to be evaluated in closed 
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form while integrals are not. As a consequence, exact 
closed-form expressions for the error rates can be derived for 
all common fading channel models, without involving any 
tedious manipulations. 
Aside from presenting a new theoretical framework for 
analyzing the MFSK and DPSK in conjunction with a qua- 
dratic multichannel receiver, we shall also discuss selected 
numerical examples as an application of the theory: (a) 
investigation into the trade-off between diversity gain with 
additional diversity branches and the combination losses in 
an energy-sharing communication; (b) characterization of 
block orthogonal codes with soft-decision decoding (since 
MFSK may also be viewed as a form of repetition coding, 
for which the order of diversity is equal to the number of 
times a symbol is repeated in the block orthogonal code and 
the combining technique represents a soft-decision decoding 
of the repetition code); and (c) mitigating deep fades using 
space diversity; Further details can also be found in [4], a 
much enhanced version of this paper. 
11. GENERIC ERROR RATE EXPRESSIONS FOR SQUARE-LAW 

COMBINING OF BINARY AND M-ARY SIGNALS 
In this section, we first derive the CEP for square-law 
detected MFSK signals (i.e., performance in an AWGN 
channel) in closed-form. Two equivalent forms of the CEP 
are also provided in Appendix B of [4]. Subsequently, three 
generic derivative formulas are obtained by averaging the 
CEP over the probability density function (PDF) of the qua- 
dratic combiner output SNR. 
A .  A WGN Channel 
Consider M-ary orthogonal signalling with square-law 
detection and the combination of the signals on L diversity 
branches. The decision variables are given by 

L 

Ul = C 1 2 5 ~ ( , + N / ~ l ~  

U," = 

(1) 1 -  I 
L 

 IN^,,,^^, rn = 2, 3, ..., M 
1 -  I 

where { N l m }  are complex-valued zero-mean Gaussian ran- 

dom variables with variance o2 = 2E,N0. The probability of 
symbol error is then [5, Eq. (1 2- 1 -22)] 

where p ( u l )  denotes the PDF of U, . 
Expanding the power term in (2) binomially, and then carry- 
ing out the integration term by term, we obtain 

where @ Y ) ( s )  denotes the k-th order derivative of the MGF 
of U1 and the MGF Ql(s) is defined as [5,  Eq. (2-1-1 17)] 

Also, the coefficients pko in (3) can be calculated using the 
multinomial theorem, viz., 

and pkl = I l k ! .  
Note that a specific case of the above general development 
has been done in [5]. That is, p(ul) is explicitly given for 
Rayleigh fading (see [5,  Eq. (14-4-44)]). As such, the result 
is a performance analysis tailored to the Rayleigh fading 
environment. In contrast, the use of the derivatives of the 
MGF, in our case, ensures that the analysis is applicable to 
any fading environment. Moreover, other related studies on 
MFSK did not attempt to derive a closed-form expression for 
the CEP. Since the instantaneous bit error probability (BEP) 
can be related to the instantaneous symbol error probability 
(SEP) via the relationship 

(6) 
210g'M-1 PM - M p M ,  

P h ( Y )  = 7 
- 1 2 ( M -  1) 

we have a closed-form solution for the CEP as a derivative 
formula: 

where 

and y = I a: is the SNR per symbol'. 
No ,_ ,  

In a fading' environment, the statistical average of I$"(.) 
need to be computed. However, the derivatives of the MGF 
with respect to s are much simpler than those of tp(.), 
because the latter involves a product of two terms which 
have dependence on the parameter s (see (13)). Conse- 
quently, it is desirable to transform (7) so that the derivatives 
of the MGF can be directly used. For this we can expand the 
exponential term in ~ ( s )  as an infinite series of I / (  1 + s ) " .  
Although this infinite series expansion of w(.) appears to be 
more complicated, the resultant series for the derivatives can 
be reduced to a finite polynomial using Kummer transforma- 
tion (see Appendix A of [4] for details). In [4, Appendix B], 
we have shown that the CEP can be hrther simplified as 

or alternatively, as 

(9) 

I .  The SEP and BEP can be expressed in terms of the SNR per bit yb 
by simply replacing y with yJog2 M. 
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by computing the k-th order derivative of ~ ( s )  in a 
closed-form. Note that (10) is obtained from (9) after reor- 
dering the summations. To the best of the authors' knowl- 
edge, (7), (9) and (10) are all new. Also, for the particular 
case of L = 1 , (9) reduces to the familiar expression given 
in [5: Eq. (5-4-46)]. An equivalent form for the CEP 
(expressed in terms of the confluent hypergeometric func- 
tion) is also derived in [4, Appendix B]. 
Now, recalling that the CEP for multichannel binary orthog- 
onal FSK and binary differential PSK (DPSK) will have the 
same functional dependence on the combined SNR, with the 
exception that the noise variance for the binary orthogonal 
FSK will be twice that of the binary DPSK, it is straight-for- 
ward to show that the BEP for these binary signalling 
schemes is given by 

where y ( s )  is defined similarly to (8) except that y is now 
replaced by gy, g = 1 for binary orthogonal FSK and 
g = 2 for binary differential PSK. 
B. Generalized Fading Channels 
The ABEP performance of MFSK over fading channels can 
be readily obtained by averaging the CEP over the combiner 
output SNR. Thus, using (7), we have 

where p u ( . )  is the PDF of the quadratic combiner output 
SNR, and 

Eq. (12) is obtained by recognizing that the integration with 
respect to y is simply the MGF of the combiner output SNR 
Q7(.) (Le., Laplace transform of the PDF). Notice that the 
application of (1 2) only requires an evaluation of the deriva- 
tives of v(.). Alternatively, using (9) and/or (10) and the 
Laplace transform identity 

JyexP(-hY)p,(Y)cty = (-1 )k@:"'(s)l. = I ,  (14) 

we can obtain yet another generic formula for computing the 
ABEP of multichannel MFSK over fading channels: 

or equivalently, 

It is interesting to note that (1 6) is usually preferred over (1 5) 
for error rate calculations because it has significantly fewer 
terms that involve the derivatives of for practical val- 

ues of M arid L (i.e., the terms in the square brackets are 
independent of the MGF). The generic error rate expressions 
(12), (15) and (16) are powerful results because ihey can 
handle all common fading channel models (F.ayleigh, 
Rician, Nakiigami-m and Nakagami-q) as well as mixed-fad- 
ing cases. It is also fairly easy to program and evaluate (12) 
and (16) in common mathematical software such a j  Maple. 
Their applications for the computation of ABEP of multi- 
channel noncoherent MFSK systems in different fading 
environments (for both independent and correlated diversity 
branches cases) can be found in Section I11 through VI of 
[4]. As an illustrative example, we will next consider the 
ABEP calculation over a correlated Nakagami-m channel 
with arbitriiry branch correlations. When the diversity 
branches art: correlated, the analysis can proceed in a similar 
manner to that of independent fading with dissimilar statis- 
tics [4]. This is because the MGF of the combiner output 
SNR in correlated Rayleigh, Rician or Nakagami-m environ- 
ments can be decomposed into a product of MGFs which 
closely resembles that of the independent fading cases. For 
instance, in a generically correlated Nakagami-In fading 
environment (with the assumption that the fading severity 
index is common to all the diversity branches), the MGF of 

the post-delection combiner output SNR, y = 1 y, , can be 

written in the form [2] 

L 

/ =  I 

where I is the L x L identity matrix, A is a positive definite 
matrix of dimension L (determined by the branch covari- 
ance matrix), R is a diagonal matrix that is dcfined as 
R = diag(Y,/m, ..., YJm) ,  m denotes the fading parameter, 
and h, is the 1 -th eigen value of matrix RA . As such, $('I( .) , 
which is needed in (15) and (16), can be evaluated using 
identity [4, Eq. (C.3)] as 

where the n-th order derivative of the I-th product term 
0?'(.) is given by 

(19) 
(-h,)"(m t n - I)!  0j"'(s) = 

( 1  +sh,)"'"(m- I ) !  

Substituting (18) and (19) in (16) (or (15)), we obtain the 
desired ABER formula. Although the correlated Rayleigh 
fading case can be treated as a special instance of Nakag- 
ami-m fading by letting m = 1 in (17) and (19), a much 
more concise expression for @:I(.) can be derived using the 
partial fraction approach: 
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Lastly, from (1 I), we can write the ABEP for the binary sig- 
nalling schemes in a very compact form: 

(21) 

where Y ( s )  = 

Table I .  MGF of the SNR o f  the k-th diversity branch 6d.) and its n-th 
order derivative $$"' 
Channel Model 

R u y I e i g h 

Rician 
K > O  

Nakagami-q 

- 1  < b  = !d< 1 
1 + q 2 -  

o < q < -  

.... 
for several fading channel models. 

MGF I),($) and its n-th derivative w.1.t. s, @'( .) 

111. COMPUTATIONAL RESULTS 
In this section, we present selected numerical curves that 
characterize the performance of noncoherently detected 
MFSK signals in different fading environments and help to 
assess the advantage of higher order signal alphabet sizes 
relative to a binary alphabet. 
A.  Optimal diversity order in energy-sharing communications 
Fig. 1 depicts the ASEP performance of the square-law 
detected quaternary orthogonal signals on a Rician fading 
channel as a function of the order of diversity. The analysis 
of multichannel reception of M-ary orthogonal signals for 
energy-sharing communications (i.e., where the same infor- 
mation-bearing signal is transmitted on L diversity chan- 
nels) is of interest because it indicates the optimum number 
of diversity orders for any given fixed total SNR that is 
defined as pr = Lp.  The optimum value for L (denoted as 
L,,,) exists for a fixed vr owing to the combination losses 
inherent in noncoherent detection schemes. A careful exami- 
nation of these curves reveals that the ASEP E is at a mini- 
mum when the average SNR/symbol/channel p = vT/LOl,, = 5 
for Rice factor K = 5. Although not shown here, we also 

found that this result is independent of the alphabet size. 
Similar observations were also made in [5] for the Rayleigh 
fading case, except that the ratio p,/L,,,,, = 3 when E is at a 
minimum. Since fade distributions affect the ratio j , / L , , ,  
which minimizes FM, in Fig. 2, we plot ASEP curves as a 
function of the order of diversity for several different values 
of Nakagami-m fading severity indices, while pr remains 
fixed. It is clear that for m = 1 , p= 3 when E is at mini- 
mum, which agrees with [S, pp. 7911. We also observe that p 
which minimizes decreases as the fading becomes more 
severe because Lo,, shifts to the left as m increases. While 
these observations are not obvious from the closed-form 
solutions for the ASEP, more insight can be had from a Cher- 
noff bound [4]. Details are omitted here for brevity. 

2 5 10 20 50 100 
Order of diwrslly 

Fig. 1 .  Performance analysis of square-law detected quaternary 
orthogonal signals (A4 = 4 )  in  a Rician fading ( K  = 5 ) as a 
function of diversity order. 

............. ............. ................. ............. 

..... ............. 

__.___________~ ...... ............. 
m 0 

: m = 2.5 n 

.................. ............. 

I I I I I 
2 5 10 20 50 100 

Order of diversity 

Fig. 2. Performance of square-law detected binary orthogonal 
signals on Nakagami-m fading channels when the total SNR is 
fixed at pT = 50.  

B. MFSK as time coding 
M-ary orthogonal FSK may also be viewed as a form of rep- 
etition coding, for which the order of diversity is equal to the 
number of times a symbol is repeated in the block orthogonal 
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code. By this observation, the combining technique repre- 
sents a soft-decision decoding of the repetition code. In Fig. 
3, ASEP curves are plotted as a function of SNR per bit 
< = Lj/log,M, with M and L as parameters. From this 
point of view, < = j / R c ,  where Rc = log,M/L is the code 
rate. It is apparent from this figure that the receiver perfor- 
mance improves as L and M increases for a specified <. 
However, the improvement is much more drastic by increas- 
ing L compared to a corresponding increase in M. Since the 
bandwidth expansion factor is given by LM/log,M, one can 
conclude that simple repetition coding with binary orthogo- 
nal FSK is more bandwidth efficient than a corresponding 
increase in the alphabet size. Nevertheless, it should be 
pointed out that the gain achieved by increasing M becomes 
more pronounced as L andor  m increases (since the spread 
between the curves for different alphabet sizes increases 
either with a larger L or as the channel condition improves). 

10‘ , 

SNR per bil (dB) 

Fig. 3. Performance of noncoherent MFSK over a Nakagami-m 
fading channel ( m  = 1.5 ) with M and L as parameters. 

C. MFSK with space (antenna) diversity 
Next in Fig. 4, we examine the impact of branch correlations 
on the performance of noncoherent M-ary FSK in Nakag- 
ami-m fading channels. As an example, we consider a three 
element antenna array in triangular configuration with the 
branch covariance matrix is given by 

1 0.727 0.913 
R, = [ 0.727 1 0.913 ] (22) 

0.913 0.913 1 

in accordance with the empirical results of Lee [6 ] .  The 
branch covariance matrix was obtained with the assumptions 
that two adjacent antennas have equal separations (of the 
order of 8 times the operating frequency wavelength), the 
signals impinge upon the triangular array from the broadside 
of the line linking antennas and incident angles of these 
antennas to the third antenna is 60” . For the sake of simplic- 
ity, we also assume that all the diversity branches have same 
SNR. As such, the positive definite matrix R A  in (17) is 

related to the branch covariance matrix R, as 
R A  = (?&)/PI. It is evident that branch correlations sig- 
nificantly reduce the diversity gain and also that the degrada- 
tion is more severe for larger alphabet sizes. 

10‘- , 

SNR per bit (de) 

Fig. 4. Comparison between receiver performance of square-law 
detected M-iiry orthogonal signals in independent and correlated 
Nakagami-m fading channels ( m  = 1.5 ) with a three element 
antenna array in a triangular configuration. 

IV. CONCLUSION 

This article: presents unified derivative formulas for multi- 
channel receiver performance of MFSK and DPSK signal- 
ling schemes over generalized fading channek. These 
generic closed-form expressions can be further :simplified 
into a finite polynomial for all common fading channel mod- 
els: Rayleigh, Rician, Nakagami-m and Nakagarni-q. It is 
also straight-forward to extend these results and analyze the 
performance of MFSK and DPSK schemes in conjunction 
with a reduced complexity post-detection selec- 
tiodequal-gain diversity quadratic receiver on i.i.ct Rayleigh 
and Nakagami-m fading channels using (12) or (16), along 
with an appropriate formula for &(.). 
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